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1 
  
Introduction  
 
 

1.1 The Different Types of Psychometrics 

 

 During his PhD project the author of this thesis learned that there exist at least 
three different types of psychometrics. To avoid any confusion, I will introduce these three 
types of psychometrics, highlight their differences and similarities, and discuss the role the 
current thesis may play in bridging the gap between two of these types. 
 The first and oldest type of psychometrics, also known as psychometry (or 
psychometrie in Dutch), is defined as “the psychic ability in which the user is able to relate 
details about the past condition of an object, usually by being in close contact with it” 
(Wikipedia, 2006). I shall denote this first type of psychometrics by ψ-psychometrics. The 
primary method of ψ-psychometrics is placing objects to one’s forehead, with the eyes 
closed. This method provides vague statements concerning the history of an object or of its 
(former) owner. This information is often, albeit not always successfully, used to find 
missing persons or to solve crimes (Roll, 2003). An American physiologist by the name of 
J.R. Buchanan has studied and taught ψ-psychometrics for a while at one American 
university (Buchanan, 1889), but academic interest in the topic has mostly waned. 
Nonetheless, the merits and nature of ψ-psychometrics remain to be heatedly debated 
within and beyond the field of ψ-psychometrics (e.g., Randi, 1982; Roll, 2003).  
 The second type of psychometrics, which I shall denote it by α-psychometrics, is the 
most well-known of the three types of psychometrics. It is taught at most universities and is 
the topic of hundreds of books (e.g., Jensen, 1998). The primary methods of α-
psychometrics are the administration of IQ tests, the computation of correlation 
coefficients, and the occasional use of Principal Components Analysis. The goal of α-
psychometrics is to gain understanding in the hypothetical construct of general intelligence 
or g,1 and to study the degree to which g can explain a host of psychological and societal 
phenomena. α-Psychometrics produces global verbal assessments on the nature and 
potency of g, which are often published in a journal called Intelligence. α-Psychometrics is 
heatedly debated within the field of α-psychometrics and beyond. In fact, virtually anyone 
has some opinion on α-psychometrics, particularly when group differences are involved. 
 The third type of psychometrics is only taught at good universities (one of which 
happens to be the University of Amsterdam). It is perhaps the least known of the three 
types of psychometrics, although it has its own journal called Psychometrika, and is well-
organized in the Psychometric Society. I shall denote this third type of psychometrics by β-
                                                 
1 Note that g does not stand for “god”, but for the adjective “general”. Nonetheless, in some circles of α-
psychometrics, g appears to have an almost religious status. For instance, the concept of g is the driving force behind 
all sorts of phenomena all over the world (e.g., Lynn & Vanhanen, 2002), but the nature of g itself need not be 
explained further. 
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psychometrics. This type of psychometrics is concerned with understanding the relation 
between test or item scores and the latent variable(s) supposed to underlie those scores. 
The field of β-psychometrics employs statistical models to understand more fully this 
complex relation. β-Psychometrics is mainly debated within the field of β-psychometrics (cf. 
Borsboom, 2006a). Outside this field, however, β-psychometrics is often considered too 
difficult and is mostly ignored. 
 The gap between ψ-psychometrics and the two other types of psychometrics is 
irreconcilably large, and we do not consider ψ-psychometrics further. However, β-
psychometrics and α-psychometrics are more strongly related, for the simple reason that 
they have a common ancestry (e.g., Spearman, 1904). The aim of the current thesis is to 
bridge the gap between β-psychometrics and α-psychometrics. In the studies of this thesis, 
tools developed in β-psychometrics are applied to address problems in the field of α-
psychometrics. In other words, this thesis is aimed to further our understanding of the 
relation between intelligence test scores and the underlying dimensions of cognitive ability, 
in order to gain insight in several phenomena in intelligence testing. Specifically, the studies 
in this thesis are concerned with group differences in intelligence test scores that have made 
α-psychometrics both famous and controversial. Next, I will shortly discuss the gap that 
has emerged between β-psychometrics and α-psychometrics. After that, I will provide an 
overview of this thesis. 
 

1.2 The Gap Between α-Psychometrics and β-Psychometrics  

 
 There was a time when β-psychometrics and α-psychometrics were one and the 
same. Psychologists like Thorndike, Thurstone, and Spearman were all founding members 
of the Psychometric Society, and lay the foundations for both α- and β-psychometrics. 
They were interested in the substantive aspects of intelligence, as well as in the statistical 
characteristics of intelligence test scores. As these psychometricians were succeeded by later 
generations of researchers, and as the field of intelligence research expanded considerably, 
the field slowly evolved into α- and β-psychometrics. This development is indicated by 
changes in the editorial board of the journal Intelligence. In the early 1980s, three past- or 
later presidents of the Psychometric Society were members of the 18-headed editorial 
board. Anno 2006, of the 24 members of the editorial board of Intelligence, only one (4%) 
has once made an appearance in Psychometrika. Likewise, of the 26 current members of 
the editorial board of Psychometrika, only one (4%) has published in Intelligence. This is a 
striking development given the interrelated history and the large overlap between those two 
fields. After all, both these types of psychometrics are concerned with understanding latent 
traits by measuring them. β-Psychometrics and α-psychometrics appear to be two old 
friends who somehow have lost contact over the years.  
 The ensuing gap between α- and β-psychometrics was already evident in Jensen’s 
(1980) impressive book (i.e., 799 pages) Bias in Mental Testing. This book is an α-
psychometric work with many β-psychometric components. Nonetheless, Jensen chose not 
to focus on modern test theory, but on classical test theory instead (cf. Lord & Novick, 
1968). For instance, Jensen’s conclusion that measurement bias at the item level was not 
present in the comparison of cognitive ability test scores of Black and White Americans 
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was primarily based on classical test theory methods that were criticized in β-psychometrics 
as early as the 1970s (Ironson & Subkoviak, 1979; Lord, 1977). Since then, the field of β-
psychometrics has developed more advanced tools to detect item bias or Differential Item 
Functioning (Holland & Wainer, 1993; Millsap & Everson, 1993). However, these 
contemporary methods are applied rarely in the field of α-psychometrics. Jensen’s overview 
of bias research also drew heavily on the comparison of predictive regression lines across 
groups as a method to detect measurement bias of tests (Cleary, 1968). In the field of β-
psychometrics, it is well established that differential prediction is not informative for the 
issue of measurement bias (Millsap, 1995, 1997a, 1998; cf. Reilly, 1973). However, as of 
2005, the field of α-psychometrics still uses this method to claim that measurement bias 
with respect to ethnic groups does not exist (e.g., Rushton & Jensen, 2005a).  
 In his 1980 book Jensen devoted one sentence to factorial invariance within the 
common factor model, despite several studies in β-psychometrics that showed the 
suitability of this approach in studying group differences in factorial structure (Jöreskog, 
1971; Meredith, 1964; Sörbom, 1974). Jensen devised his own method to study the nature 
of group differences in multivariate test scores, viz. the method of correlated vectors 
(Jensen, 1998). This method remains to be used in the field of α-psychometrics (e.g., 
Hartmann, Kruuse, & Nyborg, 2007; Te Nijenhuis, Tolboom, Resing, & Bleichrodt, 2004), 
despite extensive work by β-psychometricians that has shown that this method is all but 
flawless (Dolan, 2000; Dolan & Lubke, 2001; Lubke, Dolan, & Kelderman, 2001; Lubke, 
Dolan, Kelderman, & Mellenbergh, 2003a).  
 Old friends have a lot in common and generally enjoy being reunited, although 
reunions may be a bit awkward in the beginning.2 The best way to reunite α- and β-
psychometrics is to focus on the strengths of both approaches. This thesis shows that the 
application of methods from β-psychometrics can contribute to understanding several 
phenomena in α-psychometrics. It also illustrates that the use of β-psychometric models 
can be greatly improved when substantive theories are translated to measurement models. 
 
1.3  Overview of This Thesis 

 

 Group differences in intelligence test scores are among the most controversial 
topics of psychology. Essential to the understanding of the nature of these group 
differences is whether or not groups can be reasonably compared in terms of the latent 
traits that the tests at hand are supposed to measure. Such a comparison of latent traits 
requires that the relation between test scores and latent cognitive variables is identical 
across groups. Whenever groups differ in this relation, we speak of measurement bias. 
Clearly, measurement bias complicates the comparison across groups of test scores. On the 
other hand, when test scores are characterized by the same measurement properties over 

                                                 
2 To illustrate this, consider the following incident that took place at an α-psychometrics conference in December 
2004. The presentation of a study in which rigorous β-psychometric methods showed that g was not the source of 
sex differences in intelligence test scores (Dolan et al., 2006) was reacted upon by Richard Lynn, an α-
psychometrician and a strong proponent of the view that there are sex differences in g. Lynn asserted that the use of 
advanced psychometrics may lead to confusingly inconsistent results, and that we should just focus on IQ scores to 
study sex differences in intelligence. Unfortunately, reunions cannot be successful when attendees decide to ignore 
each other (see, e.g., Hartmann et al., 2007). 
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groups, we speak of measurement invariance. Measurement invariance is an interesting 
ideal, but it does not always arise in real data. Measurement invariance is not only 
interesting from a β-psychometrics perspective, but also highly relevant for many 
substantive issues in the field of α-psychometrics.  
 This thesis mainly draws on the work of Mellenbergh (1989) on measurement 
invariance and the work of Meredith (1993) on how to study measurement invariance by 
means of Multi-Group Confirmatory Factor Analysis or MGCFA (Lubke et al., 2003a; 
Lubke, Dolan, Kelderman, & Mellenbergh, 2003b). MGCFA is a model-based approach 
with which group differences in multivariate test scores can be studied (Dolan, 2000). As 
such, this approach is well-suited to study group differences in intelligence test scores. 
 The focus of Chapter 2 (Wicherts, Dolan, & Hessen, submitted) is on so-called 
intercept differences. This chapter provides an introduction of measurement invariance as 
defined within the common or confirmatory factor model. It shows that the suboptimal use 
of MGCFA is very common. Moreover, the study in this chapter illustrates how the use of 
suboptimal methods to study group differences in multivariate test scores can result in 
incorrect assessment of the appropriateness of tests for particular groups. The application 
of measurement invariance testing in this chapter is of the traditional type, viz. a 
comparison test scores of different ethnic groups in order to study the “fairness” of tests 
for ethnic minorities. The results of the re-analysis in Chapter 2 show that a commonly 
used Dutch IQ test underestimates IQ of ethnic minority children by about 7 IQ points. 
Such results signal a strong need for more research on measurement bias in the common 
factor model, particularly for tests that are used in applied settings. 
 A little known frustration of β-psychometricians is that they often encounter 
measurement bias, but are not able to understand the reasons for measurement bias. That 
is, they do not know “the biasing variables” (Mellenbergh & Kok, 1991). Chapter 3 
(published as Wicherts, 2005b; Wicherts, Dolan, & Hessen, 2005) is focused on one of 
these biasing variables, namely the effects of stereotype threat on test performance. 
Stereotype threat (e.g., Steele & Aronson, 1995) is the pressure on a test taker arising from 
stereotypes related to the academic proficiency of one's social group. Numerous studies in 
experimental social psychology have shown that this effect may lower test performance of 
members of stigmatized groups (Steele, Spencer, & Aronson, 2002). With the notable 
exception of Jensen (1998), few α-psychometricians have discussed the relevance of 
stereotype threat to the issue of group differences in intelligence test scores (cf. Stricker & 
Bejar, 2004). An interesting aspect of Chapter 3 is that it combines the individual 
differences approach with the experimental approach (Cronbach, 1957). Like most 
experimental psychologists, social psychologists who studied stereotype threat were mainly 
interested in mean differences between groups, and employed Analyses of Variance 
(ANOVA) to analyze these. ANOVA has its drawbacks when used to study phenomena 
that are related to individual differences, but the use of MGCFA circumvents such 
problems. The results of the studies in Chapter 3 show that stereotype threat indeed results 
in measurement bias. This suggests that the use of MGCFA or other bias detection 
methods can shed light on the generalizability of stereotype threat effects to real-life test 
settings.
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 Chapter 4 (published as Wicherts et al., 2004) focuses on the fascinating 
phenomenon of secular increases in average IQ test scores of populations over time. For 
instance, in The Netherlands a version of a well respected IQ test (i.e., Raven's Progressive 
Matrices; J. C. Raven, 1960) was administered to basically all male 18-year-old military 
draftees from 1952 to 1982. The 1982 cohort scored approximately 20 IQ points higher 
than the 1952 cohort (Flynn, 1987). Political philosopher James Flynn (1984; 1987; 1998c; 
2006) established the gain in IQ test scores as a robust phenomenon all over the developed 
world, and the effect is now commonly known as the Flynn Effect.3 The Flynn Effect 
baffled many in the field of α-psychometrics, particularly those who subscribed to the view 
that intelligence was strongly heritable. Moreover, the Flynn Effect led several authors to 
doubt the validity of IQ tests (Flynn, 1987). In Chapter 4, measurement invariance across 
cohorts is tested in order to better understand the nature of the Flynn Effect. The results 
show that the Flynn Effect is not accompanied by measurement invariance, which has 
important implications for our understanding of this effect. That is, these results imply that 
the gains in IQ test scores cannot be solely due to increases in latent cognitive ability. 
 Chapter 5 is the only empirical chapter without the results of factor analysis, 
although Principal Components Analysis is employed in this study. This chapter is 
concerned with the controversial topic of IQ in Africa. Richard Lynn (2006) maintained 
that average IQ in this part of the world lies below 70. Unlike others (e.g., Herrnstein & 
Murray, 1994), the author of this thesis was rather skeptical of this low estimate and set out 
to critically evaluate the research on which this claim of low average IQ was based. This 
resulted in a meta-analysis, the results of which indicate that Lynn’s estimate of average IQ 
in Africa is too low. 
 In addition, the published studies of IQ in Africa illustrate how strongly β-
psychometrics and α-psychometrics have lost contact over the years. A comparison of IQ 
test scores between western samples and African samples is probably the greatest challenge 
to the merits of an intelligence test. IQ scores in Africa have been claimed to be both valid 
(Rushton & Jensen, 2005a) and invalid (Greenfield, 1997; Nell, 2000). Such a dispute can 
be resolved by studying measurement invariance across cultural groups. As we will see in 
Chapter 5, rigorous β-psychometric techniques have rarely been applied to address the 
meaning of IQ test scores in Africa. The methods used by several α-psychometricians do 
not meet the standards of β-psychometrics. Therefore, it is entirely unclear what IQ test 
scores in Africa mean, and whether these can be compared to IQ scores in western samples 
in terms of differences in latent cognitive ability. Regardless of the unclear β-psychometric 
status of African IQ, the results of the meta-analysis do not sit well with theories that 

                                                 
3 Some authors (e.g., Rushton, 1999; Te Nijenhuis, Voskuijl, & Schijve, 2001) suggested that the effect be renamed 
the Lynn-Flynn Effect, because Lynn (1982) also contributed to establishing the phenomenon. There are several 
reasons not to rename the effect as such. First, Flynn (1984; 1987) did far more than Lynn to put the effect on the 
map. Second, Ms. Lynn Flynn is a real estate agent from Truckee, California, who has no involvement whatsoever in 
IQ research. Third, if one were to name the effect after those who noticed it before Flynn did, Tuddenham (1948) 
and Cattell (1950) should also be honoured. However, then all articles concerning the secular increase should use the 
term Tuddenham-Cattell-Lynn-Flynn Effect, which would be a waste of precious journal space. Fourth, there is no 
need to add to the term Lynn’s name, for the simple reason that his name is already included in the term “FLynn 
Effect”.  
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assign a substantial role to genes in race differences in intelligence (e.g., Lynn, 2006; 
Rushton, 2000b).  
 In Chapter 6 it is argued that the use of β-psychometric modeling can contribute 
greatly to the understanding of cognitive abilities. In addition, this chapter discusses the 
results of the studies in Chapter 2-5, and concludes with the scientific cliché that more 
research is needed. This research should more fully integrate the merits of β-psychometrics 
and α-psychometrics, because these two old friends can contribute greatly to each others’ 
work. Finally, Chapter 7 (published as Wicherts & Dolan, 2004) is an appendix concerned 
with the use of fit measures in applications of MGCFA with mean structure. 
 The author sincerely hopes that β-psychometricians, α-psychometricians, and 
others will read this thesis with much interest. The author doubts whether any ψ-
psychometricians will actually read this thesis. But then again, they will probably already 
know its contents after holding the book shortly against their foreheads with their eyes 
shut. 
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2 
 
Measurement invariance and group differences 
in intercepts in confirmatory factor analysis 
 
 

Measurement invariance with respect to groups is an essential aspect of the fair use of 
scores of intelligence tests and other psychological measurements. In this chapter, it is 
shown why establishing measurement invariance with confirmatory factor analysis 
requires a statistical test of the equality over groups of measurement intercepts. Without 
this essential test, latent mean differences are ambiguous and measurement bias may be 
overlooked. The implications and meaning of group differences in measurement intercepts 
are discussed. A re-analysis of a study by J. Te Nijenhuis, E. Tolboom, W. Resing, and 
N. Bleichrodt (2004) illustrates that ignoring intercept differences may lead to the 
conclusion that bias of IQ tests with respect to minorities is small, while in reality bias is 
quite severe. 

 
  

2.1 Introduction 

  
 The valid and fair use of psychological tests in clinical psychology, education, and 
other settings requires that tests measure what they are supposed to measure, and that test 
scores are not affected by irrelevant characteristics associated with membership of 
demographic groups (e.g., ethnicity, gender). In the Standards for Educational and Psychological 
Testing (AERA, APA, & NCME, 1999, henceforth the Standards), test fairness is defined as 
a situation in which "examinees of equal standing with respect to the construct the test is 
intended to measure should on average earn the same test score, irrespective of group 
membership" (p.74). For instance, suppose members of an ethnic minority group 
underperform on an IQ test, because of their unfamiliarity with certain words in the 
instruction texts. If, as a consequence, this test underestimates IQ of a group by, say, one 
third of a standard deviation (i.e., 5 IQ points), this test would generally be considered 
unsuitable for use in high-stakes decisions in education. Moreover, individual test scores 
based on such a test should be interpreted very cautiously, if at all. Fortunately, various 
statistical methods have been developed that can be used to detect measurement bias at 
both the scale and the item level (e.g., Millsap & Everson, 1993; Raju, Laffitte, & Byrne, 
2002). However, the suboptimal or incomplete use of these methods may still result in the 
conclusion that measurement bias is absent when in fact measurement bias is present. The 
aim of this chapter is to show that establishing measurement invariance (i.e., unbiasedness) 
by means of multi-group confirmatory factor analysis (MGCFA) requires a model that 
incorporates between-group mean structure (Meredith, 1993). Despite the ubiquitous use 
of the MGCFA framework in testing measurement invariance or equivalence across groups 
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of psychological tests in many settings, the mean structure is often not modeled statistically 
(Vandenberg & Lance, 2000). Our aim is to show that ignoring (or not testing for) 
between-group differences in measurement parameters related to the mean structure (i.e., 
measurement intercepts) may lead to incorrect conclusions regarding the appropriateness 
of tests for certain groups. The reason for this is that a group difference in a measurement 
intercept is indicative of a trait-irrelevant depression (or elevation) of test scores within a 
particular group. Such an effect on test scores violates measurement invariance. Therefore, 
the failure to identify group differences in measurement intercepts may have serious social 
and individual consequences, particularly in test settings in which test scores are used for 
psychological assessment and/or selection purposes.  

Although the development of tests for measurement invariance was motivated by 
the ideal of fairness in intelligence and achievement testing for various demographic 
groups, tests of measurement invariance are applied widely in studies of comparability of 
many kinds of psychological measurements in areas such as education, cross-cultural 
psychology, applied psychology, intelligence research, and clinical psychology. Throughout 
this chapter, we use latent cognitive ability as an example. However, our argument applies 
to any kind of latent variable (e.g., depression, mood, personality, etc.). Moreover, we use 
terms like bias and fairness, whereas in many applications in which intercept differences 
may play a role (e.g., cross-cultural research), one would normally not denote these 
differences as unfair because fairness is simply not an issue. The technical term bias refers 
to any group difference on test scores, which cannot be accounted for by group differences 
on the construct that the test purports to measure. These additional group differences often 
show up as group differences in measurement intercepts. As we aim to show, these 
intercept differences may provide valuable information on the causes of group differences 
in test scores in many kinds of group comparisons. 

In what follows, we first show that it is quite common that groups are compared 
on multivariate test scores without a rigorous modeling of the mean structure. After that, 
we provide an explicit definition of measurement invariance, which underlies the definition 
of fairness cited above, and explain how group differences in measurement intercepts 
violate measurement invariance under this definition. Next, we discuss conceptually how 
intercept differences may be detected by means of MGCFA, and how such differences may 
arise. Finally, we illustrate the importance of studying intercept differences in a re-analysis 
of data from a study into the appropriateness of an intelligence test for ethnic minority 
children in the Netherlands.  

 
2.2 Disregard of Intercept Differences 

 

Various tutorials have been written on how to investigate measurement invariance 
(or equivalence) using confirmatory factor analysis (Little, 1997; Lubke et al., 2003a; 
Ployhart & Oswald, 2004; Widaman & Reise, 1997). Most tutorials, although not all (e.g., 
Van de Vijver & Leung, 1997) stress the importance of modeling the mean structure when 
assessing measurement invariance across groups. However, in their exhaustive overview of 
the literature on empirical tests for measurement invariance with MGCFA from 1981 up to 
1999, Vandenberg and Lance (2000) found that only in a small proportion (i.e., 12%) of 
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measurement invariance studies, intercept differences were actually studied. To gain insight 
in the current practice in the study of measurement invariance within MGCFA, we tried to 
locate all measurement invariance studies in psychology and related fields published in 
2005.4 We thus obtained a total of 110 studies in which MGCFA was employed to study 
group differences. However, only in 27 of these studies (24.5%) intercept differences across 
groups were tested. In a total of 69 studies it was concluded (in the abstract) that 
measurement invariance across groups was established. However, of these studies, only in 
25% (i.e., 16 studies) intercept differences could be ruled out as a potential source of 
measurement bias. In the remaining 75% of these MGCFA studies, measurement 
invariance was claimed without a test of intercept differences.  

Unfortunately, the investigation of mean differences in MGCFA is not part of 
many structural equation modeling courses (Stapleton & Leite, 2005). This may have 
contributed to the fact that the literature contains many examples of studies purporting to 
show that mean test score differences between groups are attributable to mean differences 
on latent factors, without the essential test of equality of measurement intercepts (e.g., 
Crockett, Randall, Shen, Russell, & Driscoll, 2005; Liu, Borg, & Spector, 2004; Te 
Nijenhuis, Tolboom et al., 2004). Moreover, it appears to be a commonly held view that the 
equality of factor loadings is sufficient for establishing measurement invariance (see, e.g., 
Coatsworth et al., 2005; de Frias & Dixon, 2005; Du & Tang, 2005; Ghorpade, Hattrup, & 
Lackritz, 1999; Woehr, Sheehan, & Bennett, 2005; Yao & Wu, 2005). For instance, de Frias 
and Dixon (2005) recently studied measurement invariance of the Memory Compensation 
Questionnaire (MCQ) across gender and age groups. Based on their finding that factor 
loadings were invariant across these groups, they claimed to have established measurement 
invariance, which according to them "provides assurance that the observation of group 
differences [...] is attributable to the process of memory compensation" (p.175). Although 
the equality over groups of the factor loading estimates is a necessary condition for 
measurement invariance, it is insufficient for attributing test score differences over groups to 
latent differences in constructs. Ipso facto, equality of factor loadings over groups does not 
allow the conclusion that a test is free of bias. For mean comparisons across groups to be 
valid, and for a test to be fair towards members of particular groups, group differences in 
(factor loadings and) intercepts need to be studied first.5  
 

                                                 
4 To this end, we used the following search strings in PsychInfo: "invariance", "equivalence", "invariant", "equivalent 
and factor", "multiple and factor", "multi group and factor", "multi sample and factor", "factor analysis and 
differences", "factor analysis and comparison", "simultaneous and factor analysis", "MACS", and "mean and 
covariance structure". In addition, in Web of Science, we searched for all published papers referring to several 
seminal papers on measurement invariance. We restricted our interest to studies in which invariance was tested 
across existing groups (e.g., ethnic groups, gender). An overview of all studies is available upon request from the first 
author. 
5Note that whenever the mean structure is modeled, the interpretation of latent (factor) mean differences across 
groups also requires a test of the equality of intercepts. Nonetheless, we came across several papers that included a 
latent mean comparison across groups without providing the results of the statistical test that the intercepts are 
indeed group invariant (Chirkov, Ryan, & Willness, 2005; Corwyn & Bradley, 2005; Hagger, Chatzisarantis, 
Barkoukis, Wang, & Baranowski, 2005; McInerney, Dowson, & Yeung, 2005). However, in the absence of these test 
results, it remains uncertain whether (or to what extent) the observed group differences are actually due to mean 
differences at the latent level. 
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Dutch Minority IQ Test Performance 
Many studies of measurement invariance have direct practical consequences, 

especially when the tests involved are used for standardized assessment (with norms for the 
general population). In the Netherlands, several studies of invariance have been concerned 
with the suitability of Dutch intelligence tests for ethnic minorities who on average score 
lower than Dutch majorities (e.g., Helms Lorenz, Van de Vijver, & Poortinga, 2003; Te 
Nijenhuis, Evers, & Mur, 2000; Te Nijenhuis, Tolboom et al., 2004; Te Nijenhuis & van 
der Flier, 1997). These minority groups are mostly composed of first- or second- 
generation immigrants who are not necessarily as proficient in Dutch as native speakers (a 
situation comparable to that of many recent immigrants to the US). This may have a 
negative effect on their scores on cognitive ability tests. Unfortunately, however, in none of 
these invariance studies intercept differences have been tested statistically (but see Dolan, 
Roorda, & Wicherts, 2004). Nonetheless, conclusions are drawn concerning the 
appropriateness of tests for Dutch minority groups. For instance, Te Nijenhuis and 
colleagues (2004) studied measurement bias on a Dutch intelligence test (i.e., RAKIT) with 
respect to several groups of minority children. The results of their analyses, which ignored 
intercept differences, suggested "only little bias" (Te Nijenhuis, Tolboom et al., 2004, p. 24) 
with respect to minorities. However, our re-analysis by means of MGCFA with mean 
structure shows that, due to rather strong intercept differences, the underestimation of 
intelligence in a group of ethnic minorities amounts to at least 7 IQ points. This implies 
that the RAKIT should be used with caution in the assessment of intelligence in minority 
children in the Netherlands. 

Intercept differences across groups are highly important to the issue of 
measurement invariance. Besides, such differences are rather common. Based on our 
review of MGCFA studies published in 2005, in two-thirds of the studies (18 of 27) that 
did model the mean structure, some intercept differences were detected. Nonetheless, our 
review of MGCFA studies indicates that these differences are often overlooked or simply 
ignored. This may be due to the fact that the importance of intercept differences is not fully 
appreciated. Moreover, some authors have expressed the need for more discussion on the 
meaning and nature of group differences in intercepts (Ployhart & Oswald, 2004; Raju et 
al., 2002; Vandenberg & Lance, 2000). Therefore, our aim is to elucidate why the equality 
of measurement intercepts over groups is important in understanding between-group 
differences, and in establishing that a certain test is fair or free from measurement bias for 
members of particular groups. To this end, we first discuss the definition of measurement 
invariance.  

 
2.3 Measurement Invariance 

 
The idea behind measurement invariance or unbiasedness is quite simple and 

intuitive. An important requirement of measurement invariance is that the expected 
(manifest) test scores of a person who has a certain level of latent ability (or abilities), are 
independent of group membership (e.g., Drasgow & Kanfer, 1985). Suppose, for instance, 
that a male and a female are equally proficient in mathematics. A systematic difference in 
their observed scores on a mathematics test would suggest the test is biased with respect to 
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gender. This is because measurement invariance (i.e., unbiasedness) requires that the 
expected test score given a certain latent ability, should not be influenced by, or depend on 
characteristics, other than the latent ability. To formalize this, let Y denote the manifest test 
scores, and let η denote a given fixed level on the latent trait that underlies the scores on Y. 
The expected test scores (denoted E(Y)), should depend on latent ability, but not on 
gender. So, when measurement invariance holds, and we condition on the level of the 
latent trait score, the expected scores should be equal for males and females: 

( ) ( ) ( )ηηη |,|,| YfemaleYmaleY Ε=Ε=Ε .                (1) 

Note that this does not imply that females and males do not differ with respect to latent 
ability. Equation 1 concerns the conditional expectation given a fixed level of η and gender, 
it does not say anything about the conditional expectation given gender (i.e., E(Y | male) 
does not necessarily equal E(Y | female)).  

This requirement of measurement invariance can be expressed more generally if we 
denote group membership by a grouping variable, which gives rise to group membership 
(e.g., gender, ethnicity, cultural group). Let v denote this grouping variable. Measurement 
invariance with respect to v requires that (Mellenbergh, 1989):  

( ) ( )ηη |,| YvY Ε=Ε                 (2) 

Equation 2 states that the expected values of Y given η and v should be equal to the 
expected values of Y given only η. Measurement invariance can be investigated empirically 
by formulating a measurement model, that relates the observed scores Y to the latent 
score(s) η (Millsap & Everson, 1993). As we demonstrate below, measurement invariance 
requires that the relationship between the test score(s) (i.e., measurement of ability) and the 
latent trait(s) (i.e., latent ability) of a person should not depend on group membership 
(Mellenbergh, 1989; Millsap & Everson, 1993). 

In the case of a dichotomous (e.g., right/wrong) item measuring one latent trait 
(e.g., mathematical ability), the definition of invariance in Equation 2 requires that the 
probability of answering that item correctly (i.e., the expected value) given a particular 
latent trait score is identical for members of different groups. Within (parametric) item 
response theory, an item is considered to be unbiased if the parameter that links this 
probability to the latent trait is invariant over groups. For instance, the difficulty parameter 
of an item in a one-parameter logistic model should be identical across groups (e.g., 
Holland & Wainer, 1993). This aspect of item fairness is well known, it is explicitly 
mentioned in the Standards (i.e., Standard 7.3), and most studies of test fairness or test 
equivalence nowadays involve a test of Differential Item Functioning (DIF). However, 
measurement invariance also applies to the level of subtests in, for example, an intelligence 
test battery. That is, in most uses of such multivariate tests, the measurement aim exceeds 
the specific abilities tapped by particular subtests. Instead, the aim is to measure the ability 
that is common to several subtests. For instance, in general intelligence batteries such as the 
Wechsler scales (i.e., WAIS-III or WISC-IV; Wechsler, 1997, 2004), the measurement aim 
is either to get an indication of general intelligence, and/or of one of the four index scores 
(e.g., Verbal Comprehension, Perceptual Organization). Moreover, norm tables are usually 
not related to specific subtest scores, but to these broad factors. With such a measurement 
aim, measurement invariance requires that the expected subtest score conditional on latent 
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ability (e.g., Verbal Comprehension) be identical across groups. In that case, the intercept 
of the subtest needs to be group invariant, as we explain more fully below. 

It is not generally recognized that a subtest from an intelligence test battery may 
display measurement bias. The Standards do not refer to this possibility, although they do 
stress the importance of studying group differences both in the internal structure of test 
responses (i.e., Standard 7.1), and in the effects of construct-irrelevant variance (i.e., 
Standard 7.2). These standards refer to the covariance structure, which is also an essential 
aspect of measurement invariance. For instance, the (error) variance around the expected 
test scores represents variance unaccounted for by the target trait(s). This variance may be 
due to some additional construct-irrelevant variable. Moreover, a test would normally be 
regarded unfair if its measurement precision in one group is considerably lower than the 
measurement precision in another group. Therefore, it is important to also consider group 
differences in the covariance structure.  

In fact, the general definition of measurement invariance provided by Mellenbergh 
(1989) also relates to the covariance structure, because it is expressed in terms of the 
complete (conditional) distribution of Y, denoted by f(Y |.). This definition states that 
measurement invariance with respect to v holds, if: 

( ) ( )ηη |,| YfvYf = ,      (for all Y, η, v).  (3) 

Note that this definition does not depend on the exact nature of the distribution (i.e., 
continuous, discrete). If manifest data are (approximately) multivariate normally distributed, 
Equation 3 requires that, conditional on the latent trait scores, the expected values (i.e., 
Equation 2), the covariances between test scores (i.e., internal structure; cf. Standard 7.1), 
and the amount of variance unrelated to the latent trait(s) (cf. Standard 7.2) are equal across 
groups.6 By adopting the linear confirmatory factor model as a measurement model 
(Mellenbergh, 1994), all these requirements of measurement invariance can be tested 
readily. 
 
2.4 Multi Group Confirmatory Factor Analysis (MGCFA) 

 
In this section we show how measurement invariance of continuously distributed 

test scores can be tested using MGCFA. Moreover, we show that group differences in 
measurement intercepts constitute a direct violation of the requirement in Equation 2. To 
ease presentation, we focus on the single common factor model in two samples. The 
elaboration to multiple-factor analysis in more than two samples is straightforward (cf. 
Bollen, 1989; Dolan, 2000; Lubke et al., 2003a).  

The confirmatory factor model may be viewed as a measurement model in which 
the observed test or indicator scores (e.g., subtest scores) are regressed upon the scores on 
the latent, unobserved, construct η (Mellenbergh, 1994). As in ordinary linear regression, 
the model includes the following measurement parameters for each indicator: a regression 
weight or factor loading λ, a residual term ε, and an intercept τ. The test score y1 of person j 

                                                 
6Multivariate normal distributions are characterized only by expected values and covariances. Therefore, full 
measurement invariance under normality requires that Equation 2 holds and that the (conditional) covariance 
structure, denoted by Σ(Y |.), should follow: ( ) ( )ηη |,| YvY Σ=Σ .  
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in group i is predicted by the score on the latent variable or factor η (e.g., intelligence):  

ijijiiijy
1111

εηλτ ++= .         (4) 

Note that the expected value of the residual ε is assumed to equal zero, and that the 
residual is assumed to be uncorrelated with the factor score (as well as with the residuals of 
other indicators). The residual term of an indicator contains both random measurement 
error and specific factors tapped by that particular indicator  (i.e., all uncommon sources of 
variance; DeShon, 2004; Meredith & Horn, 2001). The intercept is the value of y 
corresponding with the point where η = 0. In many applications (e.g., single-group studies) 
the mean structure is not of interest. However, in establishing measurement invariance over 
groups, the mean structure has to be incorporated in the analyses (Meredith, 1993).  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
With this measurement model in place, we can consider the implications of 

measurement invariance graphically. Figure 2.1 displays the regression lines relating the 
scores on a (sub)test to factor scores in two groups. In this figure factor loadings are 
identical in both groups, but intercepts are different. As can be seen, the intercept in Group 
2 is lower than the intercept in Group 1. The consequences of this group difference in 
intercept are evident. Regardless of ability level, members of Group 2 with a certain ability, 
score lower than members of Group 1 with the same latent ability. Clearly, an intercept 
difference violates measurement invariance. Because the underestimation of ability in 
Group 2 is equal for all ability levels, this situation is denoted by uniform bias (Mellenbergh, 
1982).  

From the linear factor model of Equation 4, one can derive the expected test score 
given the factor score ηij and group membership, as the sum of the intercept and the factor 
score weighed by the group-invariant factor loading (cf. Bollen, 1989). Suppose a person 
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Figure 2.1  Regression lines for the prediction of test scores Y1 on a latent variable η   
  in two groups when intercepts are unequal. 
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from Group 1 and a person from Group 2 have the same latent ability, say: ηij = 1. Then, 
the expected test score for the person from Group 1 and for the person from Group 2 
equal: 
 ( ) 11,1| 1111 ×+===Ε λτη iy ijij ,                (5a)  

and 
 ( ) 12,1|

1121
×+===Ε λτη iy ijij

,               (5b)  

respectively. In terms of Equation 2, it is clear that measurement invariance does not hold, 
because for any given value of ηij , the expected test score for a person from Group 1 (i.e., 
Equation 5a) will be higher than the expected test score for a person from Group 2 (i.e., 
Equation 5b). The underestimation in Group 2 in this case is equal to the group difference 
in measurement intercepts (i.e., τ11 - τ12). Depending on their direction, intercept differences 
may lead to an overestimation or an underestimation of group differences in latent ability.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2.2 displays a situation in which both the factor loading and the 
measurement intercept differ over groups. That is, for all members of Group 2, the ability 
is underestimated in y due to an intercept difference. Moreover, in this scenario the 
underestimation of ability depends on the particular ability level. Specifically, the 
underestimation of ability increases with increasing ability. In other words, besides a main 
effect for group, there appears to be an interaction effect such that higher ability levels 
suffer more from underestimation of ability. Note that this situation is denoted as non-
uniform bias (Mellenbergh, 1982). The underestimation of latent ability in Group 2 now 
equals: ( ) ( )[ ]

ijηλλττ ×−+−
12111211

. Clearly, Equation 2 cannot hold in the presence of 

group differences in the factor loading λ and in the intercept τ. From Figures 2.1 and 2.2, it 
is apparent that both factor loadings and intercepts need to be invariant across groups for 
the fulfilment of Equation 2. Only when factor loadings and intercepts are group-invariant, 
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Figure 2.2 Regression lines for the prediction of test scores Y1 on a latent variable η in two groups 
  when intercepts and factor loadings are unequal. 
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can we conclude that between-group mean differences on the indicators are a function of a 
latent group difference on the mean of the latent factor.  

A further requirement of the general definition of measurement invariance (i.e., 
Equation 3) is that the variance around the expected values is group-invariant. Thus, the 
variance of Y conditional on the latent factor scores should be equal across groups: 

)|var()2,|var()1,|var( 111 ijijijijijij yiyiy ηηη ==== .   (6) 

Equation 6 implies that the variance of the residual term (i.e., residual variance) should also 
be equal across groups for measurement invariance to hold (DeShon, 2004; Lubke & 
Dolan, 2003; Meredith, 1993). 
 

Detection of Intercept Differences 
The detection of group differences in intercepts starts with the expansion of the 

model to several indicators (in fact, factor analysis is only feasible with several indicators of 
the common factor). Suppose we have four subtests measuring the same latent ability. 
Then, the linear models for each of the four subtests are equivalent to Equation 4. 
Although the intercepts and factor loadings may differ for each subtest, the latent ability 
score ηij of person j is the same for all subtests, so we can conveniently arrange the four 
expressions of this factor model using vector notation: 
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This, in turn, is more parsimoniously expressed by the following matrix notation: 
 ijijiiijy εητ +Λ+= .         (8) 

Except for the difference in notation Equation 7 and Equation 8 are identical. For example, 
in Equation 8, Λi is a 4 x 1 matrix containing the factor loadings of group i. Equation 8 
presents a model for the observations. To obtain estimates of the parameters in this model, 
we fit the observed covariance matrices and mean vectors to the covariance matrices and 
mean vectors that are implied by the model in Equation 8 (cf. Bollen, 1989). For instance, 
the covariance matrices that are observed within each group, can be used by a program 
such as LISREL (Jöreskog & Sörbom, 2003) or EQS (Bentler, 1995) to estimate model 
parameters and assess the fit of the model. The measurement parameters of interest are the 
factor loadings (Λi), the vector of intercepts (τi), and the variances of the residuals within 
each group, which are incorporated in a matrix denoted Θi. The distribution of factor 
scores (i.e., latent ability) within each group i is modeled by the factor means and factor 
variances, denoted by αi and Ψi, respectively.7 

Under measurement invariance, groups do not differ with respect to the relation 
between manifest test scores and the latent trait(s), and any group differences in manifest 

                                                 
7 Given these assumptions, the observed variables are normally distributed ( )

iipij Ny Σ,~ µ , where the implied mean 

vector equals
iiii ατµ Λ+=  , and the implied covariance matrix equals 

i

t

iiii Θ+ΛΨΛ=Σ  (superscript t denotes 

transpose). Note that one factor loading per factor is used for scaling purposes. 
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test scores are due to group differences at the latent level (i.e., αi and Ψi). Therefore, under 
measurement invariance all measurement parameters should be invariant over groups (i.e., 
Λi = Λ, τi = τ, Θi = Θ),8 which constitutes a situation denoted by strict factorial invariance 
(Meredith, 1993). The invariance of measurement parameters implies that the same 
constructs are being measured across groups. The tenability of measurement invariance can 
be studied by comparing the fit of models with and without the restriction that parameters 
are equal across groups. The preferred method is fitting a series of increasingly restrictive 
models, which are presented in Table 2.1 (cf. Lubke et al., 2003a; Vandenberg & Lance, 
2000; Widaman & Reise, 1997). Because of the nesting of these increasingly restrictive 
models, equality over groups of each of the measurement parameters may be tested 
statistically by means of a likelihood ratio test or by using other indices of fit. The question 
arises how it is possible to disentangle group differences in measurement intercepts from 
group differences in latent ability. 

 
Table 2.1 
Equality constraints imposed across groups in steps towards strict factorial invariance 

No. Description 
factor 
loadings 

residual 
variances 

intercepts factor means 

1 Configural invariance Λ free  Θ free  τ free α fixed at 0 
2 Metric/weak invariance Λ invariant Θ free  τ free α fixed at 0 
3 Equal residual variances Λ invariant Θ invariant  τ free α fixed at 0 
4 Strict factorial invariance Λ invariant  Θ invariant  τ invariant α free1  

Note: Each step is nested under the previous one; Underlined restrictions are tested in each step; free: freely 
estimated within each group; invariant: parameters estimated equally across groups; Factor (co)variances Ψ are freely 
estimated throughout. 1Modeled as between-group differences in factor means by restricting factor means in one 
arbitrary group to equal zero. 

 
 One important aspect is that within confirmatory factor analysis with mean 
structure, mean structure and covariance structure are modeled simultaneously (Meredith, 
1993). Factor loadings play an essential role in the connection between these two 
structures. The crux of the method to detect group differences in intercepts lies in the 
relation between factor loadings and between-group differences on the indicators. Namely, 
if between-group differences in the means of the indicators are due to between-group 
differences in the latent variable, one would expect that the relative size of between group 
differences on the indicators is collinear with the factor loadings. That is, the higher a 
subtest's factor loading, the better the scores on this subtest are predicted by the common 
factor, and the better this test is able to show (any) between-group difference at the latent 
level. Figure 2.3 displays the regression lines for two subtests loading on the same factor 
and the distribution of factor scores (η) in two groups. As can be seen, the two groups have 
a different mean on this factor (i.e., α2 > α1). In addition, the factor loading of subtest Y1 
(left-hand side) is smaller than the factor loading of subtest Y2 (right-hand side). If factor 
loadings and intercepts are invariant over groups, the expected group difference is a 
                                                 
8 That is, under measurement invariance the implied covariance equals Θ+ΛΛΨ=Σ t

ii
, and the implied mean 

vector equals
ii ατµ Λ+= . All group differences in Σi and µi are due to group differences in the covariances Ψi 

and means αi of the factors. 
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function of the latent between-group mean difference (i.e., α2 - α1) weighed by the 
corresponding factor loading.9 This means that on subtest Y2, the expected mean group 
difference is larger than on subtest Y1 due to the higher factor loading of the former 
subtest as opposed to the latter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Thus, if mean group differences on the subtests are due to mean differences on the 

factor, this means that whatever mean score differences we might find, these should be 
expressed in a way that is compatible with the relative size of factor loadings. On the other 
hand, if the between-group difference on a subtest is not in line with the relative size of its 
factor loading, this implies that the between-group difference on this subtest could not be 
solely due to a between-group difference on the common factor. If such occurs, there is a 
group difference in the intercept on this subtest. Thus, different intercepts capture any 
between-group mean difference, which cannot be explained by between-group mean 
differences on the factor. If intercepts differ across groups, they should be estimated freely 
across groups. If there remain sufficient invariant indicators of a factor, this enables an 
unbiased estimation of factor mean difference, as well as an estimation of the degree of 
uniform bias on the biased indicator. 

The statistical test of equality of intercepts is simply conducted by testing a model 
with group-invariant intercepts, while allowing for between-group differences in factor 
means (cf. Table 2.1, Step 4). It is crucial to assess the fit of equality of intercepts while 
allowing for differences in factor means (Meredith, 1993). The reason for this is simply that 
if there is any between-group difference in factor mean, and we would not allow for this 

                                                 
9Formally, the expected values in Groups 1 and 2 equal ( )

11111
αλτ +=Ε y  and ( )

21112
αλτ +=Ε y , respectively. If 

both λ1 and τ1 are group invariant, the expected mean group difference equals: ( ) ( )
1211112

ααλ −=−Ε yy .  
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  difference on indicators. 

η 
α1   α2 



24                                                                                                                                          CHAPTER 2 

possibility, this (latent) source of mean difference would be forced into differences in 
intercepts. This is equivalent to the requirement that a test of factor loadings must allow for 
between group differences in factor (co)variances (Meredith, 1993). Whether or not groups 
differ with respect to factor means (α) or factor (co)variances (Ψ ), is not a matter of 
measurement invariance. Measurement invariance should be established before group 
differences at the latent level (e.g., 2nd order structure, latent means) are studied. In 
conclusion, between-group differences in intercepts are detectable with MGCFA because 
of the relation implicit in this model between covariance structure (within-group structure) 
and mean structure (between-group structure).  

 
Meaning of Intercept Differences 

According to the Standards "bias in tests [...] refers to construct-irrelevant 
components that result in systematically lower or higher scores for identifiable groups of 
examinees." (p.76). A difference in intercepts suggests that the mean difference between 
groups on that particular indicator cannot be accounted for by mean differences on the 
factor(s) that a test is supposed to measure. One may look at intercept differences as 
occurring because of a group-difference in the specific ability tapped by the corresponding 
indicator (Meredith & Horn, 2001). Another way to look at such a scenario is to imagine an 
additional factor "out there" that necessarily differs across groups, which results in a mean 
effect on that indicator (Lubke et al., 2003b).  

An intercept difference may be due to bias in the traditional sense that certain 
words in the items of the corresponding subtest may be less familiar to members of one of 
the groups. If one expects such measurement artifacts, a further look at DIF may shed light 
on the source of the intercept difference. Mostly, however, one would not expect this to be 
the case because usually all indicators also tap specific abilities, which may simply differ 
over groups. For instance, in two studies of gender differences on the WAIS-III in Spain 
and in The Netherlands, it was found that the intercept of the Information subtest (which 
loads on Verbal Comprehension) was higher for males than for females (Dolan et al., 2006; 
Van der Sluis et al., 2006). This is in line with a reported gender difference in general 
knowledge (e.g., Lynn & Irwing, 2002), which suggests that males outperform females on 
Information. Such a subtest specific gender difference is not in line with the (non-
significant) gender difference on the factor (i.e., Verbal Comprehension), resulting in an 
intercept difference. This effect results in an underestimation of female IQ as opposed to 
male IQ. On the Dutch WAIS-III this effect is small for Total IQ (about 1 point), but 
substantial for female Verbal Comprehension index scores (about 4 points or 0.25SD). In 
many applications of MGCFA there will be substantive reasons to expect intercept 
differences. For instance, older test takers may give slower responses than younger test 
takers on a timed test for abstract reasoning. This might be due lower processing speed in 
older test takers (e.g., Salthouse, 1996). In such a scenario, a measure of processing speed 
may be used to explain this intercept difference (Lubke et al., 2003a), thereby enabling a 
disentanglement of different aspects of aging on cognitive test performance. 

It is important to stress that a common factor is defined within a particular factor 
model. It is quite possible that a subtest shows an intercept difference when it loads on one 
factor, but not when it loads on another factor in another model. Of course, the character 
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of a factor depends on its indicators. Reasons for intercept differences are not a 
characteristic of subtests per se, but of a characteristic of subtest scores as they relate to the 
common factor(s). Many test artifacts can give rise to intercept differences. For instance, 
the effects of stereotype threat on test performance may be seen as such an artifact. 
Stereotype threat (e.g., Steele & Aronson, 1995) is the pressure on a test taker arising from 
stereotypes related to the academic proficiency of one's social group. For example, it has 
been shown that (implicitly) reminding female test takers of the stereotype that women 
have lower math ability than men, may result in a lowering of female math performance, 
particularly when tests are difficult (O'Brien & Crandall, 2003; Spencer, Steele, & Quinn, 
1999). Because such effects are often subtest specific, stereotype threat may also result in a 
lowering of measurement intercepts in stigmatized groups (Wicherts et al., 2005; Chapter 
3). Therefore, a rigorous test of measurement invariance enables the detection of test 
artifacts that depress test scores of members of particular groups. 
 In conclusion, a between-group difference in intercept implies a uniform group-
specific suppression (or elevation) of test scores, which may provide important information 
on the nature of group differences in test scores. We now turn to an illustration by means 
of a re-analysis of a study in which minority children and majority children are compared 
on intelligence test performance. 
 
2.5 Illustration: IQ and Minority Children 

 
Ignoring intercept differences between groups may have serious consequences, 

because such intercept differences may be indicative of an underestimation of ability in a 
particular group. We illustrate this by means of a re-analysis of a study by Te Nijenhuis and 
colleagues, who investigated whether a Dutch children's intelligence test (RAKIT) was 
suitable for children of immigrants from Turkey, Morocco, and the former Dutch colonies. 
In what appears to be a textbook example of a measurement invariance study, Te Nijenhuis 
et al. (2004) went to great length in studying invariance of the RAKIT across the different 
ethnic groups. They used DIF analyses, an analysis of differential prediction using school 
grades as a criterion, and MGCFA. Although they investigated the equality of factor 
loadings in the latter analyses by using a likelihood ratio test and a congruence measure, Te 
Nijenhuis et al. did not investigate whether measurement intercepts were equal across 
groups. Based on the findings of small DIF effects, only slight differential prediction, and 
group-invariant factor loadings, these authors concluded that the RAKIT "is highly, though 
not perfectly, valid for the assessment of immigrant children" (p.22). Our aim is to test for 
intercept differences in order to verify this claim of measurement invariance. Note that we 
restrict our attention to the test scores of a group of children of Moroccan and Turkish 
descent, aged 7, who were compared to a representative sample of Dutch majority children 
of the same age. 

 
Method 

Participants. The test scores of a representative sample of 196 majority children were 
used as comparison to the test scores of 131 children from Moroccan (N=60) and Turkish 
(N=71) descent. In view of power concerns we pooled these two minority groups for the 
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factor analyses (analyses per group gave similar results). Overall, the mean subtest 
performance did not differ significantly between the two immigrant groups: a MANOVA 
on the subtest scores resulted in a non-significant multivariate effect for group: F (12, 118) 
= 1.685, p > 0.05. In addition, a Box test showed that covariance matrices did not differ 
between Turkish and Moroccan children: F (78, 49603) = 1.08, p > 0.05. All minority 
children have followed education in Dutch. The minority sample is not explicitly sampled 
to be representative, but the children are from various schools in both rural and urban 
areas. The samples do not differ in age and in gender composition. Average age in both 
samples is 7 years and 8 months.  

Intelligence Test. The RAKIT (Bleichrodt, Drenth, Zaal, & Resing, 1984) is an 
individually administered Dutch intelligence test for children (aged 4 to 11 years) composed 
of 12 subtests. RAKIT full scale IQ has been shown to correlate .86 with WISC-R full scale 
IQ (Bleichrodt et al., 1984). The subtests are Closure, Exclusion, Memory Span, Verbal 
Meaning, Mazes, Analogies, Quantity, Discs, Learning Names, Hidden Figures, Idea 
Production, and Storytelling. All instruction texts are in Dutch. Subtests with the largest 
language component are Verbal Meaning, Analogies, and Storytelling. Although subtest 
scores are standardized, and may be interpreted separately, the broad measurement aim of 
the RAKIT is to provide an indication general mental ability (i.e., IQ), and/or one of four 
factors, which are composed of the scores on 2 to 6 subtests.  

Analyses. Based on Carroll's (1993) taxonomy, Te Nijenhuis et al. posited a factor 
structure with 4 factors: Hybrid (Gh), Visual (Gv), Memory (Gm), and Retrieval (Gr). This 
factor model is displayed in Figure 2.4.10 Our focus is on the mean group differences on 
the subtest level, and we investigate whether these are attributable to group differences in 
the means of the four factors. As most of the RAKIT subtests have a rather strong 
language component, measurement bias with respect to minority children is a real 
possibility. In addition, item analyses by Te Nijenhuis et al. indicated that some subtests 
showed DIF. Despite this, Te Nijenhuis and colleagues concluded that only one of the 
subtests (i.e., Verbal Meaning) showed bias that was of any practical concern. 

The tenability of strict factorial invariance with respect to groups is investigated by 
fitting a series of increasingly restrictive models, as presented in Table 2.1. In the first step, 
no between-group restrictions are imposed, although the configuration of factor loadings is 
invariant. The next steps involve restricting all factor loadings (Step 2) and all residual 
variances (Step 3) to be invariant over groups. In Step 4, the invariance of the mean 
structure is investigated by restricting the measurement intercepts to be equal across all 
groups. In the same step, factor mean differences with respect to an arbitrary baseline 
group are estimated.  

 
 
 
 
 

                                                 
10This factor model differs from the model which corresponds to the four factors in the manual (Bleichrodt et al., 
1984). Using this alternative factor model to assess measurement invariance gave quite similar results. 
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The tenability of each restriction is judged by differences in fit between the 

restricted model and the less-restricted model. For instance, Step 2 vs. Step 1 involves the 
tenability of equality of factor loadings. As the successive models are nested (Bollen, 1989), 
a likelihood ratio test can be used to test each restriction. To assess model fit, and to assess 
the tenability of across-group restrictions on measurement parameters, we look at exact fit 
in terms of χ2 and Degrees of Freedom (DF). We also consider the Comparative Fit 
Index11 (CFI; Bentler, 1990) and Root Mean Square Error of Approximation (RMSEA; 
Browne & Cudeck, 1993). Based on their simulation study, Hu and Bentler (1999) 
suggested that CFI values above 0.95 and RMSEA values below 0.06 are indicative of good 
model fit. Besides these fit measures, we use the AIC for comparing the relative fit of 
models (cf. Wicherts & Dolan, 2004; Chapter 7). The AIC is a fit measure that takes into 
account the parsimony of models, with lower AIC values indicating better fit. In case a step 
is accompanied by a clear deterioration in model fit, the particular restriction is rejected. In 
such cases, modification indices can highlight the particular parameter(s) causing the misfit. 
A modification index (MI) is a measure of how much chi-square is expected to decrease if a 
constraint on a given parameter is relaxed, and the model is re-fitted (Jöreskog & Sörbom, 
1993). A closer look at the magnitude of MIs of intercepts in Step 4 provides important 
information about intercept differences between groups. MI values larger than 3.84 indicate 
that model fit can be improved significantly (p< .05). 

                                                 
11 Widaman and Thompson (2003) have argued that because of the nesting of models it is inappropriate to employ 
the standard null model within the MGCFA context with mean structure. Therefore, we use a model without any 
factor structure, in which intercepts and residual variances are restricted to be group invariant (i.e., model 0A in 
Widaman & Thompson, 2003) as the null model in computing the CFI values. 
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       Figure 2.4  Factor model for RAKIT subtests. 
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Results 
The means and standard deviations of both groups of all subtests are displayed in 

Table 2.2. As can be seen, the mean differences between both groups are large. Figure 2.5 
displays the effect sizes of the difference between the majority and minority group per 
subtest. For each subtest, Figure 2.5 also contains the estimates of factor loadings, as 
estimated in the majority group without across group-restrictions (i.e., Step 1). To ensure 
comparability of factor loadings and effect sizes, we restricted the highest factor loading for 
each factor to be identical to the effect size of the corresponding subtest.12 This enables a 
comparison for each factor of the effect sizes per subtest in relation to the relative 
estimates of factor loadings. Recall that measurement invariance requires that mean group 
differences on the subtests should be collinear with the corresponding factor loading. That 
is, the higher a factor loading, the larger the mean difference should be. If effect sizes and 
factor loadings per factor are not collinear, this suggests intercept differences (a statistical 
test of which follows below).  

 
Table 2.2 
Means, standard deviations of RAKIT subtests for majority and minority group  
Factor               Majority             Minority 

     Subtest   M    SD   M SD 

Hybrid     
 Analogies 15.03 4.94 10.66 4.73 
 Verbal Meaning 15.03 5.14 3.86 4.64 
 Quantity 15.21 5.10 9.51 5.53 
Visual     
 Discs 15.01 5.05 10.82 4.81 
 Exclusion 14.96 5.07 11.29 4.66 
 Mazes 15.02 5.03 11.60 4.88 
 Hidden Figures 14.94 4.93 10.95 4.81 
 Closure 14.85 5.06 10.37 5.89 
Memory      
 Memory Span 15.05 4.94 14.40 6.01 
 Learning Names 15.05 5.05 9.18 5.05 
Retrieval     
 Idea Production 15.06 5.18 11.05 5.42 
 Storytelling 14.99 5.05 10.19 5.22 

 
 

                                                 
12 Usually, scaling of the common factor is achieved by restricting one factor loading per factor to equal 1. Because 
this value need not be necessarily 1, we used the effect size values here for illustrative purposes. Note that, because 
of this choice, the comparability of factor loading estimates across different factors is lost. Note also that the subtest 
scores reported are standardized norm scores. Hence, standard deviations are equal across subtests.  
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Consider the three subtests loading on the Hybrid factor. Of these subtests 

Quantity has the highest factor loading and Verbal Meaning the lowest, with the factor 
loading of Analogies assuming an intermediate value. As is strikingly apparent, the effect 
size of Verbal Meaning is far too large (d = 2.26) to be the result of a between group 
differences in the mean of the Hybrid factor. If this large mean difference were due to a 
latent mean difference, the (standardized) factor loading of the Verbal Meaning subtest 
would have been twice as large as the factor loading of the two other indicators of Hybrid 
ability. This is clearly not the case because we already know from the analysis of covariance 
structure in the majority group that this subtest has a factor loading smaller than the other 
two subtests. There may be several reasons for this result. It is conceivable, yet unlikely, 
that both the Analogies subtest and the Quantity subtest underestimate the ethnic 
difference on this factor. This would mean that both subtests are positively biased towards 
minority children. This explanation appears rather farfetched, because Verbal Meaning is a 
test measuring vocabulary knowledge and the minority group contains mainly non-native 
speakers of Dutch. Therefore, by inspecting the mean difference and the factor loadings, 
we would expect that the mean of the minority group on Verbal Meaning is too low. This 
suggests that the intercept of this subtest is considerably lower for minority children, and 
that this test is biased towards minorities. 

Now consider very large difference between the effects sizes for the two indicators 
of the Memory factor, despite the fact that the factor loadings of both these subtests are 
very similar. Again, the subtest with the largest cultural component (Learning Names) 
shows the largest between-group difference. That is, the Learning Names subtest contains 
several Dutch names from various fairy tales, which may be unfamiliar to children from 
Moroccan and Turkish descent. The difference between the effect sizes of Learning Names 

 

biased subtest 

Figure 2.5  Factor loadings and effect sizes per subtest. 
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and Memory Span are so large, that is simply impossible for a single Memory factor to 
account for this effect. Finally, for the two indicators of the Retrieval factor, the subtest 
with the lowest factor loading is the Storytelling subtest. However, this subtest shows a 
larger between-group difference than the less-culturally loaded Idea Production subtest. 
Again we have to assume that the subtest with the smallest language or cultural component 
is biased in favor of minorities to circumvent the most obvious explanation, which is that 
the subtest with the largest between group difference is biased against minorities. 
 Thus, if we view the pattern of mean differences in light of the pattern of factor 
loadings based on the covariance structure in the majority group, we clearly see that these 
patterns are incompatible. This incompatibility is due to between-group differences in 
intercepts that are indicative of measurement bias. Of course, measurement invariance is 
investigated statistically by testing the fit of various models that differ with respect to 
between group constraints on factor loadings, residual variances and intercepts. The fit 
indices of the different models are reported in Table 2.3. First, we investigate the 
comparability of covariance structure (i.e., Steps 1-3). In Step 1, no between-group 
restrictions are imposed, although the configuration of factor loadings is equal across 
groups. As can be seen, the baseline model fits well in terms of RMSEA and CFI  (cf. Hu 
& Bentler, 1999). In addition, the values of the Standardized Root Mean Square Residual 
(SRMR) indicate that the baseline model fits well in both the majority (0.054) and the 
minority group (0.062). 
 In Step 2, the factor loadings are restricted to be equal across both groups. As can 
be seen, this restriction is accompanied by a non-significant increase in chi-square. 
Moreover, all fit indices improve given this restriction. Therefore, factor loadings appear to 
be invariant across groups. 
 
Table 2.3 
Fit measures of steps towards strict factorial invariance  
Step Restrictions DF χ2 ∆DF ∆χ2    p RMSEA CFI  AIC 
1 -  96 152.52**    .059 .962 318 
2 Λ 104 157.13** 8  4.61 .798 .055 .964 306 
3 Λ, Θ 116 179.96** 12 22.83* .029 .059 .957 310 
3a Λ, Θ1 115 170.93** -1  7.03** .008 .054 .962 299 
4 Λ, Θ1, τ 123 240.80** 8 69.87** .000 .077 .920 356 
4a Λ, Θ1, τ2 122 196.91** -1 43.89** .000 .061 .949 311 
4b Λ, Θ1, τ2,3 121 178.51** -1 18.40** .000 .053 .961 294 
4c Λ, Θ1, τ2,3,4 120 174.37** -1  4.14* .042 .052 .963 292 

Note: Underlined restrictions are tested by likelihood ratio test ∆χ2. *p < 0.05; **p < 0.01; (-1): Parameter freely 
estimated; 1: Memory Span; 2: Verbal Meaning; 3: Learning Names; 4: Storytelling 

  
 In Step 3, the residual variances are restricted to be group-invariant. This step is 
accompanied by a slight deterioration in fit in terms of RMSEA, CFI, and AIC. In addition, 
the likelihood ratio test shows that this restriction appears untenable. A closer look at the 
modification indices shows that this misfit is mainly due to the residual variance of Memory 
Span (MI = 9). Indeed, freeing this parameter (Step 3a), leads to an improvement in model 
fit as can be seen by the significant decrease in chi-square, and improvements in RMSEA, 



GROUP DIFFERENCES IN INTERCEPTS                                                                                       31 

 

CFI, and AIC. In the majority group this residual variance is smaller (18.41, SE = 2.32) 
than in the minority group (31.48, SE = 4.19). 
 In Step 4, the intercepts are restricted to be equal across groups, while at the same 
time allowing a difference in the four factor means. As can be seen in Table 2.3, this 
restriction is accompanied by a clear drop in model fit. The increase in chi-square is highly 
significant, the RMSEA increases well above the cut-off for good fit, the CFI drops below 
0.95, and the AIC is relatively large. As we already expected by visual inspection of Figure 
2.5, mean subtest differences between the minority and majority group cannot be explained 
solely in terms of group differences in the means of the factors. Clearly, there are intercept 
differences between the groups.  

A further look at the modification indices indicates that the intercepts of the 
following subtests differ across groups: Verbal Meaning (MI = 40), Learning Names (MI = 
15), and Storytelling (MI = 5). Indeed, if we allow between group differences in these 
parameters, the model fit (in Models 4a through 4c) improves considerably. In all cases, the 
intercepts in the minority group are lower, indicating measurement bias with respect to this 
group.  

One might ask whether these intercept differences are serious. Under the 
assumption that the remaining subtests are not biased, we can estimate the factor mean 
difference across groups. The multiplication of the factor loading with this factor mean 
difference provides the expected mean difference of the subtest (cf. Table 2.4) (see also 
Scholderer, Grunert, & Brunso, 2005). By comparing this expected mean to the mean 
difference actually obtained, we get the following underestimations per subtest: Verbal 
Meaning: 6.89, Learning Names: 5.12, and Storytelling: 1.79. For the total score, this means 
an underestimation of 13.8 points, which according to the transformation table in the test 
manual (Bleichrodt et al., 1984, p.128) represents an underestimation of the total IQ of 7 
IQ points, or a little less than half a standard deviation.  
 

Table 2.4 
Estimation of bias due to intercept differences per subtest 
 factor mean  factor expected actual mean under- 
    Subtest difference loading difference difference estimation 
Expressions: A B C=A*B D =D - C 

Verbal Meaning 5.827 0.735 4.283 11.176 6.893 
Learning Names 0.626 1.2061 0.755 5.870 5.115 
Storytelling 4.003 0.754 3.018 4.804 1.786 

 
Conclusion 

By not testing for intercept differences, Te Nijenhuis and colleagues overlooked 
the fact that at least three of the twelve subtests in the RAKIT are biased for 7-year olds 
from Moroccan and Turkish descent.13 These rather large intercept differences suggest that 
the RAKIT is not suitable for the assessment of minority 7-year-olds. A further analysis 

                                                 
13 Te Nijenhuis et al. did notice the problems with Verbal Meaning, but missed the bias on Learning Names and 
Storytelling. The combined bias on the latter two subtests constitutes an underestimation of 3.5 IQ points or about 
0.25 SD units. 
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(available upon request) of the data of Surinamese and Antillean children of the same age 
(at least 4.5 IQ points underestimation), and of children aged 5 and 9, gave similar results. 
Although the biasing effects for the other minority groups were less serious, the 
underestimation of ability was still large enough to render the RAKIT unsuitable for the 
use in these minorities. Even an underestimation of a few IQ points may have serious 
consequences. For instance, the Dutch Ministry of Education uses explicit cut-off IQ 
values (e.g., 70 or 85) for the selection of children for special education. An 
underestimation of the size we found for the children of Moroccan and Turkish may result 
in incorrect selection decisions. Although we would advice against use of the RAKIT in 
these immigrant groups for such purposes, a practical solution would be to discount the 
biased subtests. Alternatively, the intercept differences we found across groups may be 
used to correct upwards the subtests scores for these immigrant groups. 

 
2.6 General Discussion 

 
It is unfortunate that in many applications measurement invariance is assumed to 

hold without testing for the equality over groups of measurement intercepts. Our present 
aims were to show why a test of the equality of measurement intercepts across groups is 
essential for measurement invariance, what group differences in intercepts may mean, and 
how these differences can be detected. If the intercept of a particular subtest is different 
across groups, this implies that between-group differences on this subtest cannot be solely 
due to between-group differences in the construct(s) that the subtest is supposed to 
measure. In other words, an intercept difference indicates measurement bias in the sense 
there are one or more construct-irrelevant variables causing group differences in test 
scores. The importance of studying intercept differences was illustrated by a re-analysis of a 
study into the appropriateness of a Dutch intelligence test for minority children. The results 
indicated the presence of rather strong measurement bias, which was not fully appreciated 
in the original study, despite the fact that the analyses in that study appeared quite 
thorough. 

It may be argued that the requirement of identical measurement intercepts over 
groups is too stringent, and will prove to be too restrictive in most data analyses. However, 
intercept differences do not render test scores completely incomparable across groups. 
Quite to the contrary, intercept differences may be taken into account, their size may be 
estimated (provided that there remain sufficient invariant indicators), and they may provide 
valuable information on the precise nature of between-group differences in test scores in 
many applications.  
  The seriousness of intercept differences depends on the measurement aim. If we 
allow for intercept differences, we also allow for group differences in the mean of the 
specific ability tapped by an indicator. Note that such an effect may or may not be due to 
DIF at the item level, which should be studied separately. A further issue refers to the size 
of intercept differences one is willing to accept (Borsboom, 2006b). Again, it depends on 
the use of the test. Fortunately, as we showed in our empirical example, the effect size of 
such bias is easily computed provided that the remaining indicators of a factor are 
unbiased. In our example, the effects of bias could be directly related to its effect on IQ 
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scores, which enabled the expression of bias in terms of IQ points. In most applications, 
effect size estimates can be readily computed and related to the effects on norm scores. 
Millsap and Kwok (2004) provide an alternative approach to the question of whether or 
not bias is acceptable in the context of correct or incorrect selection decisions. 
 

Uniform Bias and Non-Uniform Bias 
Most of the MGCFA studies we reviewed (98 out of 110), have involved a test of 

the invariance of factor loadings (cf. Vandenberg & Lance, 2000). Of course, this is an 
essential test for any meaningful between group comparison of test scores. However, in 
many invariance studies thoroughly developed and well-validated tests are compared across 
(demographic) groups. The question arises how likely it is that in such comparisons factor 
loadings would differ across groups. Specifically, for a biasing variable to have an effect on 
the covariance structure, that variable needs to vary across persons within a group. One 
may ask how likely it is for a biasing variable to have a significant amount of variance (in 
relation to the variance of the target construct) to have such an effect. If a biasing variable 
has an effect that is specific to one indicator, it is more likely that such an effect shows up 
in group differences in residual variances (DeShon, 2004; Lubke & Dolan, 2003), than that 
the biasing variable has an effect on the factor loading of the affected indicator. There are 
roughly three scenarios in which factor loadings may differ across groups, resulting in non-
uniform bias: (1) If the biasing variable affects more than one indicator of a factor. (2) If 
the biasing variable covaries strongly with the latent variable. (3) If the biasing variable 
interacts with the latent variable, such that, for instance, with increasing ability levels the 
effect of the biasing variable on the indicator increases.  

It depends on the test at hand and the groups under study, whether one would 
expect non-uniform bias. In about one-third of the 27 measurement invariance studies we 
reviewed, some group differences in factor loadings were found. On the other hand, in 
two-thirds of these studies researchers encountered intercept differences. Therefore, 
uniform bias (i.e., intercept differences) appears to occur more often than non-uniform 
bias. Furthermore, the effects of uniform bias are by their very nature (i.e., depression of 
scores for an entire group) more serious in settings where test fairness is a concern. 
Moreover, in many settings where test fairness is not an issue, group differences in 
intercepts may provide valuable information on the constructs tapped by (sub)tests and the 
nature of group differences. 

 
Implications for Practice 

 Psychological tests of various kinds are used in countless applied settings. Many of 
these tests are either developed with a particular factor structure in mind (e.g., WISC-IV, 
WAIS-III), or are amendable to investigation by CFA.14 There is general agreement that 
test scores should not be affected by irrelevant characteristics attached to the membership 
of demographic groups. We have argued that the requirement of fairness also relates to the 
subtest level, which implies that in multivariate tests (e.g., intelligence battery), the 

                                                 
14 Note that measurement invariance can also be studied using exploratory factor analysis (Hessen, Dolan, & 
Wicherts, 2006). 
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invariance of subtests' intercepts should also be studied. This chapter was motivated by the 
fact that tests of measurement invariance in CFA are often not conducted to their full 
potential. As we saw from our re-analysis of the data of a Dutch intelligence test for 
minority children, this may have serious consequences. Unfortunately, tests of the equality 
of intercepts within this area are quite rare. For instance, we know of only one rigorous test 
of intercept differences in studying minority test performance on Dutch intelligence tests 
(Dolan et al., 2004). The results of that study indicated strong intercept differences, which 
indicated a construct irrelevant lowering of test performance of minorities on the GAT-B. 
The result of the current re-analysis also suggests that intercepts in several intelligence 
subtests of the RAKIT are lower for Dutch minorities. It is disconcerting that in the 
Netherlands both the RAKIT and the GAT-B are used widely for minorities in education, 
personnel selection, and in clinical settings.  

Detecting intercept differences between groups should be an essential part of the 
validation of tests. Yet, to our knowledge, in the development of test batteries such as the 
WAIS-III or the WISC-IV, intercept differences across demographic groups are generally 
not studied. This implies that we cannot be certain that such tests are actually measurement 
invariant across groups. Unfortunately, the same applies to the majority of measurement 
invariance studies published in 2005, because in most of these the possibility of intercept 
differences was ignored. There are many advantages attached to the use of MGCFA with 
mean structure in testing measurement invariance. First, the approach is very flexible. For 
instance, variables that may account for measurement bias are easily incorporated in a 
factor model (Lubke et al., 2003a; Oort, 1992), which enables the understanding of the 
sources of bias and the eventual reduction of unfairness. Establishing why measurement 
bias occurs may contribute to more efficient test development. Second, uniform bias is 
perhaps the most obvious form of bias and it is easy to detect. The power to detect 
uniform bias in the common factor model is relatively large (Lubke et al., 2001). 

 
Concluding Remarks 

The use of DIF analyses in test development and test validation has become 
standard practice. Unfortunately, this still could not be said about tests for intercept 
differences in MGCFA, despite the fact that the CFA is commonly used. Intercept 
differences can have strong effects on test scores. Fortunately, however, intercept 
differences are easily detectable by means of MGCFA. Our hope is that a better 
understanding of the meaning of intercept differences and of ways to detect them, may 
contribute to the understanding of group differences in test scores, thereby increasing the 
fair use of tests.  
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3 
 
Stereotype threat and group differences in test 
performance: A question of measurement 
invariance 
 
 

Studies into the effects of stereotype threat (ST) on test performance have shed new light 
on race and sex differences in achievement and intelligence test scores. This chapter relates 
ST theory to the psychometric concept of measurement invariance, and shows that ST 
effects may be viewed as a source of measurement bias. As such, ST effects are detectable 
by means of multi-group confirmatory factor analysis. This enables research into the 
generalizability of ST effects to real-life or high-stakes testing. The modeling approach is 
described in detail, and applied to three experiments in which the amount of ST for 
minorities and women was manipulated. Results indicated that ST results in 
measurement bias of intelligence and mathematics tests. 

  
  

3.1  Introduction 

 
"The greatest social benefit will come from applied psychology if we can find for each individual the treatment 
to which he can most easily adapt. This calls for the joint application of experimental and correlational 
methods.”           (Cronbach, 1957, p. 679) 
 

Recent developments in experimental social psychology concerning the effects of 
stereotypes on test performance have contributed to the understanding of the nature of 
race and sex differences in achievement and intelligence test scores. Specifically, the theory 
of stereotype threat (Steele, 1997) states that stereotypes concerning the ability of groups 
(e.g., women are bad at mathematics) can have an adverse impact on test performance of 
members of such groups, particularly in those who identify strongly with the domain of 
interest (e.g., female math students). Considering the widespread use of achievement and 
intelligence tests in college admission and job selection, and the high stakes involved in 
their use, stereotype threat effects on test performance may have serious personal and 
social consequences. There is general agreement on the importance of fair, unbiased, 
assessment in the sense that individual latent abilities should be measured validly and 
accurately. This means that measurements of ability should not depend on group membership 
based on, for instance, ethnicity or sex. Therefore, the absence of measurement bias with 
respect to groups (i.e., measurement invariance) is an essential aspect of valid measurement 
(e.g., Millsap & Everson, 1993). Both research into stereotype threat and research into 
measurement invariance are aimed at disentangling measurement artifacts related to group 
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membership from individual differences in the construct that a particular test is supposed 
to measure (e.g., latent mathematics ability). The aim of the current chapter is to explicitly 
relate stereotype threat to the concept of measurement invariance, and to show that 
stereotype threat effects on test performance may be viewed as a source of measurement 
bias.  

This conceptualization of stereotype threat effects has statistical as well as practical 
advantages. It gives rise to an analytical framework in which individual and group 
differences in latent abilities and (experimental) stereotype threat effects on test 
performance can be modeled simultaneously. Of more practical importance is the fact that 
tests for measurement invariance with respect to groups can shed light on the degree to 
which stereotype threat plays a role in real-life and high-stakes settings. This provides a 
means to study the effects of stereotype threat in settings in which it is ethically and 
pragmatically difficult to manipulate the debilitating effects of stereotype threat on test 
performance (Cullen, Hardison, & Sackett, 2004; Sackett, 2003; Steele & Davies, 2003; 
Steele et al., 2002). 
 Below, we first discuss some methodological and statistical issues concerning 
experimental tests of stereotype threat effects on test performance. Next, we relate the 
effects of stereotype threat to measurement invariance, and discuss how such effects can be 
detected by means of multi-group confirmatory factor analysis. Finally, we illustrate this 
approach by analyzing the results of three experiments in which the effects of stereotype 
threat on the test performance of stigmatized groups were investigated. 
 
3.2 Investigating Stereotype Threat Effects  

 

 The experimental paradigm, which is used to study the effect of stereotype threat 
on test performance, usually involves the comparison of existing groups (e.g., Blacks and 
Whites) and the manipulation of stereotype threat. The latter is accomplished, for instance, 
by labeling a test as either diagnostic or non-diagnostic for the stereotyped ability (e.g., 
Steele & Aronson, 1995, Study 2), or by asking for biographical information either prior to, 
or after completion of the test (e.g., Steele & Aronson, 1995, Study 4). Stereotype threat is 
expected to negatively affect test performance of stigmatized groups, but to have no (or a 
small positive; see Walton & Cohen, 2003) effect on test performance of non-stigmatized 
groups. Stereotype threat theory thus predicts an interaction between group and threat 
manipulation. 
 

Generalizability of Stereotype Threat 
 Within laboratory experiments stereotype threat has been found to depress scores 
on various achievement and intelligence tests, in diverse stigmatized groups (Steele et al., 
2002). The extent to which stereotype threat generalizes to test settings outside the 
laboratory is an important issue. Only few experimental studies have looked into the 
debilitating effects of stereotype threat on test performance in test settings high in 
ecological validity, and/or settings with consequential test outcomes. Stricker and Ward 
(2004) conducted two field studies within an actual high-stakes test situation, but were 
unable to replicate the strong negative effects of asking for biographical information prior 
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to taking a test (i.e., group prime) on minority and female test performance (cf. Steele & 
Aronson, 1995). In addition, three recent laboratory experiments addressed the effects of 
stereotype threat on Blacks' test performance in a job selection context (McFarland, Lev 
Arey, & Ziegert, 2003; Nguyen, O'Neal, & Ryan, 2003; Ployhart, Ziegert, & McFarland, 
2003). In these studies, test-taking motivation was enhanced by the promise of financial 
rewards for high test scores. Despite the use of manipulations with well-established effects 
(i.e., race prime and test-diagnosticity), the debilitating effects of stereotype threat on 
minority test performance were generally absent. Sackett (2003) suggests that these results 
imply that the generality of stereotype threat effects to (motivational) job selection contexts 
is limited. Along similar lines, Stricker and Ward (2004) suggest that their studies indicate 
that high test stakes appear to be capable of overriding the negative effects of stereotype 
threat on test performance. 
 From a theoretical point of view, however, the internal validity of these real-life or 
contextualized experiments appears questionable. Steele and colleagues argue that 
stereotype threat probably always occurs within such settings, because of features that have 
been shown to elicit stereotype threat in the laboratory (Steele & Davies, 2003; Steele et al., 
2002). For instance, promising incentives or placing a test in a selection context makes a 
test diagnostic for the stereotyped ability, thereby triggering stereotype threat even within 
control conditions. Heightening stereotype threat by means of explicit test diagnosticity or 
group prime then fails to depress test performance of stigmatized groups much further, 
resulting in ineffective stereotype threat manipulations (Steele & Davies, 2003; Steele et al., 
2002). In that respect, stereotype threat theory predicts that stereotype threat studies, which 
are high in ecological validity, are low in internal validity, and vice versa. More importantly, 
whereas inductive reasoning leads one to expect that most real-life test settings do evoke 
stereotype threat, empirically the question of generalizability appears hard to answer (Steele 
et al., 2002). 

 
3.3 Analyzing Stereotype Threat Effects 

 

 Given the pragmatic and ethical problems of experimentation within real-life 
settings, correlational methodology (e.g., regression analysis) may be used to investigate the 
presence of stereotype threat on actual achievement tests. Osborne (2001) reasoned that 
stereotype threat effects may be mediated by anxiety (cf. Blascovich, Spencer, Quinn, & 
Steele, 2001). He found that the racial gap, and to a lesser extent, the gender gap on several 
achievement tests in the High School and Beyond Study were partly mediated by self-
reported anxiety, which supports the notion that stereotype threat affected test 
performance. Cullen et al. (2004) proposed that the strong identification of high-ability 
persons with the domain of interest (cf. Steele, 1997), renders them more sensitive to 
stereotype threat (Aronson et al., 1999). They reasoned that if stereotype threat affects test 
performance of stigmatized groups on a predictor (e.g., SAT), this differential sensitivity to 
stereotype threat would lead to group-specific and non-linear relations between the affected 
predictor and criteria that are supposedly unaffected by stereotype threat, such as job 
performance or grade points of classes unrelated to stereotypes. However, Cullen et al. 
(2004) found neither prediction bias, nor any non-linear effects, and concluded that 
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stereotype threat effects on the predictors (SAT and Armed Services Vocational Aptitude 
Battery) were small or non-existent.  
 These seemingly inconsistent results may be due to the strong assumptions 
underlying the use of such regression approaches. For instance, Cullen et al. (2004) had to 
assume the absence of group differences on academic criteria (cf. the underperformance 
phenomenon; Steele, 1997), whereas Osborne (2001) rightly expressed some concern about 
the causal link involved. Moreover, these correlational studies address the effects of 
stereotype threat on test performance in an indirect manner. It is well established that group 
differences in prediction (i.e., prediction bias) do not necessarily imply that measurements 
are biased with respect to groups, and vice versa (Millsap, 1997a). 
 

Measurement Models 
The indirectness of these regression approaches can be avoided by adopting 

measurement models that explicitly relate test scores to the latent constructs that are 
supposed to underlie those test scores. Instead of the latent abilities, stereotype threat 
affects the test scores in a group-specific manner. As we shall see below, a comparison of 
stigmatized and non-stigmatized groups with respect to the test scores-construct 
relationship (i.e., test for measurement invariance) allows for a direct study of the presence 
of stereotype threat effects within a particular test situation.  

An additional advantage of using measurement models is that they can be used to 
analyze experimental data (cf. Donaldson, 2003), thereby overcoming some difficulties 
associated with traditional use of analysis of variance within stereotype threat experiments. 
The groups under investigation in such studies are expected to differ considerably with 
respect to the latent ability that is supposed to underlie the dependent variable(s) (i.e., test 
scores). This may give rise to analytical problems because of pre-existing group differences 
in the average or variability of latent ability (e.g., gender differences in math variability; 
Hedges & Nowell, 1995). In numerous stereotype threat studies, prior test scores (e.g., 
SAT) and analysis of covariance or ANCOVA are used to equate groups for mean 
differences in ability. However, as we argue in Appendix C, several expectations derived 
from stereotype threat theory do not sit well with the assumptions underlying the 
traditional use of ANCOVA (see also Yzerbyt, Muller, & Judd, 2004). For instance, 
stereotype threat may lower the regression weight of the dependent variable on the 
covariate in the stereotype threat condition, which violates regression weight homogeneity 
over all experimental cells (cf. Appendix C). The use of statistical methods that differentiate 
between the construct (i.e., latent ability) and the measurement of that construct 
circumvents such problems. More importantly, measurement models equip us with ways to 
test for measurement invariance. 
 
3.4 Measurement Invariance 

 

 Measurement invariance revolves around the issue of how groups differ in the way 
the measurement of a psychological construct (e.g., mathematics test score) is related to 
that construct (e.g., mathematical ability). Measurement invariance means that measurement 
bias with respect to groups is absent (Lubke et al., 2003a, 2003b; Meredith, 1993). Below, 
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we explain measurement invariance conceptually in relation to stereotype threat. Let us first 
look at the formal definition of measurement invariance (Mellenbergh, 1989), which is 
expressed in terms of the conditional distribution of manifest test scores Y (denoted by 
f(Y|.)).  Measurement invariance with respect to v holds if: 

  f(Y | η, v) = f(Y | η),     (for all Y, η, v),   (1) 
where η denotes the scores on the latent variable (i.e., latent ability) underlying the manifest 
random variable Y (i.e., the measured variable), and v is a grouping variable, which defines 
the nature of groups (e.g., ethnicity, sex). Note that v may also represent groups in 
experimental cells such as those that differ with respect to the pressures of stereotype 
threat. Equality (1) holds if, and only if, Y and v are conditionally independent given the 
scores on the latent construct η (Lubke et al., 2003b; Meredith, 1993). 

One important implication of this definition is that the expected value of Y given η 
and v should equal the expected value of Y given only η. In other words, if measurement 
invariance holds, the expected test score of a person with a certain latent ability (i.e., η) is 
independent of group membership. Thus, if two persons of a different group have exactly the 
same latent ability, they must have the same (expected) score on the test. Suppose v denotes 
sex and Y represents the scores on a test measuring mathematics ability. If measurement 
invariance holds, then test scores of male and female test takers depend solely on their latent 
mathematics ability (i.e., η)15 and not on their sex. Then, one can conclude that 
measurement bias with respect to sex is absent, and that manifest test score differences in 
Y correctly reflect differences in latent ability between the sexes.  

However, the situation changes when stereotype threat impacts test performance. 
Suppose v represents two groups (e.g., Blacks and Whites) that differ with respect to 
stereotypes that concern Y (e.g., intelligence tests). If stereotype threat directly affects (i.e., 
lowers) the observed scores (i.e., Y) in the Black group (or in a sub-sample of this group), 
then measurement invariance is violated. The reason for this is that conditioning on the 
latent construct (i.e., latent ability) does not remove all group differences in Y, because of 
the debilitating effects of stereotype threat on Y, which are limited to the Black group. This 
becomes particularly clear if one images a Black test taker with a particular latent ability, 
who, because of stereotype threat, underperforms in comparison to a White test taker with 
the same latent ability. Clearly, the relationship between test score and latent ability now 
depends on group membership and the requirements for measurement invariance no 
longer hold. Therefore, stereotype threat effects are by definition a source of measurement 
bias. Conversely, if measurement invariance holds in a particular group comparison, 
stereotype threat does not play a differential role in test score differences between those 
groups, because then test score differences rightly reflect group differences in the latent 
construct.  

The definition of measurement invariance is quite general (Mellenbergh, 1989). It 
does not depend on the kind of test, selection variable, or the size of group differences in 
latent ability. Although measurement invariance may be investigated by many methods 
(Millsap & Everson, 1993; Raju et al., 2002) using different types of measurement models 

                                                 
15 However, measurement invariance with respect to one selection variable does not necessarily imply measurement 
invariance with respect to another selection variable (but see Lubke et al., 2003b).  
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(e.g., item response models), we restrict our attention to the confirmatory factor model. We 
now present this model, relate it to measurement invariance, and show how stereotype 
threat may result in measurement bias. After that, we investigate in three studies whether 
experimental stereotype threat effects indeed lead to measurement bias.  

 
3.5 Multi Group Confirmatory Factor Analysis (MGCFA) 
 
 Here we describe the measurement model (i.e., MGCFA) in a non-technical 
fashion, restricting our attention to the one factor case, and assuming multivariate 
normality throughout. Appendix A contains a more technical and more general 
presentation of the model (see also Bollen, 1989; Dolan, 2000; Dolan et al., 2004; Lubke et 
al., 2003a). The confirmatory factor model is essentially a linear regression model in which 
scores on several indicators (i.e., subtest scores) are regressed upon scores on the latent 
(i.e., unobserved) construct η. Like in ordinary regression, the model includes for each 
indicator the following measurement parameters: a regression weight or factor loading 
(expressed by the symbol λ), a residual term, and an intercept. The residual term of an 
indicator is expressed by the symbol ε, and contains both random measurement error and 
specific factors tapped by that particular indicator (i.e., all uncommon sources of variance; 
Meredith & Horn, 2001). In most applications of confirmatory factor analysis (e.g., one-
group studies), the regression intercept is uninformative and is not modeled. However, we 
are also interested in studying between-group differences in means. Therefore, we add the 
mean structure to the analysis, which is accomplished by incorporating an intercept term 
for each indicator, expressed by τ (Sörbom, 1974). The extension to multiple groups 
enables tests of specific hypotheses concerning between-group differences in measurement 
parameters (i.e., measurement bias) and between-group differences in the parameters that 
describe the distribution of the common factor within each group (i.e., group differences in 
mean latent ability). The simultaneous analysis of covariance16 and mean structure provides 
a test of measurement invariance, or strict factorial invariance, as it is denoted in this context 
(Meredith, 1993). 

The model for subtest score Y1 of a person j in group (or condition) i is as follows:  
 y1ij  = τ1i + λ1ηi ηij + ε1ij.        (2) 
Suppose we have four subtests. Of course, the latent ability score ηij of person j is the same 
for all subtests, so we can conveniently arrange the expressions using vector notation (e.g., 
Bollen, 1989): 
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This, in turn, is more parsimoniously expressed by the following matrix notation: 
 ijijiiij

y εητ +Λ+= .        (4) 

                                                 
16 We are also interested in and should allow for possible differences in variances between the groups. For that 
reason, in MGCFA covariance matrices are analyzed instead of correlation matrices. 
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Except for the difference in notation Equations 3 and 4 are identical. For example, in 
Equation 4, τi is a 4 dimensional vector containing the measurement intercepts and Λi is a 4 
x 1 matrix containing the factor loadings of group i. Equation 4 presents a model for the 
observations. To obtain estimates of the parameters in this model, we fit the observed 
covariance matrices and mean vectors to the implied (by Equation 4) covariance matrices 
and mean vectors (cf. Appendix A). The parameters of interest are the factor loadings (Λi), 
the vector of intercepts (τi), the variances of the residuals, incorporated in a matrix denoted 
Θi, and the means and variances of the common factor scores in group i, denoted by αi and 
Ψi, respectively. In fitting the model, we introduce two types of constraints: identifying 
constraints, which are required in all confirmatory factor analyses (e.g., scaling; Bollen, 
1989), and substantive constraints, which relate specifically to the issue of measurement 
invariance (Meredith, 1993). As we explain next in a two-group context, the latter concern 
the factor loadings, intercepts, and residual variances. 
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Figure 3.1  Regression lines of test scores on latent variable in two groups with different intercepts (top) 
  and different intercepts as well as different factor loadings bottom). 
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 Consider the top half of Figure 3.1. Here we see the regression lines for subtest Y1 
in two groups. The factor loading gives the slope of this line (for each increment ∆ of latent 
ability η, the expected test score changes by ∆η times λ) and the intercept τ gives the point 
of Y1 associated with the point η = 0. Also depicted are the normally distributed residuals in 
each group. Note that the residual variances appear equal in both groups. As can be seen, 
the regression slopes (i.e., factor loadings) are also equal in both groups. However, the 
intercepts differ over groups. This has serious consequences. Namely, for each possible 
latent factor score, the expected value on the test Y1 is higher for members of Group 1 than 
for members of Group 2.17 Clearly, this violates measurement invariance with respect to 
both groups. Hence, the equality of measurement intercepts (i.e., τ 11 = τ 12) is an essential 
requirement for measurement invariance (cf. Meredith, 1993). The reader may have already 
guessed a possible source for such an intercept difference between groups: the uniform 
(i.e., irrespective of latent ability) depression of test scores due to stereotype threat in 
Group 2. 
 The bottom half of Figure 3.1 displays another two-group scenario. Here, the 
regression lines for both groups again show different intercepts. In addition, the slope of 
the regression line in Group 2 now differs from the slope in Group 1. Specifically, the 
factor loading in Group 2 is lower (i.e., λ1η1 < λ1η2). This means that in Group 2 the test 
scores do not measure latent ability as well as in Group 1. Again, given a particular latent 
factor score, the expected test score depends on group membership. Even worse, the 
negative effect of "being" a Group 2 member now depends on the particular latent ability 
level. Higher ability scores result in more bias than lower ability scores. As is graphically 
depicted by the dashed arrows, it is even conceivable that a member of Group 2 with a 
fairly high ability score has an expected test score below that of someone in Group 1, who 
has a considerably lower ability. Clearly, for measurement invariance to hold between 
groups, factor loadings should be equal across groups (i.e., λ1η1 = λ1η2). Note that a 
depressed factor loading could be due to stereotype threat affecting test performance in 
Group 2 in a non-uniform manner. Again, the lowering of the intercept may be viewed as a 
"main effect" for stereotype threat. Moreover, the lowering of a factor loading in Group 2 
can be interpreted as an "interaction effect" between stereotype threat and latent ability on 
test performance. The latter may occur because domain identification is known to heighten 
stereotype threat effects, and domain identification may be strongly related to latent ability 
(Cullen et al., 2004; Steele, 1997). In such a scenario higher ability persons suffer more 
under stereotype threat, resulting in a depressive effect on the factor loading. 
 We have presented a graphic exposition of why factor loadings and measurement 
intercepts need to be invariant for measurement invariance to hold. In fact, under 
measurement invariance, the regression lines of each group coincide. If so, the expected 
value of the test scores depends solely on latent ability, regardless of group membership. 
An additional requirement for strict factorial invariance is that residual variances need to be 
invariant. This is because residual variances contain all uncommon sources of variance. 

                                                 
17 Note the resemblance of this picture to what Steele (1997, p.626) called the parallel lines phenomenon when he 
referred to the academic underperformance of Black college students in comparison to White college students with 
equal standardized test scores. The differences lie in that Steele's predictor was a standardized test score and his 
criterion was first-year GPA, whereas our predictor is the latent ability score and the criterion is the test score. 
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Larger residual variance in one group means less reliable measurement. Moreover, added 
residual variance may also be due to stereotype threat variance. Meredith (1993) provides a 
rigorous statistical discussion of why group-invariant factor loadings (Λ), residual variances 
(Θ), and intercepts (τ) are essential requirements for strict factorial invariance. Indeed, if 
measurement invariance holds, as defined above (Equation 1), these equality constraints 
should hold to reasonable approximation (Meredith, 1993; Millsap, 1997b).  
 

The Stereotype Threat "Factor" 
In order to better understand the specific effects of stereotype threat on 

measurement parameters, it is convenient to imagine the presence an additional common 
factor (denoted by σ), which incorporates all the mediating effects of stereotype threat on 
test performance. Such an additional stereotype threat "factor" is neither measured nor 
modeled, but it still affects test performance in a manner that is restricted to the stigmatized 
group, resulting in group-specific changes of measurement parameters. Hence, constraining 
measurement parameters of a group under stereotype threat to group(s) without such 
effects (i.e., non-stigmatized group and/or control condition) would demonstrate a 
violation of strict factorial invariance. It is well-established that stereotype threat specifically 
affects performance on the more difficult tasks (Blascovich et al., 2001; O'Brien & Crandall, 
2003; Quinn & Spencer, 2001; Spencer et al., 1999; Steele et al., 2002). Therefore, we 
expect the effects to be subtest-specific and mostly related to the most difficult subtests in 
a test battery. 
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Figure 3.2  Effects of stereotype threat on parameter estimates of affected Subtest Y4. 
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Figure 3.2 displays the common factor model within a group (in a particular 

setting), where stereotype threat affects the scores on subtest Y4 (conceivably a particularly 
difficult subtest). As we show in Appendix B, such a stereotype threat effect results in a 
lowering of the measurement intercept of the affected subtest (cf. Figure 3.1 top half). In 
addition, if stereotype threat effects vary over persons within this group, perhaps because 
of individual differences in domain identification or group identification, the variance due 
to the unmeasured stereotype threat factor results in an increase of the residual variance of 
subtest Y4. However, it is also conceivable that two of the four subtests are affected by 
stereotype threat. This situation is displayed in Figure 3.3. Again, this would result in 
negative effects on the measurement intercepts of these subtests (cf. Appendix B). In 
addition, if stereotype threat effects vary over persons, this would lead to increased residual 
variances of both affected subtests. Furthermore, the two affected subtests now covary 
more strongly than would be expected from their corresponding factor loadings on the η 
factor. This additional covariance due to stereotype threat constitutes a violation of the 
dimensionality of the factor model within this group (i.e., residual covariance), resulting in 
model misfit. This scenario of stereotype threat affecting the performance on two subtests 
can be extended to cases in which more than two (or even all) subtests are affected. Of 
course, in such cases, stereotype threat also violates strict factorial invariance.18  

 

                                                 
18 However, if a (relatively) large number of subtests are affected by stereotype threat, model misfit due to such 
stereotype threat effects disperses over the model. This makes it difficult to interpret measurement bias in terms of 
sole parameters. 
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As a final scenario, consider Figure 3.4 in which a nonlinear effect on subtest Y4 is 

expressed as an interaction between latent ability and stereotype threat. As is shown in 
Appendix B, such an effect results in a lowering of the factor loading of subtest Y4 (cf. 
Figure 3.1 bottom half). Additionally, one would expect an increase of the residual variance 
of the affected subtest and a downward bias of the intercept.  
 In conclusion, the effects of stereotype threat are detectable by tests for 
measurement invariance using MGCFA. Possible stereotype threat effects would show up 
particularly in group differences in the measurement parameters of difficult subtests. We 
now turn to three experiments in which the amount of stereotype threat for stigmatized 
groups was manipulated. We thus use tests of strict factorial invariance with respect to 
groups and conditions to identify the effects, if any, of stereotype threat on the test scores. 
 
3.6 Study 1: Dutch Minorities and the Differential Aptitude Test 

 
 On average, Dutch minority students attain lower educational levels and have a 
higher drop-out rate than Dutch majority students (Dagevos, Gijsberts, & van Praag, 2003). 
Several studies have indicated that Dutch high school students often view minority 
students as less smart (Verkuyten & Kinket, 1999), and minority groups as less well 
educated (Kleinpenning & Hagendoorn, 1991). Recently, Verkuyten and Thijs (2004) found 
that academic disidentification among Dutch minority students was moderated by the 
perception of being discriminated in scholastic domains. The first aim of Study 1 was to 
study the effects of stereotype threat on intelligence test performance in a sample of 
minority high school students in the Netherlands. To this end, we administered a short 
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intelligence test containing three subtests, and varied the amount of stereotype threat 
related to ethnic minorities by changing the presentation of the test and by altering the 
timing of an ethnicity questionnaire. The second aim of this study is to find out whether 
tests for measurement invariance using MGCFA can successfully highlight the effects of 
stereotype threat. Furthermore, we compare the results of confirmatory factor analysis to 
the results of analysis of variance, in order to find out whether both analyses lead to the 
same conclusions. 
 

Method 
Participants 
 Two hundred and ninety five students from nine high schools in large cities in the 
Netherlands participated during obligatory classes, which were aimed at counseling the 
students in choosing a major ("profile") in the second phase ("tweede fase") of their high 
school education. The students were aged between 13 and 16 (M = 14.86, SD = 0.64), and 
attended the third year of the HAVO education. Given that the HAVO level is the second-
highest level in the Dutch high school system, the sample is expected to be heterogeneous 
in terms of identification with the academic domain, which is considered an important 
moderator of stereotype effects (cf. Aronson et al., 1999).  
 All 157 students in the majority group were born in the Netherlands, as were all 
their parents and grandparents. Of the 138 minority students, most were born in The 
Netherlands (76%), but all of them had one (10%) or two (90%) parents born outside The 
Netherlands. The (grand)parents of the minority students were immigrants from (former) 
Dutch colonies (Surinam/Antilles; N = 47), Turkey (N = 36), or Morocco (N = 55).19 
Because of the absence of large test score differences between these minority groups, and 
to increase the sample sizes, these minority groups are pooled.20 When asked to indicate the 
cultural group they identified with, most (N = 93; 67%) of the minority students indicated 
their own minority group. Twenty-three minority students (17%) indicated the Dutch 
majority group, and 22 minority students (16%) indicated both the Dutch group, and their 
minority group as the group they identified with. The total sample consisted of 119 boys 
and 176 girls. Both ethnic groups did not differ in sex and age composition.21 
Procedure and Design 
 Three shortened subtests of the Differential Aptitude Test or DAT (Evers & 
Lucassen, 1992) were administered during classes, which were attended by 17 to 27 
students. Upon arrival in the classroom, students found a test booklet on their desks, and a 
female tester of Dutch origin told them that they would be taking a counseling test. The 

                                                 
19 These data stem from a larger study containing 430 students (Wicherts et al., 2003). We selected only students that 
could be categorized unambiguously in the majority group (student, his/her parents, and grandparents are all born in 
The Netherlands) or in one of these three minority groups.  
20 Although there may be differences between these minority groups in terms of general stereotypes, in terms of 
academic stereotypes differences between these groups are quite small (see, e.g., Kleinpenning & Hagendoorn, 1991). 
21 To ensure the existence of stereotypes concerning the intellectual ability of minority groups, we conducted a pilot 
study in which we asked a group of 41 students in comparable schools and classes whether they believed that there 
existed prejudices concerning the  intellectual ability of their cultural group (direction unspecified). On a scale from 1 
(no prejudice) to 5 (strong prejudice), the 20 majority students (M = 2.00, SD = 1.12) scored significantly lower 
(t(39) = 4.53, p < 0.001) than the 21 minority students (M = 3.62, SD = 1.16), indicating that the minority students 
reported a strong awareness of the stereotypes concerning the intellectual abilities of their group. 
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tester said that the test booklet contained questions about their personal interests and 
abilities, and that their answers would be used for guidance in their choice of specialty. No 
explicit mention of intelligence was made. The tester told the students that the test booklet 
consisted of several sections, and that they would be told when to start and stop with a 
particular section. This enabled the timing of each of the following sections of the test 
booklet: An ethnicity questionnaire, the DAT tests, an interest inventory, an additional 
language test (used for exploratory purposes), and the actual profile-counseling test 
(administered last). After the test session, students were debriefed extensively on the 
purpose of the experiment. After a week, all students received written counseling on their 
specialty choice, which was based solely on the profile-counseling test (cf. Zand Scholten, 
2003). Special care was taken to ensure that the answers on this test were not affected by 
the stereotype threat manipulation, or by ethnicity (Wicherts et al., 2003). 
 Participants were assigned to two conditions that differed in the features that elicit 
stereotype threat for the minority students. Assignment to conditions was achieved by 
randomly distributing two versions of a test booklet, which were indistinguishable by the 
cover. In the stereotype threat condition, this test booklet presented each DAT subtest as 
an "intelligence test". The test booklet of participants in the control condition made no 
mention of intelligence, and the tests were simply presented as a section of the test booklet. 
In addition, in the stereotype threat condition, an ethnicity questionnaire was administered 
prior to the DAT. This questionnaire consisted of 14 questions concerning ethnic and 
cultural background (religion, language use), and questions about place of birth of the 
students, their parents, and grandparents. In the control condition, the ethnicity 
questionnaire was administered after the DAT. While participants in the stereotype threat 
condition filled in the ethnicity questionnaire, participants in the control condition filled in 
an interest inventory containing 15 items without any connection to ethnicity. This interest 
inventory was administered to students in the stereotype threat condition after the 
intelligence tests. Thus, two stereotype threat manipulations were employed in concert to 
increase stereotype threat for ethnic minorities: an ethnicity prime and a manipulation of 
the diagnosticity of the intelligence test (cf. Steele & Aronson, 1995). 
Intelligence Test 
 Three subtests of the Dutch DAT (Evers & Lucassen, 1992) were used as a 
measure of general intelligence. The subtests were shortened by selecting items with the 
highest item-rest correlations in the Dutch standardization sample (N = 2100). The 
Numerical Ability test (NA; originally 40 items, 25 min) contains 14 complicated 
mathematic problems. Abstract Reasoning (AR; originally 45 items, 25 min) contains 18 
items with a logical sequence of diagrams, which had to be completed. Verbal Reasoning 
(VR; originally 50 items, 20 min) contains 16 verbal analogy items. All subtests were 
administered with a time limit of six minutes. All items have a 5-option multiple-choice 
answer format. Based on the standardization data, Numerical Ability is the most difficult 
subtest in terms of proportion correct of the items retained in the short version (average p-
value 0.43), followed by Verbal Reasoning (average p-value 0.49) and Abstract Reasoning 
(average p-value 0.59). Thus, one would expect the strongest stereotype threat effects on 
the Numerical Ability test. The instruction pages of the subtests were slightly adapted with 
regard to the time limit, number of items, and the presentation of the tests as either a 
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section (control condition), or as an intelligence test (stereotype threat condition). To 
correct for possible order effects, and to avoid cheating (e.g., copying answers), two order 
versions of the test booklet were employed (bringing the total number of versions to 4). 
The order in these two versions was NA-AR-VR, and VR-NA-AR, respectively. Because 
none of the main or interaction effects for order reached significance (ANOVA; all Ps > 
0.10), these order versions are pooled for the subsequent analyses. 
Analyses 

Considering previous factor analyses on the complete DAT (Evers & Lucassen, 
1992; Te Nijenhuis et al., 2000; Wicherts et al., 2004), the use of a one-factor model for 
these three subtests is sensible. Although our primary interest lies in testing for strict 
factorial invariance with respect to groups, we also conduct a 2-by-2 MANOVA, with 
stereotype threat and ethnicity as factors, and the three subtests as dependent variables. 
MANOVA provides a means to interpret the experimental mean effects. We predicted a 
significant main effect for ethnicity, with majority students outscoring the minority students 
(see, e.g., Te Nijenhuis et al., 2000). In addition, we expected a significant ethnicity by 
condition interaction, because stereotype threat would primarily depress scores of minority 
students. Given the heterogeneous sample used, we also expected heterogeneity in 
covariances and variances over design cells. Therefore, as is common in the (M)ANOVA 
framework, we also conduct tests for variance and covariance heterogeneity by means of 
Box’s M test and the univariate Levene’s test.  

MGCFA can be used to shed light on the nature of differences in (co)variance and 
mean structure between groups. Within this two-by-two experimental design, the tenability 
of strict factorial invariance with respect to groups and conditions (i.e., 4 groups) is 
investigated by fitting a series of increasingly restrictive models. These models as well as the 
restrictions imposed are presented in Table 3.1. In the first step, no between-group 
restrictions are imposed. The next steps involve restricting all factor loadings (Step 2) and 
all residual variances (Step 3) to be invariant over all four groups. Because of the random 
assignment to experimental conditions, one does not expect there to be differences on the 
factor level between conditions for both existing groups. Step 4 can be used to investigate 
whether factor variance of the existing groups are affected by the stereotype threat 
manipulation. That is, in this step, the factor variance for majority students in the 
stereotype threat condition is restricted to be equal to the factor variance for majority 
students in the control condition (and similarly for the minority students). In Step 5, the 
invariance of the mean structure is investigated by restricting the measurement intercepts to 
be equal across all groups. In the same step, factor mean differences with respect to an 
arbitrary baseline group are estimated. Finally, in Step 6, the means of the existing groups 
are restricted to be equal over condition (e.g., factor mean of majority group in control 
condition equal to factor mean of majority group in stereotype threat condition). This 
ensures that the experimental manipulation has no effect on the mean of the common 
factor. As can be seen, if the restrictions implemented in these six steps hold, measurement 
invariance holds. In that case, the differences between the existing groups are a function of 
the differences in the means (α) and variances (Ψ) of the common factor. However, we 
expected the test scores to be affected in a differential manner across groups.  
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Table 3.1 
Equality constraints imposed in the steps towards strict factorial invariance 
No. Description Λ 

factor 
loadings 

Θ 
residual 
variances 

Ψ 
factor 
variance 

τ 
intercepts 

α 
factor 
mean 

1 Configural invariance - - - - - 

2 Metric invariance all groups - - - - 

3 Equal residual variances all groups all groups - - - 

4 
Factor variances 
invariant over condition 

all groups all groups 
existing 
groups 

- - 

5 
Strict factorial 
invariance 

all groups all groups 
existing 
groups 

all groups - 

6 
Factor means invariant 
over condition 

all groups all groups 
existing 
groups 

all groups 
existing 
groups 

 Note:  Each step is nested under the previous one. Underlined restrictions are tested in each step. 

 
The tenability of each restriction is judged by differences in fit between the 

restricted model and the less-restricted model. For instance, Step 2 vs. Step 1 involves the 
tenability of equality of factor loadings. Because of the nesting of models, a likelihood ratio 
test is employed to test each restriction. Besides attention for chi-squares, the CFI and the 
RMSEA are used in determining the absolute and relative model fit. The Comparative Fit 
Index (CFI; Bentler, 1990) ranges from 0 to 1, and is a measure of the relative fit of a 
model in relation to a null model of complete independence22. The Root Mean Square 
Error of Approximation (RMSEA; Browne & Cudeck, 1993) is a so-called close fit measure 
that is known to be relatively insensitive to sample size. Several rules of thumb have been 
proposed for these fit measures. Based on their simulation study, Hu and Bentler (1999) 
proposed that RMSEA values smaller than 0.06, and CFI values larger than 0.95 are 
indicative of good model fit. 
 In case a step is accompanied by a clear deterioration in model fit, the particular 
restriction is rejected. In such cases, modification indices can highlight the particular 
parameter(s) causing the misfit. A modification index (MI) is a measure of how much chi-
square is expected to decrease if a constraint on a given parameter is relaxed, and the model 
is re-fitted (Jöreskog & Sörbom, 1993). In cases where a restriction is accompanied by a 
deterioration in fit, parameters with the highest modification index are freely estimated and 
the sequence of models is continued. We expected that stereotype threat effects on test 
performance would result in measurement bias expressed by high modification indices in 
the minority group in the stereotype threat condition. All factor analyses were carried out 
using LISREL 8.5423 (Jöreskog & Sörbom, 2003). 

                                                 
22 Widaman and Thompson (2003) have argued that because of the nesting of models it is inappropriate to use such 
a null model within a multi-group context with mean structure. Therefore, we use a model without any factor 
structure, in which intercepts and residual variances are restricted to be group invariant (i.e., model 0A in Widaman 
& Thompson, 2003) as the null model in computing the CFI values. 
23 All input files used here can be downloaded from: http://users.fmg.uva.nl/jwicherts. 
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Results 
Table 3.2  
Means and standard deviations by experimental condition and ethnic group (Study 1) 
                            Condition 
                        Control                     Stereotype threat  

    Majority    Minority     Majority     Minority  

 N  =    79       65         78      73  
Subtest     M      SD      M     SD        M    SD     M    SD 
Numerical  5.35 2.54  4.88 2.47   5.49 2.31  4.67 2.52 

Abstract Reasoning  10.42 2.96  6.80 3.33   9.24 3.34  7.34 2.83 

Verbal Reasoning  7.27 3.01  5.37 2.82   6.65 3.47  5.56 2.70 

  
 The values for univariate skewness and kurtosis in the four groups are in an 
acceptable range (i.e., [-0.89 - 0.88]), suggesting no large deviations from normality. 
Therefore, the use of Maximum Likelihood for estimating the factor models is justified. 
Table 3.2 contains means and standard deviations of the three subtests for both ethnic 
groups in the two conditions. First, we provide the analysis of variance results. Box's M test 
suggests some covariance heterogeneity over groups (F(18, 28483) = 1.787, p< .05). The 
univariate Levene's test for homogeneity of variance gives a significant value for the Verbal 
Reasoning subtest (F(3, 291) = 3.63, p< .05). Because MANOVA is often claimed to be 
robust to (co)variance heterogeneity (e.g., Stevens, 1996), we do interpret the results of the 
MANOVA. The multivariate main effect for ethnicity is significant (F(3, 289) = 20.36, p< 
.001), as well as all univariate effects (Numerical Ability: F(1, 291) = 5.07, p< .05; Abstract 
Reasoning: F(1, 291) = 57.47, p< .001; Verbal Reasoning: F(1, 291) = 17.83, p< .001), with 
the majority group outscoring the minority group. Neither the multivariate, nor any of the 
univariate main effects for condition reach significance (all Ps > .30). The multivariate 
interaction effect between condition and ethnicity is significant (F(3, 289) = 2.642, p = 
.050). The only significant univariate interaction effect is found on the Abstract Reasoning 
subtest (F(1, 291) = 5.56, p< .05). However, this interaction effect is due to the majority 
group underperforming in the stereotype threat condition. Namely, the condition simple 
effect is significant for majorities (F(1, 155) = 5.45, p< .05), but non-significant for 
minorities (F(1, 136) = 1.07, p>  .30). All multivariate and univariate simple effects for 
condition within the minority group are non-significant (all Ps > .30), which is opposite to 
what one would expect from stereotype threat theory. Whereas, the minority group scored 
significantly lower than the majority group, these ANOVA results indicate that on average 
the minority students in the stereotype threat condition did not score lower than the 
minority students in the control condition.  
 However, it is important to stress that the sample may be expected to be 
heterogeneous with respect to domain-identification, considered an important moderator 
of stereotype threat effects (e.g., Steele, 1997). For instance, Aronson et al. (1999) found 
that test-takers that identified strongly with the domain of interest (i.e., mathematics) were 
more susceptible to stereotype threat, whereas test-takers who moderately identified with 
the domain performed better under stereotype threat conditions than under control 
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conditions. This suggests that within heterogeneous samples that contain both highly 
identified and moderately identified test-takers, effects of stereotype threat may differ 
substantively over persons. In such samples, positive and negative effects may cancel out, 
resulting in no, or only a small effect on the mean. However, the absence of a mean effect 
does not necessarily mean the absence of an effect. To investigate the possibility that 
covariance structure was affected by the stereotype threat induction, we tested for 
measurement invariance with respect to the four groups. The results of the multi-group 
confirmatory factor analyses are reported in Table 3.3. 
 
Table 3.3 
Fit measures of steps towards strict factorial invariance (Study 1) 
Step Restrictions DF  χ2   p ∆DF ∆χ2  p RMSEA CFI  
1 - 0  0 1.000 - - -  0.000 1.000 
2 Λ 6 14.73* 0.023 6 14.73* 0.023  0.145 0.942 
2a Λ1 5  4.74 0.449 (-) 1  9.99** 0.002  0.000 1.000 
3 Λ1,Θ 14 23.68 0.050 9 18.94* 0.026  0.097 0.936 
3a Λ1,Θ2 13 16.45 0.226 (-) 1  7.23** 0.007  0.058 0.977 
4 Λ1,Θ2, Ψcon 15 16.91 0.324 2  0.46 0.795  0.040 0.987 
5 Λ1,Θ2, τ3, Ψcon 20 31.78* 0.046 5 14.87* 0.011  0.089 0.922 
5a Λ1,Θ2, τ3,4, Ψcon 19 27.43 0.095 (-) 1  4.35* 0.037  0.079 0.944 
5b Λ1,Θ2, τ3,4,5, Ψcon 18 23.70 0.165 (-) 1  3.73 0.053  0.065 0.962 
6 Λ1,Θ2, τ3,4,5, Ψcon, αcon 20 24.44 0.224 2  0.74 0.691  0.056 0.971 
Note: Underlined restrictions are tested by likelihood ratio test ∆χ2; *p<0.05; **p<0.01; (-): parameter freely 
estimated; 1: Factor loading Numerical Ability, minority group, stereotype threat; 2: Residual variance Numerical 
Ability, minority group, stereotype threat; 3: Intercept Numerical Ability, minority group, stereotype threat; 4: 
Intercept Abstract Reasoning, majority group, control; 5: Intercept Abstract Reasoning, minority group, control  

 
  Because a one-factor model with three indicators is saturated (i.e., equal number of 
input statistics and parameters), the baseline model without across-group restrictions has a 
chi-square of zero with zero degrees of freedom. In the second step the factor loadings are 
restricted to be equal over the four groups. This restriction results in a significant increase 
in chi-square. In addition, both the RMSEA and the CFI exceed the rule-of-thumb values 
for good fit. The misfit in this step is almost solely due to the factor loading of the 
Numerical Ability subtest of the minority group in the stereotype threat condition (MI = 
11). Freeing this parameter leads to a significant improvement of model fit, as can be seen 
in Step 2a. In the minority group, stereotype threat condition, this (unstandardized) factor 
loading is not significantly different from zero (λ1 = -0.04, SE = 0.20, Z = -0.19, p> .05), 
whereas in the other groups this factor loading is significantly greater than zero (λ1 = 0.92, 
SE = 0.22, Z = 4.19, p< .01). In Step 3, the residual variances are restricted to be invariant 
over the four groups. This, again, leads to a significant deterioration in model fit, as can be 
seen by the significant increase in chi-square, increase in RMSEA, and lowering of CFI. 
Not surprisingly, the misfit in this step is mainly due to the residual variance of the 
Numerical Ability subtest of the minority group in the stereotype threat condition (MI = 
7). Freeing this parameter leads to a significant improvement in model fit (Step 3a). The 
residual variance of Numerical Ability is larger in the minority group, stereotype threat 
condition (6.33, SE = 1.06), than in the other groups (3.47, SE = 0.61). In the fourth step, 
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we restrict factor variances of both ethnic groups to be invariant over condition. This leads 
to a relative improvement in model fit. The factor variance of the minority group is slightly 
smaller (Ψ = 3.32, SE = 1.08) than the factor variance of the majority group (Ψ = 4.12, SE 
= 1.23). In the fifth step, mean structure is modeled by restricting the intercepts to be 
invariant over the groups, and by freeing the factor means of three groups (cf. Table 3.1). 
In light of the different factor loading of the Numerical Ability subtest in the minority 
group, stereotype threat condition, it does not make sense to restrict this particular 
intercept. Hence, in Step 5, this parameter is freely estimated for this particular group. Step 
5 results in a significant increase in chi-square, an increase in RMSEA, and a clear drop in 
CFI. The restriction on intercepts is clearly rejected. The highest modification index is 
related to the intercept of the Abstract Reasoning test of the majority group in the control 
condition. Freeing this parameter results in an improvement in model fit (Step 5a). 
However, as judged by RMSEA (> 0.06) and CFI (< 0.95), the model fit of Step 5a is still 
not very good. The highest modification index (MI = 4) in this step is related to the 
intercept of the Abstract Reasoning subtest of the minority group in the control condition. 
Freeing this parameter results in an improvement in model fit in terms of RMSEA and CFI 
(Step 5b). Interestingly, the intercept of the Abstract reasoning subtest is higher in the 
majority group, control condition (τ2 = 8.67, SE = 0.47), than in the two ethnic groups in 
the stereotype threat condition (τ2 = 7.54, SE = 0.31). This is not surprising considering the 
mean effect of the stereotype threat manipulation on this subtest in the majority group. In 
the minority group, control condition, this intercept is even lower (τ2 = 6.72, SE = 0.37). 
This suggests the presence of bias with respect to ethnicity in the control condition. In the 
sixth and final step, we investigated whether the factor means of both groups differed over 
experimental condition. This step is accompanied by a relative improvement in model fit. 
The factor mean of the majority is significantly higher than that of the minority group (α = 
1.62, SE = 0.39, Z = 4.20, p< .001). 
 

Conclusion 
 Although MANOVA results indicated an absence of mean effects of stereotype 
threat on test performance of the minority group, the stereotype threat manipulation clearly 
resulted in measurement bias with respect to the minority group. The measurement bias 
due to stereotype threat was related to the most difficult Numerical Ability subtest. 
Interestingly, because of stereotype threat, the factor loading of this subtest did not deviate 
significantly from zero. This change in factor loading suggests a non-uniform effect of 
stereotype threat. This is consistent with the third scenario discussed above (cf. Appendix 
B), and with the idea that stereotype threat effects are positively associated with latent 
ability (cf. Cullen et al., 2004). Such a scenario could occur if latent ability and domain-
identification are positively associated. This differential effect may have led low ability (i.e., 
moderately-identified) minority students to perform slightly better under stereotype threat 
(cf. Aronson et al., 1999), perhaps because of moderate arousal levels, whereas the more 
able (i.e., highly-identified) minority students performed worse under stereotype threat. Such 
a differential effect is displayed graphically in Figure 3.5. This pattern could explain the 
absence (i.e., canceling out) of mean-effects, the increased residual variance, and the smaller 
factor loading in the minority group. Another explanation for this effect may lie in 
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individual differences in working memory capacity (WMC). Beilock and Carr (2005) 
recently found that students high in WMC underperformed on a difficult arithmetic task 
under pressure, whereas students low in WMC showed a slight increase in performance 
when put under high pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The biasing effect of stereotype threat would have been completely overlooked, 
had we restricted ourselves to the MANOVA, and had we regarded the covariance 
heterogeneity as a statistical annoyance, instead of as an important source of information. 
The bias due to stereotype threat on test performance of the minority group is quite 
serious. The intelligence factor explains approximately 0.1% of the variance in the 
Numerical Ability subtest, as opposed to 30% in the other groups. To put it differently, due 
to stereotype threat, the Numerical Ability test has become completely worthless as a 
measure of intelligence in the minority group. Note, however, that such an effect changes 
our interpretation of the factor within the minority group under stereotype threat. It is also 
conceivable that the stereotype threat effects were present on the other two subtests. 
However, because of the rather small factor model, such an effect is hardly distinguishable 
from a non-uniform effect on the Numerical Ability test. Nevertheless, the latter subtest is 
the most difficult subtest, and it is apparent that stereotype threat has resulted in severe 
measurement bias with respect to the minority group.  
 In the control condition, there also appears to be measurement bias with respect to 
ethnicity, indicating that even in that condition test scores of minority and majority 
students are incomparable. It could be argued that because the test setting resembled 

      η (ability) 

 Y1 

No stereotype threat 
 
 
Stereotype threat 
 

Figure 3.5 Non-uniform effect on factor loading of Subtest Y1 in case of an Interaction between 
  latent ability and stereotype threat. 
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strongly the common practice of testing in Dutch high school, the test setting could have 
elicited stereotype threat even in the control condition (cf. Steele & Davies, 2003). 
However, because the bias in this condition was related to the easiest of the three subtests, 
it seems unlikely that stereotype threat has caused this bias. Further research could shed 
light on the issue of whether stereotype threat is also present in the control condition or if 
perhaps the bias is caused by something else (cf. Te Nijenhuis et al., 2000). Based on this 
study, we would advise great caution in the use of these DAT scales for Dutch minority 
students.  
 Surprisingly, the manipulation also had a depressing effect on the Abstract 
Reasoning subtest in the majority group. Perhaps this is due to a priming effect of the 
ethnicity questionnaire (cf. Wheeler & Petty, 2001). Further research could shed light on 
why the scores on this relatively easy subtest were depressed in the majority group. 
Nevertheless, the depressing effect of stereotype threat on this subtest became apparent in 
the analysis of variance, and clearly resulted in measurement bias in the factor analyses. 
 The presence of covariance effects in the absence of mean effects in this first study, 
led us to re-analyze the results of another stereotype threat study, in which a clear mean 
effect on test performance was also absent. In an experiment by Nguyen and colleagues 
(2003) the effects of stereotype threat on Black students' test performance were studied 
within a job-selection context. A timed short version of a cognitive ability test containing 
three subtests was used to assess cognitive ability. A total of 86 Blacks and 86 Whites were 
randomly assigned to a stereotype threat or control condition. Like in Study 1 above, 
stereotype threat was manipulated by both an ethnicity prime and by test diagnosticity 
(Nguyen et al., 2003). Using analysis of variance, Nguyen et al. (2003) found that Whites 
outscored the Blacks on all subtests (i.e., significant multivariate and univariate main effects 
for ethnicity). However, MANOVA indicated no significant interaction between stereotype 
threat manipulation and race, as would be expected from stereotype threat theory. 
Therefore, Nguyen and colleagues concluded that stereotype threat effects on test 
performance were absent. We submitted these data to MGCFA and our re-analysis 
suggested that (besides an increased residual variance for Whites in the stereotype threat 
condition) strict factorial invariance with respect to conditions and race was mainly tenable. 
Although the power may have been low, this result suggests that the race differences in test 
performance in either condition appear not to be caused by stereotype threat. Therefore, 
the argument that the stereotype threat manipulation in the Nguyen study was unsuccessful 
due to the fact that stereotype threat was already present in the control condition (Steele & 
Davies, 2003), appears implausible.  
 From an experimental perspective the results of the first study are unusual in the 
sense that experimental mean effects on test performance of the stigmatized group were 
absent. Hence, it is desirable to investigate the merits of our modeling approach in the 
presence of clear experimental mean effects. 
  
3.7 Study 2: O'Brien and Crandall (2003) Re-Analysis 

 
 O'Brien and Crandall (2003) studied the effects of stereotype threat on 
performance of females on three mathematics tests, which differed in difficulty level: A 
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difficult test, an easy test, and a relatively easy math persistence test. Here we re-analyze 
these data with our modeling approach in order to investigate whether a test of strict 
factorial invariance can highlight the stereotype threat effects on test performance. We 
briefly describe the original study. For more details the reader is referred to O'Brien and 
Crandall (2003). 
 

Method 
Participants 
 A total of 164 students enrolled in a psychology class participated in this study in 
exchange for course credit. Because of missing data of five participants on the Math 
Persistence test, the current analysis is based on a sample of 58 females and 101 males. 
Design and Procedure 
 Participants were randomly assigned to two conditions that differed in the amount 
of stereotype threat for women. In the control condition, the gender stereotype was made 
irrelevant for the test setting by a text stating that the test at hand had "NOT been shown 
to produce gender differences" (O'Brien & Crandall, 2003, p. 785). In the stereotype threat 
condition, the text indicated that the test had been shown to produce gender differences. 
After reading this text, participants completed a questionnaire regarding their feelings 
concerning test taking. After that, the three math tests were administered in a 
counterbalanced order. 
Materials 
 The Easy math test had a time limit of 10 minutes, and consisted of 20 relatively 
easy multiplication problems. The Difficult test was administered with a time limit of 11 
minutes, and consisted of 15 difficult items from the quantitative SAT. Items were in a five 
option multiple-choice format. The Math Persistence test contained 24 addition and 
subtraction problems, which were to be solved mentally (i.e., without the aid of paper and 
pencil) within 8 minutes (O'Brien & Crandall, 2003).  
Analyses 
 Reasoning that the effects of heightened arousal on task performance depend on 
task difficulty, O'Brien and Crandall (2003) expected that stereotype threat would heighten 
scores of females on the Easy math test, while depressing their scores on the Difficult test. 
The Math Persistence test was originally used as a control for effort. However, because of 
quite high correlations between all three subtests, and in light of the clear mathematical 
nature of the three tests, the use of a one-factor model in describing these data is justified. 
In the male groups in both conditions and in the female group, stereotype threat condition, 
all inter-subtest correlations are significantly greater than zero (p < .05; range: 0.33 to 0.55). 
However, the correlation between the Easy and the Difficult test of the female group in the 
control condition is not significant. Furthermore, the correlation between the Easy test and 
the Math Persistence test in this group is negative. This appears not to be caused by any 
distinguishable bivariate outliers (L. T. O'Brien, personal communication, June 7, 2004). 
Moreover, in this group, the Math Persistence test has a platykurtotic distribution (kurtosis: 
- 1.3). In combination with the small sample size (N = 30), this makes the data of this 
group less suitable for Maximum Likelihood estimation. Therefore, we limited the factor 
analyses to three groups: the female group in the stereotype threat condition, and the Male 
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groups in both conditions. For our modeling approach this poses no problem. We 
expected measurement bias because of stereotype threat in the female group. We again use 
the steps given in Table 3.1 to assess the tenability of restrictions over these three groups. 
 

Results 
 Except for the Math Persistence test scores of the male group in the stereotype 
threat condition24, the kurtosis and skewness values are in the moderate range, making the 
data suitable for Maximum Likelihood estimation. The means and standard deviations of 
the four groups are reported in Table 3.4. Using repeated-measures ANOVA on the 
standardized scores of the Easy and the Difficult tests, O'Brien and Crandall (2003) found a 
significant main effect for gender, with males outscoring the females. More importantly, 
this test showed a significant three-way interaction between gender, condition, and test 
difficulty, which indicated that stereotype threat lowered scores of women on the Difficult 
test, while heightening the scores on the Easy test. In a separate two-way ANOVA on the 
Math Persistence scores, O'Brien and Crandall (2003) found a significant main effect for 
sex (males outscoring females), although the interaction between sex and condition was not 
significant. Thus, these ANOVA results indicate no effects of condition for males. For 
females, ANOVAs indicate a clear mean effect of stereotype threat on the Easy and 
Difficult tests, but no effect on the Math Persistence test.  
 
Table 3.4 
Means and standard deviations of males and females by experimental condition (Study 2) 
                            Condition     
                       Control                      Stereotype threat  

     Males   Females        Males   Females  
   N =    50       30        51       28  
Subtest     M   SD      M    SD       M    SD      M    SD 
Easy  7.50 4.34  6.37 3.91  7.80 3.93  8.18 3.98 

Difficult  9.13 2.36  7.99 2.88  9.19 2.51  6.81 2.55 

Persistence  18.72 5.79  15.30 6.13  19.53 4.67  16.43 6.30 
Note: Descriptive statistics provided by L. T. O'Brien 

 
 The results of the factor analyses on the three groups are reported in Table 3.5. 
Again, the first step involves a saturated model with perfect model fit. The second step 
(equal factor loadings), the third step (equal residual variances), and the fourth step (equal 
factor variance in male groups) all result in non-significant increases in chi-square. 
Moreover, the CFI and RMSEA clearly indicate that these three restrictions are tenable. 
This is not the case for the restriction on measurement intercepts, which is tested in the 
fifth step. This restriction clearly results in a worsening in model fit, as is clear in the 
significant increase in chi-square and the clear worsening in CFI and RMSEA values. The 

                                                 
24 The high kurtosis value (2.6) in this group was due to a very low scoring male. Excluding this outlier does not 

change the results of the factor analyses. 
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largest modification indices are related to the intercepts of the Difficult test (MI = 7) and 
the Easy test (MI = 6) of the female group in the stereotype threat condition. Freeing both 
parameters (Steps 5a and 5b), results in clear improvements in model fit. The intercept of 
the Difficult test is lower in the female group under stereotype threat (τ2 = 7.72, SE = 
0.57), than in both male groups (τ2 = 9.05, SE = 0.30). The intercept of the Easy test is 
higher in the female group (τ3 = 9.65, SE = 0.94) than in both male groups (τ3 = 7.48, SE = 
0.50). In the sixth step the factor mean of the males in both conditions is restricted to be 
equal. This does not result in a worsening in model fit. In this last step, the factor mean of 
the female group is significantly lower than that of the male group: α = 2.70, SE = 1.28, Z 
= 2.11, p< .05. However, because of the two freely estimated intercepts, this factor mean 
difference is actually a significance test of the difference between males and females on the 
Math Persistence test.  
 
Table 3.5 
Fit measures of steps towards strict factorial invariance (Study 2) 
Step Restrictions DF χ2  p ∆DF ∆χ2  p RMSEA CFI  
1 - 0  0 1.000 - - -  0.000 1.000 
2 Λ 4  2.74 0.602 4  2.74 0.602  0.000 1.000 
3 Λ,Θ 10  5.87 0.826 6  3.13 0.792  0.000 1.000 
4 Λ,Θ, Ψcon 11  6.40 0.846 1  0.53 0.467  0.000 1.000 
5 Λ,Θ, τ, Ψcon 15 22.78 0.089 4 16.38** 0.003  0.113 0.896 
5a Λ,Θ, τ1, Ψcon 14 12.42 0.572 (-) 1 10.36** 0.001  0.000 1.000 
5b Λ,Θ, τ1,2, Ψcon 13  6.66 0.919 (-) 1  5.76* 0.016  0.000 1.000 
6 Λ,Θ, τ1,2, Ψcon, αcon 14  7.02 0.934 1  0.36 0.549  0.000 1.000 

Note: Underlined restrictions are tested by likelihood ratio test ∆χ2. *p<0.05; **p<0.01; (-): Parameter freely 
estimated; 1: Intercept Difficult subtest in women, stereotype threat; 2: Intercept Easy subtest, women, stereotype 
threat 
 

Conclusion 
 The re-analysis of O'Brien & Crandall's data demonstrated one drawback of the 
current modeling approach. Because of the platykurtotic distribution of test scores, and the 
negative correlation between tests in the female group, control condition, this group had to 
be excluded from the test for measurement invariance. Nevertheless, the factor analysis 
approach remained feasible. Even without the possibility to compare the female group in 
the stereotype threat condition to a female group without such threat effects (i.e., in the 
control condition), we were able to establish that test scores of males and females were 
incomparable. It became apparent that intercepts were not invariant across groups, and that 
strict factorial invariance was violated due to stereotype threat. Suppose that these data 
would have been non-experimental data, stemming from a real-life, or even a high-stakes, 
test setting. Even then, a test for strict factorial invariance would have pointed towards the 
measurement bias with respect to sex. The re-analysis of these data illustrates our point that 
because of their nature, stereotype threat effects are detectable in principle by means of 
tests for measurement invariance. 
 Of course, O'Brien and Crandall (2003) especially selected their math tests to show 
this pattern of effects. However, their study can contribute to future studies into stereotype 
threat effects within real-life test settings. A careful selection of easy and more difficult 
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tests, together with the current modeling approach, enables one to investigate the existence 
of stereotype threat effects on test performance. In sum, the results of the current re-
analysis are clearly in line with the results of analysis of variance by O'Brien and Crandall 
(2003). Moreover, the current results support the notion that whenever stereotype threat 
affects test performance on a collection of tests, it does so in a way incompatible with the 
requirements for measurement invariance within the common factor model. 
 One drawback of the first two studies is the small number of subtests. In Study 3, 
we use a test battery consisting of four subtests measuring arithmetic/mathematic ability. 
In addition, we want to investigate strict factorial invariance in three conditions that differ 
with respect to stereotype threat related to female test takers: a control condition with no 
explicit reference to sex differences, a nullified condition in which gender stereotype was 
made irrelevant to the test, and a stereotype threat condition with explicit mention of sex 
differences. The latter condition is interesting because it has well-known negative effects on 
female test performance, while male test performance is often enhanced (i.e., a stereotype 
lift effect; Walton & Cohen, 2003). We expected that both this negative and this positive 
effect would result in measurement bias. The comparison with regard to strict factorial of 
three conditions that differ in stereotype threat, enables one to find a test setting where 
stereotype threat is absent, and where test scores of males and females are comparable. 
 
3.8 Study 3: Sex Differences in Arithmetic Test Performance 

 
The first aim of this third study is to replicate the effects of stereotype threat on 

women’s test scores on a collection of arithmetic/mathematic ability tests in a sample of 
psychology undergraduates in the Netherlands. The second aim is to investigate whether 
tests for measurement invariance using MGCFA can successfully differentiate between 
conditions, in which stereotype threat is manipulated. To this end, we administered an 
arithmetic test battery to males and females, varied the amount of stereotype threat for 
females over conditions, and tested for strict factorial invariance with respect to groups. 

 
Method 

Participants 
Two hundred and eighty-three undergraduate psychology students of the 

University of Amsterdam participated as part of course requirements.25 On average, the 142 
females were slightly younger (age: M = 20.40, SD = 3.76) than the 141 males (M = 21.64, 
SD = 4.97). The sample is highly educated, but not especially selected for good 
arithmetic/mathematic skills. The sample is expected to be heterogeneous with respect to 
identification with the arithmetic/mathematical domain.  
Design and Procedure 
 An arithmetic test battery was administered by computer during two large mixed-
sex group sessions. Participants were randomly assigned by the computer to one of three 
conditions, in which the introduction texts were used to manipulate the amount of 
stereotype threat. All three texts started by mentioning that the test of arithmetic ability 

                                                 
25 Due to computer failure, three additional participants, one male and two females, were excluded from the analyses. 
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contained four timed subtests. The three versions differed with respect to the next section 
in the instruction text. In the control condition, meant to resemble the usual testing 
circumstances, no mention was made of sex differences. In the nullified condition, on the 
other hand, the instruction read (translated from Dutch): “Although on many arithmetic 
tests sex differences have been found, previous research has shown that on this arithmetic 
test, females achieve as well as males. Mean scores of males and females on the four 
subtests are equal.” This nullified condition was created to make the gender-stereotype 
irrelevant for the test that participants were making, thereby hopefully reducing the effects 
of stereotype threat on females (cf. Brown & Pinel, 2003; O'Brien & Crandall, 2003; Smith 
& White, 2002; Spencer et al., 1999). In the stereotype threat condition the text was 
changed to (translated from Dutch): “Previous research has shown that females and males 
score differently on this arithmetic test. On the average females score lower than males on 
all four subtests.” This instruction text was meant to increase stereotype threat for female 
test-takers in the stereotype threat condition. (cf. Keller, 2002; O'Brien & Crandall, 2003; 
Spencer et al., 1999). After this manipulation, the participants completed the four subtests. 
Each subtest consisted of a page with a specific instruction, an example item, and a test 
page containing the test items. The computer automatically stopped the subtests when the 
allocated test period had passed. Total test time was 21 minutes. After the test session, all 
participants were debriefed extensively on the purpose of the experiment. 
Materials 
 We used a selection of subtests that measure arithmetic/mathematical proficiency. 
The four subtests differ in form and difficulty level, but are nevertheless expected to 
measure one single trait, which we henceforth denote by arithmetic ability. In order of 
presentation, these subtests are: Arithmetic, Number Series, Worded Problems, and Sums. 
 The Arithmetic test is a timed test of three minutes containing 40 items that stem 
from an arithmetic ability test by Elshout (1976). The latter test is part of the standard test 
program of psychology undergraduates at the University of Amsterdam. The original test 
has high internal consistency and validity (Vorst & Zand Scholten, 2000). The items have 
an open-ended answer format, for example: “43 x 6 =”. 
 The Number Series test is a test developed to be parallel to the Number Series Test 
by Elshout (1976). The latter test is also part of the standard test program of the 
Psychology Department, and has high internal consistency and validity (Elshout, 1976; 
Vorst & Zand Scholten, 2000). The test used in the current study contains 20 items in a 
five-option multiple-choice format and has a time limit of six minutes. Example item: “-12 
–11 –8 –3   4  ... (options: 7 12 13 15 9)”. 
 The Worded Problems test has a time limit of four minutes, and contains 23 worded 
arithmetic problems. This test is based on the Arithmetic subtest of the WAIS-Dutch 
edition (Stinissen, Willems, Coetsier, & Hulsman, 1970), and contains some additional and 
comparable items from the CMS test by Elshout (1976). All items have an open-ended 
answer format, and were adapted to increase difficulty. Example item: "Someone has a loan 
at a 5% interest rate per year. After three years he has paid 225 Euros interest. What is his 
debt in Euros?". 

The Sums test is the numerical ability test of the Primary Mental Abilities (T. G. 
Thurstone, 1958, 1962). It contains 60 items and was administered with a (adapted) time 
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limit of 5 minutes. The respondents are required to indicate whether a sum is correct or 
incorrect. E.g., “13 + 39 + 99 + 32 = 183”. To correct for guessing on this subtest, the 
total score is computed by subtracting half the number of incorrect responses from the 
number of correct responses. 

Although speediness increases the difficulty of all subtests, the items themselves are 
fairly easy to solve. The Number Series subtest is the most difficult in terms of abstractness 
and item difficulty. We therefore expected that stereotype threat would particularly affect 
scores on this subtest. 
Analyses 

Again, we also provide to results of a two-way MANOVA with sex and condition 
(3 levels) as factors and the four tests as dependent variables. Based on research in previous 
cohorts of psychology undergraduates (e.g., Vorst & Zand Scholten, 2000), we anticipated 
that males would outscore the females on all subtests. We expected that the instruction 
texts would particularly influence female test performance. Specifically, we expected that 
females in the nullified condition would outscore the females in the control and stereotype 
threat conditions. In addition, we predicted females in the stereotype threat condition to 
score lowest of all groups. We expected no negative effects for males, although stereotype 
lift effects (Walton & Cohen, 2003), could conceivably provide a pattern of mean 
differences for the males opposite to those of females.  

As the four subtests were expected to load on a general arithmetic ability factor, we 
fitted a single common factor model in the confirmatory factor analyses. We again follow 
the stepwise approach given in Table 3.1, this time involving six groups. We expected to 
find measurement bias for females in the stereotype threat condition. This should result in 
the rejection of strict factorial invariance, particularly due to the induced bias in the 
relatively difficult Number Series subtest. Whether strict factorial invariance with respect to 
sex is tenable in the control and nullified conditions depends on the degree of stereotype 
threat. However, we expected the degree of measurement bias to be greatest in the 
stereotype threat condition.  

 
Results 

With two exceptions (i.e., Arithmetic subtest for males in control and stereotype 
threat conditions), univariate skewness and kurtosis values are moderate ([-1,1]), suggesting 
univariate normality of most subtests in most of the cells. Therefore, use of Maximum 
Likelihood in estimating the factor models seems appropriate. Means and standard 
deviations of the subtests for males and females in the three conditions are given in Table 
3.6. The Box test shows that homogeneity of covariance matrices across conditions is 
rejected (F(50, 139810) = 1.748, p< .01). Levene’s tests for equal variances across 
conditions show significant values for Arithmetic (F(5, 277) = 4.683, p< .001) and Number 
Series (F(5, 277) = 4.619, p< .001), but non-significant values for the other two subtests. 
Assuming robustness to this violation of (co)variance homogeneity, we continue with the 
MANOVA. The multivariate sex main effect is associated with a significant F-value (F(4, 
274) = 7.351, p< .001). The univariate analyses of variance show significant sex main 
effects on all subtests (Arithmetic: F(1, 277) = 12.89, p< .001; Number Series: F(1, 277) = 
25.79, p< .001; Worded Problems: F(1, 277) = 19.58, p< .001; Sums: F(1, 277) = 5.43, p< 
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.05), with males outscoring the females on all subtests. Furthermore, compared to the 
nullified and control conditions, there is a clear trend for females in the stereotype threat 
condition to score lower. For the males, the picture is less clear, with highest scores in 
conditions depending on the subtest used. The multivariate main effect of condition does 
not reach significance (F(8, 548) = 1.708, p > 0.05). Most importantly, the multivariate 
interaction of condition and sex is significant: F(8, 548) = 2.366, p < 0.05. None of the 
univariate condition main effects reach significance (All Ps > .10). As expected, the only 
significant univariate interaction effect between sex and condition is found on the Number 
Series subtest: F(2, 277) = 4.32, p< .05. Within the female group, the simple effect for 
condition is significant (F(2, 139) = 7.29, p< .01). Paired comparisons show that females in 
the stereotype threat condition scored significantly lower than females in the control 
condition (p< .01), and significantly lower than females in the nullified condition (p< .05), 
but that female scores did not differ significantly between nullified and control conditions 
(p> .50). Although male scores on the Number Series subtest are highest in the stereotype 
threat condition, the condition simple effect for males did not reach significance (F(2, 138) 
= 0.48, p> .50), nor did any of the paired comparisons for males (all Ps > .50). In other 
words, the stereotype lift effect for males did not reach significance using the traditional 
analysis of variance approach. To summarize, these ANOVA results indicate a clear 
suppression of scores on the Number Series subtest for females in the stereotype threat 
condition.  

 
Table 3.6 
Means and standard deviations of subtests per sex and condition (Study 3) 
       Condition   
 Control  Nullified  Stereotype Threat 
 Males Females  Males Females  Males Females 

N = 46  48   50  47   45  47  
Subtest M                                                                                                                                                                                                                                   SD M SD  M SD M SD  M SD M SD 
Arith-
metic 13.28 7.46 10.23 4.62 

 
14.18 7.78 11.70 3.53 

 
12.20 5.53 9.96 6.16 

Number 
Series 8.52 3.74 7.60 2.86 

 
8.56 4.36 7.11 2.66 

 
9.22 3.33 5.62 2.35 

Worded 
Probl. 8.39 3.43 6.40 2.80 

 
7.60 3.09 6.72 2.32 

 
7.44 2.88 5.74 2.72 

 
Sums 12.90 5.92 11.55 5.14 

 
13.14 5.86 11.21 4.66 

 
12.97 5.11 11.81 5.18 

 
Results of factor analyses in the six groups are reported in Table 3.7. In the first 

step we assessed the fit of the one-factor model, which is acceptable. The second step does 
not result in a significant increase in chi-square. Therefore, factor loadings appear invariant 
over the six groups. The restriction on residual variances in the third step results in a clear 
deterioration in model fit. The largest modification indices are found in the male group, 
nullified condition, and are related to the residual variance of the Number Series subtest 
(MI = 23) and of the Arithmetic subtest (MI = 18). Furthermore, the residual variance of 
the Arithmetic test in the females in the stereotype threat condition is also partly 
responsible for misfit (MI = 13). Freeing these three parameters in a stepwise fashion 
(Steps 3a, 3b, 3c) results in clear improvements in model fit. These freely estimated residual 
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variances are larger in the corresponding groups than in the other groups. In the fourth 
step, the factor variances of the male group and of the female group are restricted to be 
equal over conditions. This results in a slight, but non-significant, increase in chi-square. 
Considering the perfect values of RMSEA and CFI in Step 4, we conclude that factor 
variances of the sex groups are invariant over conditions. The factor variance of the female 
group is smaller (ψ = 15.08, SE = 2.47) than the factor variance of the male group (ψ = 
38.09, SE = 5.56).  
 
Table 3.7 
Fit measures of steps towards strict factorial invariance (Study 3) 
Step Restrictions DF χ2  p ∆DF ∆χ2  p  

RMSEA 
CFI  

1 - 12  9.61 0.650 - - -  0.000 1.000 
2 Λ 27 18.39 0.891 15  8.78 0.889  0.000 1.000 
3 Λ,Θ 47 64.17* 0.049 20 45.78** 0.001  0.099 0.967 
3a Λ,Θ1 46 47.18 0.424 (-) 1 16.99** 0.000  0.031 0.998 
3b Λ,Θ1,2 45 36.74 0.805 (-) 1 10.44** 0.001  0.000 1.000 
3c Λ,Θ1,2,3 44 26.00 0.986 (-) 1 10.74** 0.001  0.000 1.000 
4 Λ,Θ1,2,3, Ψcon 48 35.39 0.912 4  9.39 0.052  0.000 1.000 
5 Λ,Θ1,2,3, τ, Ψcon 63 76.73 0.115 15 41.34** 0.000  0.072 0.973 
5a Λ,Θ1,2,3, τ4, Ψcon 62 63.99 0.407 (-) 1 12.74** 0.000  0.040 0.996 
5b Λ,Θ1,2,3, τ4,5, Ψcon 61 55.19 0.685 (-) 1  8.80** 0.003  0.000 1.000 
6 Λ,Θ1,2,3, τ4,5, Ψcon, αcon 65 59.12 0.682 4  3.93 0.416  0.000 1.000 
Note: Underlined restrictions are tested by likelihood ratio test ∆χ2. * p<0.05; **p<0.01; (-): Parameter freely 
estimated; 1: res.var. Number Series, Males, Nullified; 2: res.var. Arithmetic, Males, Nullified; 3: res.var. Arithmetic 
females, stereotype threat; 4: intercept Number Series, Females, stereotype threat; 5: intercept Number Series, Males, 
stereotype threat 

 
Considering the mean effects that we found by means of the MANOVA, one 

would expect intercept differences across groups. In the fifth step the intercepts are 
restricted to be invariant across groups. This clearly results in a deterioration in model fit, 
with a highly significant increase in chi-square, worsening in RMSEA, and drop in CFI. 
Inspection of the modification indices shows that this restriction is untenable because of 
the intercept of the Number Series subtest in the stereotype threat condition in both sex 
groups (females: MI = 12; males: MI = 8). Indeed, freeing both parameters results in clear 
improvement in model fit (i.e., Steps 5a and 5b). As expected, the intercept of this difficult 
subtest is lower in the female group in the stereotype threat condition (τ2 = 5.92, SE = 
0.45), than in the groups in the other conditions (τ2 = 7.19, SE = 0.31). In the male group 
under stereotype threat this intercept is higher (τ2 = 8.40, SE = 0.45), thus nicely reflecting 
the stereotype lift effect on this relatively difficult subtest. In the sixth step, factor means of 
each sex group are restricted to be equal over conditions. This restriction appears tenable. 
The factor mean of the male groups is significantly higher than the factor mean of the 
female groups (α = 2.61, SE = 0.67, Z = 3.92, p< .001). In terms of the pooled within-
group standard deviation units of the latent factor, this difference in latent ability has an 
effect size of 0.52. 
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The current stepwise approach has the risk of path-dependence, in the sense that 
the results of later restrictions (i.e., steps in the lower part of Table 3.1) may depend on the 
particular parameters, which were freed in previous steps because of high modification 
indices. In addition, within a particular test setting one would normally test for strict 
factorial invariance with respect to the existing groups. Therefore, both as an illustration, 
and as a check, we also report tests for strict factorial invariance with respect to sex within 
each of the three conditions. This enables us to investigate whether these tests can 
differentiate between situations (i.e., conditions) in which stereotype threat is, or is not, 
present. Note that in this situation it does not make sense to restrict factor variances and 
factor means, thus Steps 4 and 6 are skipped. The results of the tests per condition are 
reported in Table 3.8. As can be seen, in the control condition, restricting factor loadings, 
residual variances, and intercepts does not result in a worsening in model fit. In this 
condition strict factorial invariance with respect to sex is clearly tenable. Test scores of 
males and females in this condition are therefore comparable, and sex differences in test 
performance can be explained by differences in factor mean (α = 3.16, SE = 1.28, Z = 2.47, 
p< .01). This sex difference in factor mean has an effect size of 0.55, which is comparable 
to the effect size estimate in the six-group analysis. 
 
Table 3.8 
Fit measures of stepwise test of strict factorial invariance over sex per condition (Study 3) 
Step Restrictions DF χ2  p ∆DF     ∆χ2  p RMSEA CFI  

Control condition 
1 -  4  2.33 0.675   -  0.000 1.000 
2 Λ  7  4.72 0.694 3 2.39 0.495  0.000 1.000 
3 Λ,Θ 11  6.39 0.846 4 1.67 0.796  0.000 1.000 
5 Λ,Θ, τ 14 10.03 0.760 3 3.64 0.303  0.000 1.000 

Nullified condition 
1 -  4  2.56 0.634     0.000 1.000 
2 Λ  7  5.04 0.655 3 2.48 0.479  0.000 1.000 
3 Λ,Θ 11 18.69 0.067 4 13.65** 0.009  0.104 0.946 
5 Λ,Θ, τ 14 19.42 0.150 3 0.73 0.866  0.071 0.962 

Stereotype threat condition 
1 -  4  4.72 0.317     0.063 0.996 
2 Λ  7  7.23 0.406 3 2.51 0.473  0.000 0.999 
3 Λ,Θ 11 17.89 0.084 4 10.66* 0.031  0.113 0.958 
5 Λ,Θ, τ 14 40.31** 0.000 3 22.42** 0.000  0.197 0.839 

Note: Underlined restrictions are tested by likelihood ratio test ∆χ2. *p<.05; **p<.01; Restrictions: equality 
constraints over sex-group 

 
In the nullified condition, restricting the residual variances leads to a clear 

deterioration in fit, as is evident by the significant chi-square difference between Steps 3 
and 2, increased RMSEA, and lowered CFI. With the added restriction on intercepts, 
model fit does not appear to worsen any further, indicating that the mean-structure is sex-
invariant. The largest modification indices are related to the residual variances of the 
Arithmetic and the Number Series subtests.  

In the condition in which the gender-stereotype was activated, we see that the 
baseline model (Step 1) shows sufficient fit, although RMSEA is somewhat large (i.e., 
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RMSEA > .06). Here, again, the restriction on factor loadings is not accompanied by any 
substantial worsening in model fit. In the third step, in which residual variances are 
restricted to be sex-invariant, the fit does deteriorate. However, the clearest deterioration in 
model fit is found when mean structure is modeled (Step 5). All fit measures show that 
strict factorial invariance is untenable in this condition. As expected, the largest 
modification indices are found with the intercept of the Number Series subtest and the 
residual variance of the Arithmetic subtest.  

 
Conclusion 

 The MANOVA results indicate that stereotype threat affected the arithmetic test 
scores of the male and female groups in a differential manner. As expected, the clearest 
effect of stereotype threat was found on the difficult Number Series subtest. Females 
clearly underperformed on this subtest when they were reminded of the gender stereotype 
that females perform less well than males on arithmetic ability tests. This corroborates the 
typical result that stereotype threat negatively affects math performance of female test 
takers on difficult tests (e.g., Spencer et al., 1999). 
 The factor analyses showed that strict factorial invariance over sex clearly failed in 
the stereotype threat condition. Specifically, stereotype threat resulted in bias with respect 
to sex in the Number Series subtest. In the nullified condition we saw that residual 
variances were larger in the male group, indicating the presence of slight measurement bias 
with respect to males. Perhaps this is because the instruction text had a sort of stereotype 
threat effect on these males. Therefore, the instruction text (falsely) stressing the absence of 
sex differences appears not to create ideal test circumstances for males. In the control 
condition, strict factorial invariance with respect to sex was tenable. Thus, in that condition, 
test scores of males and females are comparable, and sex differences in test scores can be 
interpreted in terms of differences in the latent construct.  
 In contrast with several studies conducted in the US (Ben Zeev, Fein, & Inzlicht, 
2005; Smith & White, 2002; Spencer et al., 1999), we did not find a significant mean 
difference on female math performance between control and nullified conditions. This may 
be due to a difference in test setting. In the majority of American studies participants were 
tested alone as opposed to in large mixed-sex groups. Such differences in setting are known 
to affect the strength of stereotype threat (Inzlicht & Ben Zeev, 2003; Sekaquaptewa & 
Thompson, 2003). Alternatively, gender stereotypes may be less strong in the Netherlands.  
 When test takers were reminded of gender stereotypes concerning math ability, this 
resulted in stereotype threat negatively affecting female performance and in stereotype lift 
positively affecting male performance. Interestingly, this stereotype lift effect did not reach 
significance in the MANOVA analysis, but was clearly detected using MGCFA. In sum, the 
results of the MGCFA analyses clearly indicate that tests for strict factorial invariance are 
capable of determining whether or not stereotype threat plays a role in a particular test-
situation. 
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3.9 General Discussion 

 
There is a large and still-growing body of research that supports the notion that 

stereotype threat can negatively affect test performance in stigmatized groups (Steele et al., 
2002). The magnitude of these negative effects is often investigated in laboratory 
experiments, in which stereotype threat can be manipulated. However, such research within 
real-life settings is difficult for ethical and logistical reasons (Sackett, 2003; Steele & Davies, 
2003; Steele et al., 2002). Nevertheless, viewing and modeling stereotype threat effects as a 
source of measurement bias, the seriousness of stereotype threat for the comparability of 
groups can be investigated by testing for measurement invariance with respect to groups, 
regardless type of group, test setting, or test under investigation, provided, of course, that a 
reasonable factor structure is tenable. 

 
Stereotype Threat as a Biasing Variable 

Measurement invariance with respect to groups is an essential aspect for 
interpreting group differences in scores of any kind of psychological measurement. Tests 
for measurement invariance enable one to differentiate between group differences in the 
latent constructs that a certain test is supposed to measure (i.e., real ability differences), and 
measurement artifacts related to group membership. We view stereotype threat as a source 
of measurement bias. Surely, no one would suggest that stereotype threat affects real (i.e., 
latent) abilities, at least not in the short term. Instead, stereotype threat affects the 
measurements of ability, and this is precisely what tests of measurement invariance are 
designed to investigate. Formally, if measurement invariance holds, and one conditions on 
latent ability, there should be, by definition, no group differences in (manifest) test scores. 
This is clearly not the case if stereotype threat lowers scores of members of a group that is 
subject to negative ability stereotypes. Therefore, measurement invariance is expected to be 
violated if stereotype threat differentially affects test scores of groups. Note that the same 
applies to stereotype lift effects (Walton & Cohen, 2003) and priming effects on test scores 
(e.g., Wheeler & Petty, 2001). For instance, in Study 3 we saw that the stereotype lift effect 
of males on the difficult subtest resulted in a heightening in the measurement intercept of 
this subtest. Moreover, the enhanced performance of females on the Easy test due to 
stereotype threat in Study 2 was also clearly detected.  

Recent studies into the mediating variables of stereotype threat effects have shown 
that stereotype threat negatively affects working memory capacity (Schmader & Johns, 
2003) or increases disruptive mental load (Croizet et al., 2004). This research suggests that 
the mediatory principle underlying stereotype threat effects has a strong relation to the 
construct of intelligence. If indeed stereotype threat affects test performance through the 
construct, this could result in stereotype threat effects that are completely collinear with the 
subtests' factor loadings. In that case, the relative strength of stereotype threat effects on 
each subtest correlates perfectly with the relation of each subtest with the construct. If this 
occurs, stereotype threat effects could conceivably be accompanied by measurement 
invariance with respect to groups. However, constructs such as intelligence and mathematic 
ability are stable characteristics, and stereotype threat effects are presumably short-lived 
effects, depending on factors such as test difficulty (e.g., O'Brien & Crandall, 2003; Spencer 
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et al., 1999). Furthermore, stereotype threat effects are often highly task-specific. For 
instance, Seibt and Förster (2004) found that stereotype threat leads to a more cautious and 
less risky test-taking style (i.e., prevention focus) the effects of which depend on whether a 
particular task is speeded or not, or whether a task demands creative or analytical thinking 
(cf. Quinn & Spencer, 2001). In light of such task-specificity, we view stereotype threat 
effects as test artifacts, resulting in measurement bias. Steele appears to subscribe to this 
view when he states that "stereotype threat effects may be a possible source of bias in standardized tests" 
(Steele, 1997, p. 622). It is an empirical question whether stereotype threat effects could 
ever be accompanied by measurement invariance. However, the results of the studies 
reported here lend support to the conceptualization of stereotype threat effects as a source 
of measurement bias.  

It should be noted that within our empirical examples sample sizes are rather small. 
The power to find subtle group differences in model parameters may therefore be low. 
Nevertheless, the fact that bias was clearly detected in our studies indicates that MGCFA is 
a powerful tool in detecting measurement bias (cf. Cheung & Rensvold, 2002; Meade & 
Lautenschlager, 2004), even if these effects are only present at the covariance level (Study 
1). In light of the fact that measurement invariance is basically a null hypothesis 
(Borsboom, 2006b), the failure to reject measurement invariance may always be due to a 
lack of power. Fortunately, power studies within MGCFA can be conducted readily (Saris 
& Satorra, 1993).  

 
Using MGCFA in Experiments 

Our results show that multi-group confirmatory factor analysis provides a fruitful 
means to investigate stereotype threat effects. It is unfortunate that many investigators do 
not go beyond mean differences as tested by analysis of variance or ANOVA in analyzing 
experimental data. Variance and covariance differences are a potential source of 
information. For instance, the absence of an increase in residual variance of the affected 
subtests in Study 2, suggests that the stereotype threat effect did not vary over women (see 
Appendix B, scenario 1). The effect of stereotype threat on the factor loading in the 
minority group in Study 1, suggests that the stereotype threat effects interacted with latent 
ability (see Appendix B, scenario 3). Moreover, MGCFA allows for more specific tests of 
experimental effects thereby increasing power. For example, the stereotype lift effect for 
males in Study 3 did not reach significance in the MANOVA framework, yet with MGCFA 
the corresponding intercept differed significantly from those in the other groups. If 
possible, the use of a measurement model such as multi-group confirmatory factor analysis 
should be preferred to analysis of variance. Moreover, the use of measurement models can 
add to our understanding of stereotype threat effects.  

Many recent stereotype threat studies are aimed at identifying the mediating factor 
underlying its effects on test performance (see, e.g., Smith, 2004 for an overview). The 
current modeling framework may greatly contribute to this exercise, because mediators 
such as anxiety (e.g., Ben Zeev et al., 2005), working memory capacity (Schmader & Johns, 
2003), and regulatory focus (Seibt & Förster, 2004) can be measured. Such measured 
mediators as well as many conceivable moderators (e.g., domain identification; Smith & 
White, 2001) may be incorporated in the model in a way that may eventually capture the 



STEREOTYPE THREAT AND MEASUREMENT INVARIANCE                                                  67 

 

"stereotype threat factor" as displayed in Figures 2 through 4. Lubke and colleagues (2003a) 
discuss the incorporation of covariates in the MGCFA framework. When studying 
mediators, this method boils down to extending the factor model by adding factors, which 
are believed to be responsible for the depressing effect of stereotype threat. For instance, 
one may measure arousal (e.g., Ben Zeev et al., 2005), add to the factor model an arousal 
factor (besides the ability factor), and see whether this arousal factor shows an increase in 
factor mean (or variance) under stereotype threat. Then, in a model that takes into account 
latent ability, one can test whether the stereotype threat effect on test performance is 
mediated by arousal. Moreover, one can compare various alternative models statistically, 
such as whether arousal also affects the ability factor, whether arousal fully mediates the 
effect, whether arousal interacts with ability, etc. In comparison to traditional approaches 
of studying mediation (e.g., Baron & Kenny, 1986), the advantage of using MGCFA lies in 
the fact that MGCFA allows for a differentiation between effects on measurements of 
ability and effects on ability itself. This distinction is of substantive interest and may have 
consequences for statistical power, which is often an issue in mediation analysis (cf. 
MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). The flexibility of the common 
factor model and structural equation modeling in general to incorporate many factors, 
mediators, and moderators in a linear or nonlinear fashion, opens many doors that can 
contribute to our understanding of stereotype threat.  

 
Understanding Measurement Bias 

Of course, measurement bias may have many causes besides stereotype threat. It is 
important to stress that the broad definition of measurement invariance does not suppose 
anything about the possible causes of measurement bias. Unfortunately, measurement bias 
has been, and still is, mostly interpreted incorrectly in terms of item content. For instance, a 
test item could contain a concept (e.g., a football term such as "40-yard line") that is less 
known to one group (say, women), resulting in increased difficulty of that item for that 
particular group. However, measurement bias is not a fixed characteristic of a certain test or 
test item, but a characteristic of how test scores relate to the construct that a test is supposed 
to measure. Although item content may be used to interpret the causes of measurement bias, 
the latter may be due to characteristics of test settings. Therefore, stereotype threat theory 
provides a better understanding of why measurement bias occurs. Unfortunately, the use of 
bias detection methods is rarely accompanied by theoretical expectations regarding why and 
how measurement bias occurs (but see Oort, 1992). Needless to say, understanding the 
sources of measurement bias can increase the chances of measurement bias being detected, 
either when bias is studied by MGCFA, or when bias is studied by item response models. 

 
Stereotype Threat and Item Response Modeling 

As we saw in our three studies, within multi-group confirmatory factor analysis, the 
effects of stereotype threat are particularly evident in the performance on the more difficult 
subtests. This differential aspect of stereotype threat is also relevant to the study of 
measurement invariance within the framework of item response theory, where item 
difficulty is modeled explicitly. The item level can be very informative in investigating 
stereotype threat effects, particularly when these are viewed as sources of measurement 
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bias. Within item response theory, several methods have been developed to investigate 
measurement bias, which in this respect is usually denoted by Differential Item Functioning 
or DIF (see Millsap & Everson, 1993). If only difficult items are subject to the interference 
of stereotype threat, this implies that easy items should be hardly affected (e.g., Spencer et 
al., 1999). This enables one to use easy items of tests for conditioning in testing for 
measurement bias with respect to stigmatized groups. In addition, only the complex or 
difficult items in a test would show bias in the presence of stereotype threat. Therefore, 
DIF analyses can also be used to investigate the effects of stereotype threat on test scores 
in real-life settings. In this respect recent results of a study into DIF with respect to sex on 
the SAT-m are of interest. Bielinski and Davison (1998; 2001) found that particularly 
difficult items are biased with respect to sex, which is consistent with the idea that 
stereotype threat has depressed scores of females on this test.  

 
Generalizability 

The generality of stereotype threat effects on test performance in real-life settings is 
an important issue. The number of studies investigating strict factorial invariance with 
respect to ethnic groups is rather small (but see Dolan, 2000; Dolan & Hamaker, 2001; 
Dolan et al., 2004). Clearly, there is a need for more research in this topic. If a certain test 
score gap is accompanied by measurement invariance (and power is not an issue), 
stereotype threat is not likely to play a differential role in those particular group differences. 
If, on the other hand, strict factorial invariance with respect to groups is violated, 
stereotype threat is one of the probable causes of measurement bias. Then, measures of 
mediators or moderators of stereotype threat could be used to model the sources of 
measurement bias (Lubke et al., 2003a). 

As argued by Steele and colleagues (Steele et al., 2002), it depends on the test 
situation, domain-identification of a person, the content of the stereotype, and the kind of 
test, whether stereotype threat has an effect on test performance. We argue that its effects 
are detectable by means of tests for measurement invariance, regardless of test situation. 
Clearly, tests for measurement invariance can be useful to investigate the seriousness of 
stereotype threat on test performance, particularly in high-stakes test situations. We hope 
that by using the current modeling approach within an experimental context we can bridge 
the gap between differential psychology (with its interest in individual differences) and 
experimental psychology (with its interest in experimental effects), in order to gain a better 
understanding of when individual abilities are correctly reflected in test scores, and when 
they are not (cf. Cronbach, 1957).  
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3.10 Appendix A: General Formulation MGCFA Model 

 
 Let ijy denote the observed p-dimensional random column vector of subject j in 

group (or experimental condition) i. We specify the following linear factor model for
ijy : 

  
ijijiiijy εητ +Λ+=       (5) 

where 
ijη is a q-dimensional random vector of correlated common factor scores (q<p), and 

ijε is a p-dimensional vector of residuals that contain both random error and unique 

measurement effects (Meredith, 1993). The (p x q) matrix ΛΛΛΛi contains factor loadings, and 
the (p x 1) matrix τi contains measurement intercepts. It is generally assumed that εij is p-
variate normally distributed with zero means and a diagonal covariance matrix ΘΘΘΘi, i.e., 
residual terms are mutually uncorrelated. Furthermore, the vector 

ijη  is assumed to be q-

variate normally distributed with mean αi and a (q x q) positive definite covariance matrix 
ΨΨΨΨi. In addition, ijη  and 

ijε  are assumed to be uncorrelated. Given these assumptions, the 

observed variables are normally distributed ( )iipij Ny Σ,~ µ , where,  

  
iiii ατµ Λ+=  ,       (6) 

  
i

t

iiii Θ+ΛΨΛ=Σ ,      (7) 

where the superscript t denotes transposition. Equations 6 and 7 represent the implied 
mean vector and implied covariance matrix, respectively. In case of several correlated 
common factors, a sufficient number of elements in Λi should be fixed to zero to avoid 
rotational indeterminacy (Bollen, 1989; Jöreskog, 1971). In the same matrix Λi, q elements 
should be fixed to equal 1 to identify the variances of the common factors. Similarly, for 
reasons of identification, latent group differences in means instead of latent means 
themselves are modeled (Sörbom, 1974). 
 

3.11 Appendix B 

 
 Here we present three scenarios where measurement bias due to stereotype threat 
(ST) is present. We use the one factor model presented in Equations 2 - 4 and the 
assumptions given above. We assume the presence of an unmeasured ST factor that 
incorporates all the mediating variables of ST. The scores on this ST factor are represented 
by σ. We assume that ST effects are uncorrelated with latent ability (i.e., Cov(η, σ) = 0). For 
clarity, we leave out person and group indices and restrict our attention to the group that is 
affected by ST (i.e., stigmatized group). Our aim is to highlight the effects of ST on the 
measurement parameters of the manifest variables. For an extensive discussion of the 
implications of strict factorial invariance, see Lubke et al. (2003b).  
 
Scenario 1. ST Effects on Subtest L (Figure 3.2) 

Let Yl denote the scores on a biased subtest L, and let Yk denote the scores on a 
subtest K that is not affected by ST. In that case, the linear model for Yk is given by:  

 Yk  = τk + λkηη + εk,        (8) 
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where λkη represents the factor loading of Yk on the latent ability factor η. The linear model 
for Yl (i.e., scores on the affected subtest) is given by:  

 Yl  = τl + λlηη + λlσσ + εl,       (9) 
where λlσ denotes the factor loading of Yl on the ST factor. Note that λlσ has a negative 
value by definition, indicating the debilitating effect of ST on test performance on subtest 
L. From this model, one can derive (see, e.g., Bollen, 1989) the following expressions for 
the implied variance (Var), and the expected value (E) of the affected subtest scores Yl, as 
well as the implied covariance (Cov) of Yl with the unaffected scores Yk: 
  Var(Yk) = λ2kηVar(η) + Var(εk),                         (10) 

 Var(Yl) = λ2lηVar(η) + λ2lσVar(σ) + Var(εl),                       (11) 
 Cov(Yk,Yl)= λkηλlηVar(η),                        (12) 
 E(Yk) = τk + λkηE(η),                          (13) 
 E(Yl) = τl + λlηE(η) + λlσE(σ),                        (14) 

where E(σ) is greater than 0. Because the effects of ST (i.e., σ) are unknown and not 
modeled, the effects of the ST factor on Yl are incorporated in the measurement 
parameters of this subtest on the latent factor (η). This leads to measurement bias in the 
corresponding parameters. The residual variance of the affected subtest is larger in the 
stigmatized group due to the added variance of ST: Var(εl)* = λ2lσVar(σ) + Var(εl). In 
addition, the intercept (τl) in the stigmatized group would be lower due to the ST effects: τl* 
= τl + λlσE(σ), reflecting increased difficulty and lowered scores of the affected subtest. 
Note that, since the covariance between the scores on the affected subtest and the scores 
on any unaffected subtest (such as Yk) is unrelated to σ, the factor loading of the biased 
subtest L (i.e., λlη) remains unchanged. In homogeneous samples, ST effects may not vary 
over persons (i.e., Var(σ) = 0). This would result in the absence of added variance, while 
intercept bias is still present. Furthermore, it is conceivable that the mean of the ST effect 
is zero (i.e., E(σ) = 0), resulting in the absence of intercept bias. Finally, if the mean the ST 
factor is negative (i.e., E(σ) < 0), σ may be viewed as a stereotype lift effect (Walton & 
Cohen, 2003). 
 
Scenario 2. ST Effects on Subtests L and M (Figure 3.3) 

Suppose that subtests L and M are affected by ST. Let Yl and Ym denote the scores 
on these two affected subtests. Suppose again that scores Yk on subtest K are unaffected by 
ST. The linear model for Yk is given by (8), whereas those for Yl and Ym are: 

 Yl  = τl  + λlηη + λlσσ + εl,                (15) 
  Ym = τm + λmηη + λmσσ + εm.                (16) 
The expected value and implied variance of Yk are given by (10) and (13), respectively. We 
derive the following expressions for implied variances, implied covariances, and expected 
values of Yl and Ym:  

 Var(Ym) = λ2mηVar(η) + λ2mσVar(σ) + Var(εm),               (17) 
 Cov(Yk,Ym)= λkηλmηVar(η),                 (18) 
 Cov(Yl,Ym)= λlηλmηVar(η) + λkσλlσVar(σ),               (19) 
 E(Yl) = τl + λlηE(η) + λlσE(σ),                (20) 
 E(Ym) = τm + λmηE(η) + λmσE(σ),                (21) 
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Var(Yl) is given by (10), and Cov(Yk,Yl) is given by (12). The effects on residual variances 
and intercepts for both the affected subtests are parallel to the effects in the first scenario. 
Thus, the residual variances of L and M are increased, and the intercepts of L and M are 
lowered due to ST. In addition, the covariance between Yl and Ym is now increased by the 
effect due to the ST factor: λlσλmσVar(σ). This added covariance shows up as a subdiagonal 
element in the residual covariance matrix. Specifically, this results in an additional 
covariance between the residuals of subtest L and M: Cov(εl,εm) = λkσλlσVar(σ). However, if 
the effects of ST do not vary over persons (i.e., Var(σ) = 0), the bias due to stereotype 
threat is only apparent in between-group differences of the intercepts of the affected 
subtests L and M, and the residual variances and residual covariance are unbiased. 
 
Scenario 3. Non-Uniform ST Effects on Subtest L (Figure 3.4) 

Non-uniform effects of ST can occur if ST effects depend on the level of latent 
ability. This may occur, for instance, if domain identification and latent ability are positively 
correlated, with higher ability reflecting stronger identification with the domain and hence 
stronger ST effects. Suppose subtest L is non-uniformly affected by ST, and subtest K is 
again unaffected by ST. Let Yk and Yl represent the scores on subtests K and L. The usual 
linear model for subtest K is given by (8). Non-uniform ST effects on Yl can be modeled 
by adding an interaction factor ησ, resulting in this non-linear expression for the affected 
subtest: 

 Yl  = τl + λlηη + λlσσ + λlσηησ + εl ,               (22) 
where λlση represents the negative factor loading of the interaction term on Yl. This model 
gives rise to the following expressions for Yl: 

 Var(Yl) = λ2lηVar(η) + λ2lσVar(σ) + λ2lησVar(ησ) + 2λlηλlησCov(η, ησ) + 
    2λlσλlησCov(σ, ησ) + Var(εl),                (23) 

 Cov(Yk,Yl) =  λkηλlηVar(η) + λkηλlησCov(η, ησ)              (24) 
 E(Yl) = τl + λlηE(η) + λlσE(σ) + λlησE(ησ).               (25) 

As can be seen, this scenario leads to an increased residual variance:  
 Var(εl)* = Var(εl) +  λ2lσVar(σ) + λ2lησVar(ησ) + 2λlηλlησCov(η, ησ) + 

2λlσλlησCov(σ, ησ)),                 (26) 
where 2λlηλlησCov(η, ησ) is negative, while the other terms increase the variance. 
Furthermore, the ST effect depresses the intercept of the affected subtest: τl* = τl + λlσE(σ) 
+ λlησE(ησ). What most clearly characterizes the interaction effect, however, is the fact that 
the value of the factor loading of subtest L is lowered due to the non-uniform effect. This 
effect is due to the fact that the covariance of Yl with all other unaffected subtests, such as 
Yk, is lowered by the negative term λkηλlησCov(η, ησ) (provided that the mean of η is different 
from zero). If the mean of the biasing factor E(σ) is zero, this can account for the absence 
of mean effects (i.e., λlσE(σ) = λlησE(ησ) = 0), and for the fact that the direction of the effect 
changes for low and high ability persons (cf. Figure 3.5). Finally, whereas the factors η and σ 
can have a normal distribution, the nonlinear effects lead to non-normal distribution of Yl. 
Therefore, besides the fact that kurtosis and skewness values can point towards such 
nonlinear effects, such non-normality leads the normal-theory Maximum Likelihood 
estimator to show an upward bias in terms of model fit. 
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3.12 Appendix C: Stereotype Threat Research and the Assumptions Underlying 

Analysis of Covariance 
 
 In this appendix, we argue that the use of analysis of covariance (ANCOVA) in 
stereotype threat (ST) experiments is problematic, because ST theory implies violations of 
the assumptions underlying ANCOVA. Such violations could result in incorrect type-one 
error rates, and distortions in the adjustment of means.  

Besides the usual analysis of variance assumptions, the assumptions underlying 
ANCOVA are as follows (e.g., Wildt & Ahtola, 1978). First, the relationship of the 
dependent variable and the covariate is linear. Second, the regression weights of the 
dependent variable on the covariate are equal for all design cells (i.e., regression weight 
homogeneity). Third, the variance of residuals is equal over cells (i.e., homogeneity of 
residual variance). Fourth, the covariate is measured without error and is independent of 
the experimental manipulation. For theoretical reasons, the tenability of these assumptions 
within ST experiments is at least questionable.  

In a typical ST experiment (e.g., Steele & Aronson, 1995, study 2) the effects of a 
ST manipulation (e.g., non-diagnostic vs. diagnostic condition) on the test scores (i.e., 
dependent variable) of two groups (e.g., Blacks and Whites) are investigated. If a covariate 
(e.g., SAT scores) is used to adjust the dependent variable for pre-existing group 
differences, an (2x2) ANCOVA appears suitable. However, the tenability of assumptions 
underlying this analysis appears unlikely, especially when one compares the ST cell (i.e., 
stigmatized group, diagnostic condition) with the other cells in the design. 

Stereotype threat theory states that ST effects particularly influence test scores of 
people for whom the ability of interest is important or self-relevant (Steele, 1997). It is 
likely that within each cell there are individual differences in domain-identification. 
Therefore, the manipulation triggering ST would result not only in mean effects (i.e., ST 
effects identical for each subject), but also in (co)variance effects (i.e., ST effects differing 
for subjects) on the dependent variable. Furthermore, if we suppose the presence of a 
positive correlation between (latent) ability and domain-identification (see Steele, 1997, p. 
617), this would result in an interaction between the covariate (i.e., ability as measured by 
the SAT) and the experimental manipulation (i.e., ST effects on dependent variable). 
Higher SAT scores would imply higher domain-identification, and therefore stronger ST 
effects. This would result not only in a curvilinear relation between covariate and 
dependent variable in the affected cell (i.e., ST condition), but also in differences in 
regression weights over the cells. Admittedly, most ST research has used homogeneous 
samples, but even if individual differences in domain-identification within cells are absent, 
there are other reasons to expect a violation of homogeneity of regression weights. 

If mediators such as heightened anxiety or lowered motivation are the causes of 
lowered test scores within ST conditions, it is likely that these mediators will also affect the 
regression of the dependent variable on the covariate. Again, such mediators can result in a 
violation of homogeneity of regression weights. In addition, added mediator variance (e.g., 
anxiety variance) could result in differences in error variances between design cells, which 
would violate the homogeneity of variance assumption. 
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 Finally, the assumption that the covariate is error-free seems to be untenable 
because such measures are not perfectly reliable. Error in the covariate lowers the precision 
of the analysis. More importantly, the covariates themselves (e.g., SAT) are possibly 
affected by ST. It could be argued that for the high-ability participants used in most ST 
studies, the SAT is fairly easy and hence would not be stereotype threatening (Spencer et 
al., 1999). However, there are several reasons (e.g., SAT is by definition self-relevant and 
diagnostic of ability) to expect that the SAT scores are affected by ST. Either way, from a 
theoretical point of view, use of a covariate that may already be affected by the 
phenomenon under investigation is potentially tautological. Technically, if the covariate is 
affected by ST then this implies that the covariate and the manipulation are not 
independent, which may obscure the effects of the manipulation or even produce effects 
that are spurious (Wildt & Ahtola, 1978, p. 90). 

In conclusion, ST theory explicitly predicts violations of practically all assumptions 
underlying ANCOVA. Therefore, ANCOVA appears to be unsuitable for investigating ST 
effects in quasi-experimental settings. In light of ST theory’s emphasis on individual 
differences, it seems unlikely that ST only affects the means of the dependent variable (i.e., 
effects are identical for each subject within a cell) and leaves the covariance structure 
unaffected. Therefore, measurement models in which such effects are explicitly modeled 
(e.g., MGCFA) appear more suitable in analyzing ST effects. 
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4 
 
Are intelligence tests measurement 
invariant over time?  
Investigating the nature of the Flynn Effect 
 
 

The gains of scores on standardized intelligence tests (i.e., Flynn Effect) have been subject 
of extensive debate concerning their nature, causes, and implications. The aim of the 
present chapter is to investigate whether five intelligence tests are measurement invariant 
with respect to cohort. Measurement invariance implies that gains over the years can be 
attributed to increases in the latent variables that the tests purport to measure. The 
studies reported contain original data of Dutch WAIS gains from 1967 to 1999, 
Dutch DAT gains from 1984 to 1995, gains on a Dutch children intelligence test 
(RAKIT) from 1982 to 1993 and re-analyses of results from Must et al. (2003) and 
from Teasdale and Owen (2000). The results of multi-group confirmatory factor 
analyses clearly indicate that measurement invariance with respect to cohorts is untenable. 
Uniform measurement bias is observed in some, but not all subtests. The implications of 
these findings are discussed. 

 
  

4.1 Introduction 

 
 Ever since Flynn (1984; 1987) documented worldwide increases in scores on 
standardized intelligence tests, there has been extensive debate about the nature, the causes, 
and the implications of these increases (e.g., Neisser, 1998). There are several unresolved 
issues concerning the nature of these increases, now commonly denoted the Flynn Effect. 
One issue concerns the exact cognitive abilities that have increased over the years. The rise 
of scores is usually found to be greater on tests of fluid intelligence (e.g., Raven Progressive 
Matrices) than on tests of crystallized intelligence, especially on verbal IQ tests (Colom, 
Andres-Pueyo, & Juan-Espinosa, 1998; Emanuelsson, Reuterberg, & Svensson, 1993; 
Emanuelsson & Svensson, 1990; Flynn, 1987, 1998b; Lynn & Hampson, 1986, 1989; 
Teasdale & Owen, 2000). Differential increases have raised the question whether the gains 
can be related to an increase in general intelligence, or g (Colom & García-López, 2003; 
Colom, Juan Espinosa, & Garcia, 2001; Flynn, 1999a, 1999b, 2000a; Jensen, 1998; Must, 
Must, & Raudik, 2003; Rushton, 1999, 2000a).  

A second, more fundamental, issue is whether the increases are genuine increases 
in cognitive ability, or that they merely reflect measurement artifacts, such as heightened 
test sophistication or altered test taking strategies (Brand, 1987; 1990; Brand, Freshwater, & 
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Dockrell, 1989; Flynn, 1990; Jensen, 1996; Rodgers, 1998). The proponents of the view that 
the intelligence gains are genuine have searched for real-world signs of the increase (e.g., 
Howard, 1999, 2001). They have offered several explanations, including improved nutrition 
(Lynn, 1989, 1990; Martorell, 1998), a trend towards smaller families (Zajonc & Mullally, 
1997), better education (Ceci, 1991; Husén & Tuijnman, 1991; Teasdale & Owen, 1989; 
Tuddenham, 1948), greater environmental complexity (Schooler, 1998), and heterosis 
(Mingroni, 2004). 

If, on the other hand, the increases are due to a measurement artifact, this 
obviously complicates the comparison of cohorts with respect to intelligence test scores. In 
addition, this may possibly have implications for the comparisons of other groups (e.g., 
Blacks and Whites in the US). Based on his results, Flynn (1987) questioned the validity of 
IQ tests, and suggested that other between-group differences on IQ tests may not reflect 
true intelligence differences (p.189). Furthermore, Flynn states that: “Massive IQ gains add 
viability to an environmental hypothesis about the IQ gap between Black and White 
Americans” (1998a, p. 40). High heritability estimates of IQ are supposedly incompatible 
with the hypothesized environmental causes of the secular increases (but see Mingroni, 
2004). Dickens and Flynn (2001) have recently proposed a formal model that can account 
for this paradox. This extensive model offers an explanation of the Flynn Effect in the 
presence of high heritability. However, the model does not address the issue of the nature of 
the score gain since it is primarily concerned with measured intelligence or IQ. 

The purpose of the present chapter is to consider the nature of the Flynn Effect. 
Our specific aim is to investigate whether secular gains found on five different multivariate 
intelligence tests reflect gains in the common factors, or hypothetical constructs, that these 
test are supposed to measure. These common factors are typically identified by means of 
factor analyses of test scores obtained within a group (cohort). To this end, we investigate 
whether these tests are factorially invariant with respect to cohort. Factorial invariance 
implies that the same constructs are measured in different cohorts, and that the observed 
gains in scores can be accounted for by gains on these latent constructs (Lubke et al., 
2003a; Meredith, 1993). In addition, factorial invariance implies measurement invariance 
with respect to cohort (Meredith, 1993), which in turn means the intelligence test is 
unbiased with respect to cohort (Mellenbergh, 1989). We use Multi-Group Confirmatory 
Factor Analysis (MGCFA) to investigate factorial invariance between cohorts. An explicit 
technical discussion of this approach may be found in Meredith (1993). Discussions in 
more conceptual and applied terms are provided by Lubke, et al. (2003a)(2003a) and Little 
(1997). MGCFA addresses within-group differences (i.e., the covariances between cognitive 
subtests within a cohort) and between-group differences (i.e., the mean difference between 
cohorts on these tests) simultaneously. If factorial invariance is tenable, this supports the 
notion that (within-group) individual and (between-group) cohort differences are 
differences on the same underlying constructs (Lubke et al., 2003a). Conversely, if factorial 
invariance is untenable, the between-group differences cannot be interpreted in terms of 
differences in the latent factors supposed to underlie the scores within a group or cohort. 
This implies that the intelligence test does not measure the same constructs in the two 
cohorts, or stated otherwise, that the test is biased with respect to cohort. If factorial 
invariance is not tenable, this does not necessarily mean that all the constituent IQ subtests 
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are biased. MGCFA provides detailed results concerning the individual subtests, and allows 
one to consider partial factorial invariance (Byrne, Shavelson, & Muthen, 1989). 
Measurement bias between cohorts could be due to a variety of factors, which require 
further research to identify (Lubke et al., 2003a).  

Several studies have addressed the issue whether differential gains on intelligence 
subtests are positively correlated with the g loadings of these subtests (Colom et al., 2001; 
Flynn, 1999a; Jensen, 1998; Must et al., 2003; Rushton, 1999, 2000a). This issue concerns 
the question whether between-cohort differences are attributable to the hypothetical 
construct g. As such these studies address the same question as we do here. However, we 
do not limit ourselves to g, and we employ MGCFA, rather than the method of correlated 
vectors (i.e., correlating differences in means on a subtest and the subtest’s loading on 
common factor interpreted as g). Using the method of correlated vectors, Jensen (1998, pp. 
320-321), Rushton (1999), and Must et al. (2003) found low or negative correlations, and 
conclude that the Flynn Effect is not due to increases in g. However, Flynn (1999a; 1999b; 
1999c; 2000a), in a critique of Rushton’s conclusions concerning Black-White differences, 
obtained contradictory results. In addition, Colom, et al. (2001) report high positive 
correlations using standardization data of the Spanish DAT. Thus, it remains unclear 
whether the Flynn Effect is due to increases in g. It may be argued that the contradictory 
findings are the result of differences in the tests' emphases on crystallized or fluid 
intelligence (Colom & García-López, 2003; Colom et al., 2001). However, of more 
immediate concern is the method of correlated vectors. This method has been criticized 
extensively by Dolan (2000) and Dolan and Hamaker (2001). One problem is that the 
correlation, which forms the crux of this method (i.e., the correlation between the 
differences in means and the loadings on what is interpreted as the g factor), may assume 
quite large values, even when g is not the major source of between group differences 
(Dolan & Lubke, 2001; Lubke et al., 2001). Indeed this correlation may assume values 
which are interpreted in support of the importance of g, while in fact MGCFA indicates 
that factorial invariance is not tenable (Dolan et al., 2004). MGCFA may be viewed as a 
comprehensive model based approach, which includes explicit testing of the various 
aspects of factorial invariance, and which includes, but is not limited to, the hypothesis that 
g is the dominant source of group differences. Note that in the investigation of black-white 
differences in intelligence test scores, this hypothesis (i.e., the importance of g) is referred to 
as “Spearman’s hypothesis”. The emphasis of the present analyses is on establishing 
factorial invariance in common factor models. Due to the nature of the available data sets, 
our focus is on first order common factor models, rather than on the (first or second order) 
g model.  

  
4.2 Testing Factorial Invariance with MGCFA 

  
 Multi-Group Confirmatory Factor Analysis can be applied to address the question 
whether differences in IQ test score between groups reflect true, i.e., latent differences in 
ability (Lubke et al., 2003a). We now present in detail the confirmatory factor model which 
can be used to this end (c.f. Bollen, 1989; Lubke et al., 2003a; Sörbom, 1974). 
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Let yij denote the observed p-dimensional random column vector of subject j in 
population i. We specify the following model for yij: 

   yij  = τi + Λi ηij + εij ,        (1) 
where ηij is a q-dimensional random vector of correlated common factor scores (q < p), and 
εij is a p-dimensional vector of residuals that contain both random error and unique 
measurement effects. The (p x q) matrix Λi contains factor loadings, and the (p x 1) matrix 
τi contains measurement intercepts. It is generally assumed that εij is p-variate normally 
distributed with zero means and a diagonal covariance matrix Θi, i.e., residual terms are 
mutually uncorrelated. Furthermore, the vector ηij is assumed to be q-variate normally 
distributed with mean αi and (q x q) positive definite covariance matrix Ψi. Given these 
assumptions, the observed variables are normally distributed yij ~ Np(µi, Σi), where, 
assuming the covariance between ηij and εij is zero: 
  µi = τi + Λi αi        (2) 
  Σi = Λi Ψi Λit + Θi.       (3) 
Note that superscript t denotes transposition.  

We identify a sufficient number of fixed zeroes in Λi to avoid rotational 
indeterminacy given correlated common factors. In the same matrix Λi, we fix certain 
elements to equal 1 to identify the variances of the common factors. Similarly, for reasons 
of identification, we model latent differences in means instead of latent means themselves 
(Sörbom, 1974: see below). 
 
 
Table 4.1  
Summary of models in case of the two cohorts 1 and 2 
No. Description Σ1= Σ 2= µ1= µ2= 

1 Configural invariance Λ1Ψ1Λ1
t+Θ1 Λ2Ψ2Λ2

t+Θ2 τ1 τ2 

2 Metric invariance ΛΨ1Λt+Θ1 ΛΨ2Λt+Θ2 τ1 τ2 

3 Equal residual variances ΛΨ1Λt+Θ ΛΨ2Λt+Θ τ1 τ2 

4a Strict factorial invariance ΛΨ1Λt+Θ ΛΨ2Λt+Θ τ  τ +Λδ 

4b Strong factorial invariance ΛΨ1Λt+Θ1 ΛΨ2Λt+Θ2 τ τ +Λδ 
Note: Except for step 4b (nested under 2) each model is nested under the previous one; Between-cohort differences 
in common factor means are expressed by δ (i.e., δ = α2 – α1). 

 
 Factorial invariance can be investigated by fitting a series of increasingly restrictive 
models. These are presented in Table 4.1. We fit three models without mean restrictions, 
namely configural invariance (Model 1; equal pattern of factor loadings; Horn & McArdle, 
1992), metric invariance (Model 2; Λ1 = Λ2; factor loadings equal across cohorts; Horn & 
McArdle, 1992), and a model with equal factor loadings and equal residual variances (Model 
3; Λ1 = Λ2 & Θ1 = Θ2). In the next two steps we impose additional restrictions on the 
mean structure, and fit two models that are denoted strong factorial invariance (Model 4b) 
and strict factorial invariance (Model 4a; Meredith, 1993).26 The latter involves the equality 

                                                 
26 Note that these models go by different names. Model 2 is also known as Weak Factorial Invariance (Widaman & 
Reise, 1997) or Pattern Invariance (Millsap, 1997a), whereas Steenkamp and Baumgartner (1998) denote step 4b by 
Scalar Invariance. 
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of intercepts (τ1 = τ2), in addition to equality of factor loadings and residual variances. 
Observed mean differences are then due to common factor mean differences: m2 - m1= Λ(α2 
– α1). Strong factorial invariance does not include the equality constraint on the residual 
variances (Θ1 ≠ Θ2). Meredith (1993) has shown that for normally distributed data, strict 
factorial invariance within a factor model is required to demonstrate measurement 
invariance with respect to groups. As mentioned above, measurement invariance implies 
unbiasedness with respect to groups, or cohorts (Dolan et al., 2004; Lubke et al., 2003a; 
Mellenbergh, 1989). Strong factorial invariance is less restrictive in the sense that it allows 
unique/error-variances to differ between cohorts. One may argue that strong factorial 
invariance is sufficient in comparisons made between groups (Little, 1997). However, we fit 
both models and view the strong version as a minimal requirement for measurement 
invariance. Strict factorial invariance enables one to draw clearer conclusions concerning 
group differences (Lubke & Dolan, 2003). 

In the context of the Flynn Effect we consider carefully the restriction on 
measurement intercepts (τ1 = τ2), necessary for both strong and strict factorial invariance. 
Note that the mean of a given subtest within the later cohort is a function of both the 
intercept and the common factor mean multiplied by the corresponding factor loadings 
(see Eq. 2). Intercept differences between groups imply uniform bias with respect to groups 
(Mellenbergh, 1989). In the present context, this may occur, if, say, one group has higher 
test sophistication or different test taking strategies that raise the scores in ways unrelated 
to latent intelligence (Brand, 1987). Therefore we define true intelligence differences 
between cohorts as factor score differences within a strict or strong factorially invariant 
factor model, and consequently we define true intelligence differences between cohorts as 
differences in the means (and possibly (co)variances) of these common factors. 

We assume that the data are approximately normally distributed and fit models in 
the LISREL program (LISREL 8.54; Jöreskog & Sörbom, 2003) using maximum likelihood 
estimation. We assess model fit by the χ2 in relation to Degrees of Freedom (DF), and by 
other fit indices such as the RMSEA (Browne & Cudeck, 1993), the CFI (Bentler, 1990), 
and the AIC and CAIC (cf. Jöreskog & Sörbom, 2003). The relative fit of the models in 
Table 4.1 can be assessed with these indices, with lower values of AIC and CAIC indicating 
better fit. By rule of thumb, a given model is judged to be a reasonable approximation if 
RMSEA is about .05 or lower, and CFI is greater than 0.95. We view the χ2 in relation to 
degrees of freedom as a measure of badness of fit, rather than a formal test of exact fit 
(Jöreskog, 1993). The Comparative Fit Index (CFI) gives the relative fit of a model in 
relation to a null model of complete independence. Widaman and Thompson (2003) have 
argued that because of the nesting of models it is inappropriate to use such a null model 
within a multi-group context. Therefore, we use a model without any factor structure, in 
which intercepts and residual variances are restricted to be group invariant (i.e., model 0A 
in Widaman & Thompson, 2003) as the null model in computing the CFI values.  

We use a stepwise approach, in which increasingly more across-cohort constraints 
are introduced. If a given equality constraint leads to a clear deterioration in fit (i.e., 
difference in χ2, in relation to difference in DF), we conclude that the particular constraint 
is untenable. If so, modification indices can pinpoint the source, in terms of parameters, 
responsible for misfit. Modification Indices (MIs) are measures of how much chi-square is 
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expected to decrease if a constraint on a given set of parameters is relaxed, and the model is 
re-fitted (Jöreskog & Sörbom, 2003). We now turn to the confirmatory factor analyses of 
the five datasets.  

 

4.3 Study 1: Dutch Adults 1967/1968 and 1998/1999: WAIS 

 
Samples 

 The Wechsler Adult Intelligence Scale (WAIS) was translated in Dutch more than 
thirty-five years ago (Stinissen, Willems, Coetsier, & Hulsman, 1970). Here we compare the 
1967/1968 standardization sample of the Dutch WAIS (N = 2100) with 77 Dutch subjects 
who completed the WAIS during standardization of the WAIS-III in 1998 and 1999 
(Wechsler, 2000). Mean age of the nineties sample is 40.3 years (SD = 14.0). In terms of the 
WAIS-III scores, this sample appears representative, with a mean WAIS-III IQ of 100.6 
and a standard deviation of 14.8 (Wechsler, 2000). However, it should be noted that the 
original Dutch WAIS-III standardization sample is slightly underrepresented with respect 
to subjects from low-educational backgrounds (Swets & Zeitlinger, 2003; Tellegen, 2002). 
Therefore these WAIS-III IQ’s are an underestimation of approximately 2 IQ points 
(Swets & Zeitlinger, 2003). 

In the 1998/1999 sample, the WAIS administration followed between two and 
twelve weeks after administration of the WAIS-III. This quasi-retest could have resulted in 
an increase in WAIS subtest scores. However, the subtests of the WAIS-III have been 
altered and the percentage of overlapping items of the WAIS-III and WAIS (mean per 
subtest: 50%) is smaller than that found in comparisons of for example the WAIS versus 
the WAIS-R (84%) in the US. Furthermore, the differential gains of the subtests reported 
below do not seem to reflect those that show the largest retest-effect (e.g., Catron & 
Thompson, 1979; Matarazzo, Wiens, Matarazzo, & Manaugh, 1973). Nevertheless, a test of 
factorial invariance of these data sets is considered relevant since Flynn (1984; 1998c) has 
used data sets where administrations of an older version were preceded by the 
administration of a new one, or vice versa. Our focus is primarily on factorial invariance 
between the cohorts, more representative samples without the possible retest-effect should 
be used to investigate WAIS-IQ gains of the general Dutch population. 

 
Measures 

 The WAIS contains eleven subtests: Information (INF), Comprehension (COM), 
Arithmetic (ARI), (SIM), Digit Span (DSP), Vocabulary (VOC), Digit Symbol (DSY), 
Picture Completion (PCO), Block Design (BDE), Picture Arrangement (PAR), Object 
Assembly (OAS). Appendix A contains a brief description of all subtests (c.f. Stinissen, 
1977; Stinissen et al., 1970; Wechsler, 1955). The confirmatory factor analyses are based on 
an oblique three-factor model, which includes the common factors: verbal comprehension 
(INF, VOC, COM, SIM), perceptual organization (PCO, PAR, BDE, OAS, DSY), and 
memory/freedom from distractibility (DSP, ARI, DSY). This factor model is displayed in 
Figure 4.1. 
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Results and Discussion 
Correlations between subtests as well as means and standard deviations of both cohorts are 
reported in Table 4.227. As can be seen from the mean differences between cohorts, the 
Flynn Effect is present on all subtests, with effect sizes (in 1967/1968 SD-units) varying 
from 0.51 (Digit Span) to 1.48 (Similarities). This results in IQ-increases of 15.5, 22.4, and 
19.8 for Verbal-IQ, Performance-IQ and Total-IQ, respectively. These IQ gains are in line 
with gains on the WAIS(-R) found in the US and in Germany (Flynn, 1998c; Satzger, 
Dragon, & Engel, 1996). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
27 We include summary statistics in this paper, so that the interested reader may investigate factorial invariance using 
alternative (factor) models. The LISREL input files for all analyses carried out here can be downloaded from 
http://users.fmg.uva.nl/jwicherts/. 
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       Figure 4.1  WAIS factor model. 
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Table 4.2  
Correlations and descriptive statistics of WAIS 1967/1968-1998/1999 

 INF COM ARI SIM DSP VOC DSY PCO BDE PAR OAS 

INF  .63 .57 .67 .35 .76 .33 .49 .32 .35 .05 

COM .66  .60 .67 .34 .73 .29 .41 .32 .33 .18 

ARI .57 .52  .56 .43 .52 .43 .42 .34 .48 .10 

SIM .67 .67 .53  .36 .75 .36 .49 .42 .40 .09 

DSP .43 .40 .48 .41  .35 .51 .27 .16 .32 .05 

VOC .75 .71 .55 .72 .44  .34 .43 .33 .31 .05 

DSY .45 .41 .44 .43 .39 .49  .47 .39 .55 .29 

PCO .50 .44 .39 .47 .34 .50 .44  .55 .58 .42 

BDE .41 .42 .43 .44 .37 .44 .45 .46  .60 .42 

PAR .41 .35 .31 .39 .26 .44 .39 .49 .43  .37 

OAS .34 .33 .28 .36 .21 .36 .38 .46 .49 .41  

 INF COM ARI SIM DSP VOC DSY PCO BDE PAR OAS 

M ‘67/68  9.10 14.13  7.60 10.93 11.17 27.63 47.47  9.53 13.27 10.73 36.00 

SD ‘67/68  5.44  5.52  3.80  5.55  3.33 12.10 12.83  3.54  6.42  4.45 14.88 

M‘98/99 13.78 20.84 11.10 19.14 12.88 40.22 58.58 13.51 20.41 14.38 44.65 

SD ‘98/99  4.82  4.21  2.96  4.35  3.66 10.21 13.20  3.03  5.93  3.74 15.10 

Effect Size  0.86  1.22  0.92  1.48  0.51  1.04  0.87  1.13  1.11  0.82  0.58 
Note. Correlations of 1967/1968 sample (N = 1100) below diagonal and 1998/1999 sample (N = 77) above 
diagonal. Effect sizes in 1967/1968 SD units. 

 
Table 4.3  
Fit indices test for factorial invariance WAIS 1967/1968-1998/1999 
Model Equality 

constraints 
 χ2 DF Compare ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 - 274.9  80     0.047 0.994 418 913 
2 Λ 279.7  89 2 vs 1   4.8  9  0.044 0.994 406 841 
3 Λ & Θ 332.3 100 3 vs 2  52.6 11  0.044 0.993 421 782 
4a Λ & Θ & τ 408.5 108 4a vs 3  76.2  8  0.050 0.990 494 801 
4b Λ & τ 368.1  97 4b vs 2  88.4  8  0.051 0.991 484 865 

 
The fit indices of the factor models differing with respect to between-cohort 

equality constraints are reported in Table 4.3. The model with identical configuration of 
factor loadings in both cohorts (Model 1; configural invariance) fits poorly in terms of Chi-
square. However, the large χ2 is due to the large standardization sample (Bollen & Long, 
1993), and RSMEA and the CFI indicate that this baseline model fits sufficiently. In the 
second model (Model 2; metric invariance) we restrict factor loadings to be equal across 
both cohorts (i.e., Λ1 = Λ2). All fit indices indicate that this is does not result in an 
appreciable deterioration in model fit, and therefore this constraint seems tenable. 
However, the restriction imposed on the residual variances (Model 3; Θ1 = Θ2) is not 
completely tenable, since AIC and ∆χ2 indicate a clear deterioration in fit as compared to 



FLYNN EFFECT AND MEASUREMENT INVARIANCE                                                               83 

 

the metric invariance model. However, RMSEA, CFI, and CAIC indicate that this 
restriction is tenable. In a formal sense, residual variances are unequal across groups, 
although the misfit due to this restriction is not large. More importantly, both models (4a 
and 4b) with equality constraints on the measurement intercepts (τ1 = τ2) show insufficient 
fit. The RMSEA-values are larger than the rule-of-thumb-value of 0.05, and (C)AICs show 
larger values in comparison to the values of the third model. Although the CAIC values of 
models 4a and 4b are somewhat lower than the CAIC of the unrestricted model (reflecting 
CAIC’s strong preference for parsimonious models), the difference in chi-square 
comparing models 4a and 4b to less restricted models is very large.28 Both strong factorial 
invariance and strict factorial invariance therefore appear to be untenable. This means that 
measurement intercepts of the cohorts are unequal and consequently that mean differences 
in test scores (the Flynn Effect) on this Dutch WAIS-test cannot be explained by latent 
(i.e., common factor mean) differences between the 1967/1968 and 1998/1999 samples.  

However, using MGCFA it is possible to relax selected constraints in an ill-fitting 
model, to investigate the source of misfit, and, perhaps to arrive at an interpretable 
modified model. We now turn to a modification of the strong factorial invariance model 
that we denote by partial strong factorial invariance (Byrne et al., 1989). In this model we 
free the parameters with the highest modification indices (in Model 4b), namely the 
intercepts of Similarities (MI = 33) and Comprehension (MI = 20). By allowing these 
parameters to differ between the cohorts, we attain a model with acceptable fit (χ2 = 301.3, 
DF = 95, RMSEA = 0.044, CFI = 0.993, AIC = 414, CAIC = 809). This enables a 
cautionary interpretation of the factor mean gains (α2 – α1) thus found. The parameter 
estimates of the gains in this partial invariance model are: memory/freedom from 
distractibility: 2.34 (SE = 0.25, Z = 9.20, p< .01); verbal comprehension: 5.11 (SE = 0.49, 
Z = 10.53, p< .01); perceptual organization 3.69 (SE = 0.33, Z = 11.27, p< .01). Thus, all 
three common factors show significant gains. It should be noted that this model must be 
seen as a post hoc (exploratory) analysis, and that mean differences on the Similarities and 
Comprehension subtests are now unexplained by the factor on which these load.  

This partial strong invariance model has three correlated (oblique) first-order 
factors, which interrelatedness can be explained by a second-order factor, which can be 
denoted by g or general intelligence. This enables a test of the hypothesis that the score gain 
found in the current comparison could be solely due to increases in this higher order factor. 
Note that this second-order model with additional constraints is nested under the partial 
strong factorial invariance model above (without such a higher-order factor). We found 
that the second-order model has group-invariant second order factor loadings (invariance 
test: ∆χ2 = 1.0, ∆DF = 2), and group-invariant first order factor variances (invariance test 
of Ψ1= Ψ2; ∆χ2 = 1.5, ∆DF = 3). In the second order model with invariant second-order 
factor loadings and invariant first-order factor variances, we allow only second-order factor 
mean and second order factor variance differences. This second-order model has the 
following fit indices: χ2 = 321.5, DF = 102, RMSEA = 0.044, CFI = 0.993, AIC = 423, 

                                                 
28 Note that the CFI does not differentiate well between the models. This is primarily due to the fact that inter-
subtest correlations are high and therefore the null-model has a very large chi-square. Even if, say, the chi-square of 
Model 4a would have been 1500, the CFI still would assume a value well above 0.95. This renders the CFI less 
suitable for investigating between-group restrictions in this data set. 
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CAIC = 771. It appears that this model fits reasonably, although the high modification 
index (MI = 17) of the factor mean difference in the perceptual organization (first order) 
factor suggests that the gains are not solely due to general intelligence. 

In conclusion, although the overall gains found in this comparison are unexplained 
by the factor mean differences, a cautionary conclusion would be that part of the gains 
(excluding the subtests Similarities and Comprehension) could be explained by genuine 
increases in intelligence.  
 
4.4 Study 2: Danish Draftees 1988 and 1998: Børge Prien’s Prøve 

 
Samples 

 The data in this comparison stem from Teasdale and Owen (2000) who compared 
several cohorts of Danish draftees, tested in the year they turn 18. The data includes all 
Danish draftees of 1988 (N = 33.833) and 1998 (N = 25.020), comprising about 90 to 95 
percent of the Danish male population of 18 year-olds of those years (Teasdale & Owen, 
1989, 2000).  
 

Measures 
 All draftees completed a group test of cognitive abilities named Børge Prien’s 
Prøve (BPP), which includes four subtests: Letter Matrices (LEM), Verbal Analogies Test 
(VAT), Number Series Test (NST) and Geometric Figures Test (GFT). These subtests are 
characterized by fluid and abstract (Teasdale & Owen, 1987, 1989, 2000). A short 
description of the subtests is given in Appendix B. The factor model used has one factor 
with four indicators. Although this is a small number of subtests for a factor model, this 
single factor model is consistent with the common use of a total test score based on these 
subtests (see e.g., Teasdale & Owen, 1987). More practically, the tenability of this model 
should be judged by its fit. We use (normal theory) maximum likelihood estimation even 
though the data are slightly negatively skewed (Teasdale & Owen, 2000), since maximum 
likelihood (ML) estimation is quite robust to mild skewness. 
 
Table 4.4  
Correlations and descriptive statistics of Børge Prien’s Prøve 1988-1998 
 LEM VAT NST GFT 
LEM  .56 .61 .47 
VAT  .57  .59 .47 
NST  .62  .61  .43 
GFT  .48  .49  .45  
 LEM VAT NST GFT 
M 1988  9.99  12.27   9.61  10.06 
SD 1988  2.59   4.02   3.11   3.18 
M 1998 10.18 12.53   9.80  10.57 
SD 1998  2.46   3.93   3.04   3.18 
Effect size  0.07   0.06   0.06   0.16 

Note. Correlations of 1988 sample (N = 33833) below diagonal and of 1998 sample (N = 25020) above diagonal. 
Effect sizes in 1988 SD units. 
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Results and Discussion 
 Descriptive statistics of both cohorts are reported in Table 4.4. As previously 
described by Teasdale and Owen (2000), the largest increase between 1988 and 1998 is 
found on the Geometric Figures Test. It is also apparent that the overall gain is small in 
terms of 1988 SD-units. Furthermore it is noteworthy that standard deviations of all 
subtests but the Geometric Figures Test have decreased in the ten-year period. Teasdale 
and Owen (2000) show that the overall standard deviation decline is mostly caused by the 
fact that gain is strongest in the lower end of the distribution. In addition, they conclude 
that this is probably not caused by a ceiling effect. 
 
Table 4.5  
Fit indices test for factorial invariance of Børge Prien’s Prøve 1988-1998 
Model Equality 

constraints 
 χ2 DF Compare ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 - 471.9 4     0.062 0.955 507 746 
2 Λ 475.5 7 2 vs 1   3.7 3  0.047 0.955 504 714 
3 Λ & Θ 547.1 11 3 vs 2  71.6 4  0.040 0.949 565 735 
4a Λ & Θ & τ 782.4 14 4a vs 3 235.3 3  0.043 0.926 797 936 
4b Λ & τ 710.1 10 4b vs 2 234.6 3  0.048 0.932 734 913 

 
Teasdale and Owen (2000) state that the similarity of test inter-correlations across 

both cohorts is striking (p. 117). We now use these data to test whether factorial invariance 
with respect to cohorts is tenable. This enables us to unravel whether or not the Danish 
gains reflect true (i.e., latent) gains in intelligence. Table 4.5 contains the fit indices of the 
different factor models used to this end. As can be seen, the model without across-cohort 
equality constraints (Model 1; configural invariance) has a very large χ2. However, the 
sample sizes are again large and both the RMSEA, and the CFI indicate that the fit of the 
baseline model is sufficient. In the second model (metric invariance) factor loadings are 
constraint to be cohort-invariant (i.e., Λ1 = Λ2). This step is accompanied by a relative 
improvement in fit, with all fit indices having better values in Model 2 than in Model 1. 
Therefore we conclude that metric invariance is tenable. The various fit indices with which 
we can judge the tenability of the next restriction on the residual variances (Model 3; Θ1 = 
Θ2) are somewhat inconsistent. The RMSEA indicates an improvement in model fit from 
Model 2 to Model 3, while ∆χ2, CFI, AIC and CAIC show deterioration in fit. The highest 
modification index in this step is found on the parameter of the residual variance of the 
Letter Matrices Test (MI = 67). Regardless of the conclusion about the equality of the 
unique/error-variances, the subsequent restriction of cohort-invariant measurement 
intercepts (i.e., τ1 = τ2) leads to a clear deterioration in fit, with all fit indices assigning 
poorer values in Models 4a and 4b as opposed to the Models 3 and 2 (i.e., models without 
this mean restriction). Therefore, both strong factorial invariance (Model 4a), and strict 
factorial invariance (Model 4b) are rejected. Thus, we conclude that the Flynn Effect found 
in this Danish comparison cannot be explained by an increase in latent intelligence (i.e., 
factor mean differences between cohorts).  

We should note the sample size is accompanied by great power to reject models. 
This power issue can be investigated using simulation studies. A pragmatic alternative could 
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be to treat the data as if it was composed of a smaller number of cases (see Muthén, 1989). 
We have used the number of cases command of LISREL to this end, and found that in 
case of 1000 subjects in each cohort the results are similar to those found with the original 
number of cases. Therefore, a reasonable number of cases would have led to the same 
results and power appears not to be the main reason for the rejection of the factorial 
invariance models. 

As shown by the modification indices of Model 4b, the rejection of the intercept-
restriction is primarily caused by the intercept of Geometric Figures (MI = 231). As noted, 
this subtest shows greater increase than the other subtests. We could again free this 
intercept parameter, together with the aforementioned residual variance-parameter of the 
Letter Matrices Test. The model found by allowing these two parameters to differ between 
cohorts shows sufficient fit (χ2= 483.2, DF = 12, RMSEA = 0.036, CFI = 0.955 AIC = 
502, CAIC = 662). In this partial strict factorial model the factor mean of the 1998 cohort 
differs significantly from the factor mean of the 1988 cohort: the parameter estimate of α2 – 
α1 is 0.17 (SE = 0.018, Z = 9.49, p< .01). Again, a careful conclusion would be that some, 
but apparently not all, mean differences between the cohorts could be explained by a latent 
increases in intelligence. Furthermore, the partial strict factorial invariance model shows 
that the (latent) factor variance in the second cohort is smaller (3.67, SE = 0.047) than the 
factor variance of the first cohort (3.96, SE = 0.046). The latter is consistent with earlier 
findings (Teasdale and Owen, 1989) and the results in Teasdale and Owen (2000). They 
noted that the gains over the cohorts appear to be larger at the lower end of the 
distribution. In their 1989 paper, Teasdale and Owen have put some effort into finding out 
whether this differential gain is caused by a ceiling effect of the test itself. Their simulation 
of data suggested that a ceiling effect is not the reason for the diminishing test score 
variance until 1987. However, in the current comparison of the 1988 and 1998 cohorts, not 
only the factor variance, but also the residual variance of LMT is smaller. The possibility of 
a ceiling effect on this subtest in the current comparison can therefore not be ruled out. 

A shortcoming of the current data set is the small number of subtests and as a 
result the simple factor structure. It remains unclear whether the results would haven been 
similar in case the test consisted of more scales and factors. However, the fit indices show 
sufficient fit of the one-factor model. 

In conclusion, it appears that gains found on Børge Prien’s Prøve from 1988 to 
1998 could not be fully explained by latent increases in the factor model. Especially the 
large gains on Geometric Figures Test need further explanation as well as the diminishing 
residual variance of the Letter Matrices Test. The latter implies that ceiling effects may play 
a role in decreasing test score variance in this valuable Danish data set. 
 
4.5 Study 3: Dutch High School Students 1984 and 1994/1995: DAT’83 

 

Samples 
 During the standardization of the Dutch version of the DAT, Evers and Lucassen 
(1992) collected data from 3300 third-year high school students at the three major Dutch 
educational levels, namely MAVO (medium-low level), HAVO (medium-high) and VWO 
(high). Here we compare the standardization samples of these three levels (with 1100 cases 
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each) acquired from 1982 to 1986 (median in 1984) with high school students on the 
corresponding levels in 1994 and 1995 (from Oosterveld, 1996). Whereas the 1984 
standardization samples are selected to be representative for Dutch children at their 
respective educational levels (Evers & Lucassen, 1992), the 1994/1995 subjects were not 
sampled to be representative. Nevertheless, the latter data stem from ten different schools 
in different parts of The Netherlands. These (regional) high schools are located in middle-
sized towns and therefore the students are from both rural and urban areas. The 
1994/1995 samples contain a total 922 subjects, of which 490 females (of eleven subjects 
gender was unknown). Because Evers and Lucassen (1992) found large sex differences on 
the DAT, we randomly selected 93% of the females in order to equal the gender-
proportion of the three nineties cohorts to the gender-proportion (50% female) of the 1984 
standardization samples. The remaining numbers of cases for the 1994/1995 cohorts are: 
397 for MAVO, 272 for HAVO, and 188 for VWO. Information on the social economic 
background of individual students is missing, although information on the schools indicates 
that the ethnic composition of the schools does not greatly deviate from that of the overall 
Dutch population. As a matter of fact, seven of the ten schools in the nineties cohort also 
participated in the 1984 standardization. Thus, the representativeness of the nineties 
samples seems mainly to be compromised by the omission of subjects from large-sized 
towns such as Amsterdam. Precise age of the subjects during testing is unknown, but the 
mean would normally lie around 14½ years. Importantly, there is no reason to expect 
differences in age composition of the 1984 and 1994/1995 cohorts. In addition, some 
changes in the composition of the levels could have occurred, although the Dutch high 
school system did not undergo any systematic change between 1982 and 1995. 
 

Measures 
 The Dutch Differential Aptitude Test (DAT '83; Evers & Lucassen, 1992) is a 
group intelligence test containing nine subtests with a time limit. The Dutch DAT is largely 
an adaptation of the American DAT (form S&T) with one additional vocabulary scale 
(Evers & Lucassen, 1992). Since two subtests were not deemed informative by the school 
authorities, a significant part of the nineties sample was not administered the Mechanical 
Reasoning (MR) (40% missing), and/or the Speed & Accuracy (SA) subtest (64% missing). 
This resulted in a shortening of the testing session for these subjects, but this appears not 
have resulted in higher scores on the remaining subtests. Probably because of the breaks in 
between subtests, the scores of these subjects on the subtests that would have followed MR 
and SA did not significantly differ from the corresponding scores of subjects that were 
administered both subtests. Therefore, we pool both groups and leave the two missing 
subtests out of the current comparison. The seven remaining subtests are: Vocabulary 
(VO), Spelling (SP), Language Use (LU), Verbal Reasoning (VR), Abstract Reasoning (AR), 
Spatial Relations (SR), and Numerical Ability (NA). Appendix C contains a description of 
these subtests. Throughout we apply an oblique two-factor model, roughly similar to the 
first two factors of the factor solution described in the manual (Evers & Lucassen, 1992). 
These factors can be denoted by a verbal factor (VO, SP, LU, VR, NA) and an abstract 
factor (VR, AR, SR, NA). 
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Table 4.6  
Correlations and descriptive statistics of DAT ’83 1984-1995 medium-low level (MAVO) 
 VO SP LU VR AR SR NA 

VO  0.13 0.51 0.33 0.13 0.18 0.11 

SP 0.23  0.19 0.11 0.02 -0.04 0.10 

LU 0.55 0.32  0.26 0.12 0.19 0.09 

VR 0.36 0.17 0.35  0.34 0.38 0.24 

AR 0.27 0.08 0.27 0.40  0.58 0.44 

SR 0.28 -0.04 0.21 0.39 0.52  0.35 

NA 0.25 0.16 0.18 0.32 0.42 0.38  

 VO SP LU VR AR SR NA 

M 1984 42.5 59.2 29.4 18.7 33.3 30.7 17.7 

SD 1984 10.2  8.4  6.9  7.2  7.3  9.3  6.0 

M 1994/1995 39.89 58.97 27.05 17.32 32.61 30.76 15.14 

SD 1994/1995  9.07  7.95  5.82  7.87  7.30 10.56  5.49 

Effect size -0.26 -0.03 -0.34 -0.19 -0.09  0.01 -0.43 
Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 397) above diagonal. 
Effect sizes in 1984 SD units. 

 
Results and Discussion 

 We now present results for each educational level separately, beginning with the 
lowest level. Means, standard deviations and inter-subtest correlations of both MAVO-
cohorts are reported in Table 4.6. As can be seen from the effect sizes, there is no Flynn 
Effect in this subgroup. All but one subtest (Spatial Relations) show a decrease in scores 
from 1984 to 1994/1995. A further breakdown on gender shows no clear gender 
differences. These declining scores could have been the result of imperfect sampling of the 
nineties cohort, such as the aforementioned lack of subjects from large cities or perhaps by 
a changing composition of the low level educational group. Whatever the reasons for the 
decline, it is reassuring to see the similarity to the pattern of gains found on the Spanish 
DAT between 1979 and 1995 (Colom et al., 1998; 2001). Since four of the current DAT 
subtests (SR, AR, VR and NA) are also present in the Spanish DAT, we can compare effect 
sizes (i.e., gains/losses) on subtests in both countries. These four effect sizes of the 
MAVO- comparison correlate highly (pmcc = 0.90; spearman = 0.80) with the Spanish 
effect sizes found by Colom and colleagues (Colom et al., 1998; 2001).  

Since our main interest is in whether the Flynn Effect is accompanied by factorial 
invariance, we leave out our findings on factorial invariance in this MAVO group. 
However, results with respect to the tenability of factorial invariance of the MAVO cohorts 
are in line with the following results of the HAVO cohorts. 
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Table 4.7  
Correlations and descriptive statistics of DAT ’83 1984-1995 medium-high level (HAVO) 
 VO SP LU VR AR SR NA 

VO  0.29 0.53 0.32 0.10 0.13 0.02 

SP 0.31  0.35 0.09 0.03 -0.09 0.04 

LU 0.51 0.36  0.39 0.20 0.18 0.03 

VR 0.28 0.16 0.33  0.43 0.38 0.19 

AR 0.10 0.04 0.17 0.36  0.61 0.42 

SR 0.18 0.00 0.13 0.37 0.53  0.32 

NA 0.12 0.13 0.13 0.23 0.35 0.29  

 VO SP LU VR AR SR NA 

M 1984 49.8 64.5 34.5 23.6 37.5 35.9 22.2 

SD 1984  9.7  8.3  6.5  8.6  6.2 10.3  6.0 

M 1994/1995 48.78 66.68 35.55 23.87 37.80 37.05 20.07 

SD 1994/1995  9.37  8.91  7.31  8.37  6.08 10.51  6.04 

effect size -0.11  0.26  0.16  0.03  0.05  0.11 -0.36 
Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 272) above diagonal. 
Effect sizes in 1984 SD units. 

 
The subtest correlations, as well as the descriptives of both medium-high level 

(HAVO) cohorts are reported in Table 4.7. In these data, a Flynn Effect is present, with the 
highest increase on the subtest Spelling. Nevertheless, the Numerical Ability and the 
Vocabulary subtests show a decrease from 1984 to 1994/1995. Again, the relative gain of 
the four corresponding DAT scales shows striking similarity to gains found in Spain 
(Colom et al., 1998), with a correlation (pmcc) between the effect sizes in both countries of 
0.82 (spearman = 0.80). Since it has been suggested that the Spanish DAT gains are 
compatible with increases in g, i.e., with a “Jensen effect”29 (see Colom et al., 2001), it is 
interesting to check whether the HAVO gains can be considered factorially invariant with 
respect to cohort, since factorial invariance is a crucial aspect of the hypothesis that the 
manifest gains are due to gains in g. 
 
Table 4.8  
Fit indices test for factorial invariance of DAT ’83 1984-1995 medium-high level (HAVO) 
Model Equality 

constraints 
 χ2 DF Compare ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 -  61.9 22     0.051 0.983 158 456 
2 Λ  70.0 29 2 vs 1   8.1  7  0.045 0.982 152 407 
3 Λ & Θ  86.2 36 3 vs 2  16.2  7  0.045 0.978 154 366 
4a Λ & Θ & τ 153.3 41 4a vs 3  67.1  5   0.063 0.952 210 390 
4b Λ & τ 136.2 34 4b vs 2  66.2  5  0.065 0.958 204 428 

 

                                                 
29 A Jensen Effect occurs when g loadings of (sub)tests correlates significantly with the (sub)tests’ correlations with 
other variables 
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Fit indices of the models leading up to factorial invariance in the HAVO-
comparison are reported in Table 4.8. The first model fits sufficiently as judged by RMSEA 
and CFI. The step from the configural invariance model to the metric invariance model 
(Model 2; Λ1 = Λ2) is accompanied by a very slight decrease in CFI, but all other fit 
measures improve and therefore factor loadings appear invariant over cohort. With respect 
to the next restriction of equal residual variances (Model 3; Θ1 = Θ2), the AIC shows a 
small increase, and the CFI drops slightly. The other fit indices indicate that residual 
variances are cohort-invariant. More importantly, in comparison to Models 3 and 2, both 
factorial invariance models (4a and 4b) show a clear decline in all fit indices (although 
CAICs in steps 4a and 4b are still lower than the CAIC of Model 1). Considering the large 
∆χ2, the drop in CFI, and the clear increase in RMSEA, we conclude that the equality-
restriction on the measurement intercepts (τ1 = τ2) is untenable and therefore that the 
Dutch increase in DAT test scores at this educational level cannot be explained by 
increases in latent intelligence. 
 Here we again consider the partial strong factorial invariance model, and relax the 
intercepts associated with the largest modification indices. The measurement intercepts of 
Numerical Ability (MI = 36) and Vocabulary (MI = 18) seem to be the cause of the poor fit 
of the factorial invariance model. Note that both scales showed a decline from 1984 to 
1994/1995. When the intercepts of both tests are freed we obtain an acceptable model fit 
(χ2 = 79.58, DF = 32, RMSEA = 0.046, CFI = 0.980, AIC = 112, CAIC = 390). In this 
partial strong factorial invariance model the factor mean of the verbal factor is significantly 
higher in the 1994/1995 sample as opposed to the 1984 sample (1.46, SE = 0.56, Z = 2.60, 
p< .01), whereas the abstract factor does not show a significant gain from 1984 to 
1994/1995 (parameter estimate 0.37, SE = 0.38, Z = 0.97, p> .05). 
 
Table 4.9  
Correlations and descriptive statistics of DAT ’83 1984-1995 high level (VWO) 
 VO SP LU VR AR SR NA 

VO  0.36 0.57 0.40 0.11 0.22 0.16 

SP 0.39  0.37 0.25 0.19 0.12 0.24 

LU 0.56 0.45  0.38 0.15 0.11 0.15 

VR 0.38 0.32 0.44  0.45 0.42 0.41 

AR 0.15 0.14 0.22 0.35  0.54 0.38 

SR 0.19 0.08 0.15 0.39 0.53  0.33 

NA 0.20 0.22 0.19 0.29 0.31 0.33  

 VO SP LU VR AR SR NA 

M 1984 56 70.9 39.9 30.1 40 40 26.3 

SD 1984  9.4  8.7  7.2  8.8  5.3  9.7  5.8 

M 1994/1995 51.12 69.37 37.18 24.45 40.03 38.93 23.86 

SD 1994/1995  9.81  8.84  6.93  9.59  5.18  9.85  6.22 
effect size -0.52 -0.18 -0.38 -0.64  0.01 -0.11 -0.42 
Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 188) above diagonal. 
Effect sizes in 1984 SD units. 
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Next, we turn to the highest educational level, denoted VWO. Descriptive statistics 
and subtest-correlations of both VWO-cohorts are reported in Table 4.9. As was the case 
in the medium-low educational level (MAVO) above, Flynn Effect seems absent at this 
educational level. Again, this could be due to sampling or to changing composition of the 
educational levels. Like the MAVO-comparison, we skip the test for factorial invariance, 
although we should note that results indicate that again factorial invariance is untenable. In 
addition, the effect sizes of the four overlapping subtests (AR, SR, NA and VR) show 
similarity with the Spanish DAT-gains (pmcc = 0.79, spearman = 0.80). 

In conclusion, the DAT shows clear gains in scores only at the medium-high 
educational level (HAVO), whereas the medium-low (MAVO) and high (VWO) levels 
show no increase. It is interesting that this result agrees with the pattern of gains that Spitz 
(1989) reported on the WAIS and WAIS-R. Further research based on better sampling 
could clear up the issue of Dutch DAT-gains. Irrespective of the causes of these conflicting 
findings, we found that the DAT is biased with respect to cohort. The gains found at the 
HAVO level and the losses found at the other levels can thus not be explained by latent 
(i.e., factor mean) differences in intelligence. This conclusion runs counter to the finding 
that the Spanish DAT gains are related to the g factor (Colom et al., 2001). Nevertheless, 
the effect sizes on all three levels show clear similarity with Spanish DAT gains. Finally, a 
partial factorial invariance model in the HAVO-group reveals that some of the observed 
gains can be attributed to gains in the verbal common factor, but not in the abstract factor. 
The Numerical Ability and Vocabulary subtests show a decrease that could not be 
explained by latent differences between the cohorts.  
 
4.6 Study 4: Dutch Children 1981/1982 and 1992/1993: RAKIT 

 
Samples 

 In this study we compare 5-year-olds from the 1981/1982 standardization sample 
of the RAKIT (Bleichrodt et al., 1984) with a sample of 5-year-old twins (210 males and 
205 females) that were tested in 1992 and 1993 (Rietveld, van Baal, Dolan, & Boomsma, 
2000). The standardization sample (N=207) is representative of Dutch 5-year-olds in 1982 
(Bleichrodt et al., 1984). The representativeness of the second cohort may be evaluated in 
the light of data on Socio-Economic Status (SES) as measured by the occupational status of 
the fathers. The 208 twin-pairs appear to be of somewhat higher SES (low 24%, middle 
48%, high: 28%; Rietveld et al., 2000) than the overall 1993 Dutch population (32%, 44%, 
24% respectively; Statistics Netherlands, 2003). Nevertheless, the nineties cohort is clearly 
composed of a broad sample of social backgrounds.  
 The raw test scores of both cohorts are normalized with respect to age. Because 
both cohorts contain cases out of two standardization age groups (i.e., 59 to 62 months, 
and 63 to 71 months; Bleichrodt et al., 1984), we also conducted analyses in each age group 
separately. However this produces similar results as those reported below. Although some 
information is lost by the normalization, the scores appear comparable across cohorts. 
Since the 1992/1993 cohort contains twin-pairs, the individual cases are not independent. 
For that reason, we conduct two sets of analyses, one for each twin. Each first twin is 
randomly assigned to twin Sample 1 or twin Sample 2, the second twin then is assigned to 
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the other twin sample. The twin data provides a useful opportunity to cross-validate the 
results of model fitting, in which the 1982 cohort is compared to both twin Sample 1, and 
twin Sample 2. Finally, we note that because of a missing subtest, we deleted one twin case 
in the second sample, whose monozygotic brother had an IQ of 84. 
 

Measures 
 The RAKIT (Bleichrodt et al., 1984) is an individually administered Dutch 
intelligence test for children (aged 4 to 11 years) comprising 12 subtests. RAKIT-IQ has 
been shown to correlate 0.86 with IQ from the WISC-R (Bleichrodt et al., 1984). In the 
1992/1993 cohort the shortened version of the RAKIT was administered. The IQ of this 
version has been shown to correlate 0.93 with the IQ of the total scale (Bleichrodt et al., 
1984). The subtests of the shortened version are: Exclusion (EX), Discs (DI), Hidden 
Figures (HF), Verbal meaning (VM), Learning Names (LN), and Idea Production (IP). A 
description of these subtests is provided in Appendix D. Throughout, we use the oblique 
two-factor model presented by Rietveld et al. (2000), with three subtests loading on a 
nonverbal factor (EX, DI and HF) and three subtests loading on a verbal factor (LN, VM 
and IP).  
 
Table 4.10a  
Correlations and descriptive statistics of RAKIT 1982-1992/1993 (twin Sample 1) 
 EX VM DI LN HF IP 

EX  0.34 0.40 0.34 0.30 0.14 

VM 0.34  0.12 0.52 0.24 0.30 

DI 0.39 0.28  0.15 0.30 0.10 

LN 0.24 0.40 0.06  0.19 0.33 

HF 0.39 0.30 0.28 0.26  0.08 

IP 0.13 0.36 0.19 0.31 0.24  

 EX VM DI LN HF IP 

M 1982 15.01 15.17 14.95 14.97 15.37 14.94 

SD 1982  5.02  5.10  4.99  4.97  5.06  4.99 

M 1992-1 15.50 16.00 13.60 16.63 16.30 15.36 

SD 1992-1  4.38  4.24  5.28  4.58  4.61  4.23 

effect size-1  0.10  0.16 -0.27  0.33  0.18  0.08 
Note. Correlations of 1982 sample (N = 207) blow diagonal and of 1992/1993 sample (N = 208) above diagonal. 
Effect sizes in 1982 SD units. 

 
Results and Discussion 

 Descriptive statistics of the standardization sample and twin Sample 1 are reported 
in Table 4.10a, and descriptive statistics of twin Sample 2 are given in Table 4.10b. As can 
be seen from the effect sizes, all but the Discs subtest show higher scores in the 1992/1993 
sample, with the highest gain on the Learning Names subtest. Furthermore, there are some 
differences between both twin-samples, but these are trivial. Average IQ in 1982 is 100 by 
definition. The increase of scores to 1992/1993 is reflected in average IQs of 102.6 (SD = 
13.7) and 103.0 (SD = 12.6) in twin Sample 1 and 2, respectively. Considering the 
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somewhat higher SES of the nineties sample, these gains appear small in comparison to 
gains found on the WISC-R in the US (i.e., 5.3 IQ points from 1972 to 1989; Flynn, 1998c) 
and on the German WISC (20 IQ points from 1956 to 1983; Schallberger, 1987). 
 
Table 4.10b 
Correlations and descriptive statistics of RAKIT 1992/1993 (twin Sample 2) 
 EX VM DI LN HF IP 

EX  .35 .32 .19 .29 .15 

VM   .10 .46 .26 .20 

DI    .07 .18 .14 

LN     .24 .26 

HF      .10 

 EX VM DI LN HF IP 

M 1992-2 15.68 15.76 14.34 16.68 16.37 15.13 

SD 1992-2  4.21  4.48  4.65  4.66  4.37  4.09 

effect size-2  0.13  0.12 -0.12  0.34  0.20  0.04 
Second sample (N = 207) 

 
Table 4.11  
Fit indices test for factorial invariance of RAKIT 1982 – 1993/1994 
1st sample 
Model Equality 

constraints 
 χ2 DF Compare  ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 - 23.2 16     0.043 0.988 98 289 
2 Λ 30.0 20 2 vs 1   6.8 4  0.046 0.983 97 268 
3 Λ & Θ 47.4 26 3 vs 2  17.3 6  0.062 0.961 102 243 
4a Λ & Θ & τ 68.5 30 4a vs 3  21.2 4  0.078 0.929 116 236 
4b Λ & τ 50.7 24 4b vs 2  20.7 4  0.072 0.952 109 260 

2nd sample 
Model Equality 

constraints 
 χ2 DF Compare  ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 - 25.1 16     0.052 0.982 101 292 
2 Λ 30.1 20 2 vs 1  5.0 4  0.049 0.979 98 269 
3 Λ & Θ 38.7 26 3 vs 2  8.6 6  0.049 0.973 95 236 
4a Λ & Θ & τ 54.2 30 4a vs 3 15.6 4  0.064 0.947 104 224 
4b Λ & τ 45.5 24 4b vs 2 15.4 4  0.068 0.953 107 257 

 
 Fit indices of the various models for both twin-samples are reported in Table 4.11. 
The first model (i.e., configural invariance) fits well in both the comparison containing twin 
Sample 1 and the comparison containing twin Sample 2. With the exceptions of a minor 
decrease in CFI values of both samples, and a small increase in RMSEA in the first twin 
sample, the fit indices of the metric invariance model (Model 2) indicate that the across-
cohort restriction on factor-loadings (i.e., Λ1 = Λ2) is tenable. The restriction of invariant 
residual variances (Model 3; Θ1 = Θ2) is accompanied by some decrease in fit in twin 
sample 1: CFI, RMSEA and AIC of Model 3 are worse than those of Model 2 and the ∆χ2 
is rather large. In the second twin sample this restriction seems tenable, despite the small 
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drop in CFI value. However, a clear deterioration in fit in both twin samples is found when 
the factorial invariance models are fitted (Models 4a and 4b). In both samples the CAIC is 
the only fit index with a smaller value in these models as opposed to models 1 through 3. 
All other fit indices indicate that the restriction of invariant measurement intercepts (i.e., τ1 
= τ2) is untenable. Again it appears that mean differences between both cohorts cannot be 
explained by latent (i.e., factor mean) differences in intelligence. 

The rejection of factorial invariance (Models 4a and 4b) is caused mainly by the 
intercepts of the Discs and Learning Names subtests. That is, in both twin samples, these 
parameters have the largest modification index in Model 4b (DI: MI = 15 and LN: MI = 4 
in twin sample 1; DI: MI = 7 and LN: MI = 8 in twin sample 2). Relaxing the equality 
constraints on these parameters, resulted in a partial strong factorial invariance model with 
the following fit indices: χ2 = 31.43, DF = 22, RMSEA = 0.042, CFI = 0.985, AIC = 94, 
CAIC = 255, and χ2 = 31.09, DF = 22, RMSEA = 0.045, CFI = 0.982, AIC = 95, CAIC = 
256 in twin Samples 1 and 2, respectively. Thus, this partial strong factorial invariance 
model appears to have sufficient fit. A further look at the factor mean differences between 
the 1982 cohort and both 1992/1993 twin cohorts indicates that the factor means in the 
first twin sample are not significantly larger than those of the standardization sample: 0.69, 
SE = 0.43, Z = 1.61, p> .05 and 0.80, SE = 0.44, Z = 1.82, p> .05 for the nonverbal and 
the verbal factor, respectively. However, in the second twin sample the factor mean of the 
nonverbal factor is significantly higher than the standardization sample (0.85, SE = 0.42, Z 
= 2.04, p< .01), whereas the factor mean of the verbal factor in this second twin sample is 
not significantly higher (0.56, SE = 0.46, Z = 1.22, p > .05) than the corresponding factor 
mean of the 1982 cohort. 
 Again, we conclude that factorial invariance with respect to cohort is rejected. 
Hence, mean gains on the RAKIT between the 1982 and the 1992/1993 cohorts could not 
be explained fully by latent (i.e., factor mean) differences in intelligence. Only in the second 
twin sample a small part of the gains can be explained by a significant latent gain in the 
abstract factor. Especially the decline in scores on the Discs subtest and the gain in scores 
on Learning Names subtest require further investigation. 
 
4.7 Study 5: Estonian Children 1934/1936 and 1997/1998: National Intelligence 

 Test 

 
Samples 

 The data from this last comparison stems from Olev Must and colleagues (Must et 
al., 2003), who compared two Estonian datasets covering a period of 60 years, from 
1934/1936 to 1997/1998. The two cohorts contain 12- to 14-year-old schoolchildren who 
completed the Estonian National Intelligence Test. Must et al. (2003) found gains on most 
of the subtests, which were not consistent with a “Jensen effect”. It is interesting to submit 
these Estonian data to the MGCFA approach since MGCFA has been found to lead to 
different conclusions then those found with Jensen’s method of correlated vectors (e.g., 
Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 2004). In addition, MGCFA can 
pinpoint subtests that manifest the gains in this Estonian data set. For the analyses we have 
pooled both age groups, we thus have 307 and 381 cases in the thirties and nineties 
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cohorts, respectively. For further information on the samples the reader is referred to Must 
et al. (2003). 
 

Measures 
 The Estonian version of the National Intelligence Test is a group-administered 
intelligence test containing 10 subtests: Arithmetic (AR), Computation (CT), Sentence 
Completion (SC), Information (IN), Concepts (CC), Vocabulary (VO), Synonyms-
Antonyms (SA), Analogies (AN), Symbol-Number (SN), and Comparisons (CP) (c.f., Must 
et al., 2003). These subtests are described shortly in Appendix E. 

In order to obtain a reasonable factor structure, we have conducted exploratory 
factor analyses on both cohorts, using promax rotation. This resulted in an oblique two-
factor model with factors denoted abstract (AR, CT, AN, SN, and CP) and verbal (AR, SC, 
IN, CC, VO, SA, AN). This model is used in the fitting of the subsequent models. 
Results and Discussion 
 Table 4.12 provides the subtest correlations, as well as the means and standard 
deviations of both cohorts, computed by pooling the data over both age groups. As can be 
seen by the effect sizes, highest increase is found on the symbol number subtest. Counter 
to the expected Flynn Effect, four subtests show a decline, namely: Arithmetic, 
Computation, Vocabulary, and especially Information. Since this decline may also be due to 
a decrease in the latent factor(s), we proceed with the analyses. 
 
Table 4.12  
Correlations and descriptive statistics of National Intelligence Test 1934/1936 – 1997/1998 
 AR CT SC IN CC VO SA AN SN CP 

AR  .41 .49 .48 .23 .40 .38 .45 .23 .24 
CT .49  .36 .48 .27 .46 .35 .53 .34 .48 
SC .65 .43  .60 .44 .53 .47 .50 .25 .30 
IN .68 .48 .76  .47 .63 .41 .62 .26 .42 
CC .47 .32 .65 .61  .35 .34 .42 .31 .30 
VO .53 .40 .66 .73 .56  .39 .52 .27 .39 
SA .50 .34 .51 .55 .43 .46  .45 .31 .33 
AN .57 .48 .64 .67 .57 .58 .48  .31 .40 
SN .48 .44 .48 .52 .45 .40 .33 .53  .44 
CP .43 .40 .43 .53 .38 .43 .44 .49 .44  
 AR CT SC IN CC VO SA AN SN CP 
M 1934/1937 16.92 24.45 27.21 25.26 35.60 25.65 26.62 13.86 24.28 27.10 
SD 1934/1937  4.47  5.27  6.45  6.70  8.27  5.51 12.92  5.78  6.63  8.42 
 M 1997/1998 14.53 22.26 29.83 19.20 39.14 24.84 29.52 17.28 30.04 33.00 
SD 1997/1998  4.50  5.36  6.02  5.45  7.00  6.50  8.20  5.99  5.62  8.64 
Effect size -0.53 -0.42  0.41 -0.90  0.43 -0.15  0.22  0.59  0.87  0.71 
Note. Correlations of 1934/1936 sample (N = 307) below diagonal and of 1997/1998 sample (N = 381) above 
diagonal. Effect sizes in 1934/1946 SD units. 
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Table 4.13  
Fit indices test for factorial invariance of NIT 1934/1936 – 1997/1998 
Model Equality 

constraints 
 χ2 DF Compare  ∆χ2 ∆DF RMSEA CFI AIC CAIC 

1 -  150.7 64     0.063 0.987 282 648 
2 Λ  209.6 74 2 vs 1   58.9 10  0.074 0.978 324 634 
3 Λ & Θ  316.2 84 3 vs 2  106.5 10  0.088 0.964 400 655 
4a Λ & Θ & τ 1147.5 92 4a vs 3  831.3 8  0.185 0.831 1250 1460 
4b Λ & τ 1029.1 82 4b vs 2  819.5 8  0.183 0.853 1120 1386 

 
 
 Table 4.13 provides the fit indices of the various factor models. The baseline model 
(Model 1; configural invariance) fits sufficiently as judged by the CFI, although RMSEA is 
somewhat on the high side. Moreover, it is apparent that the metric invariance model 
(Model 2) fits worse than the configural invariance model. All fit measures but the CAIC 
show deteriorating fit. Therefore, factor loadings cannot be considered cohort-invariant 
(i.e., Λ1 ≠ Λ2). Note that this is in stark contrast with the high congruence coefficient of 
the first principal component found by Must, et al. (2003). This is due to the different 
natures of principal component analysis (PCA) and confirmatory factor analysis. PCA is an 
exploratory analysis that does not involve explicit hypothesis testing as is the case with 
MGCFA. In addition, the congruence coefficient has been criticized for sometimes giving 
unjustifiably high values (Davenport, 1990). The rejection of the metric invariance model is 
caused by several subtests, but most clearly by Vocabulary (MI = 20) and Symbol-Number 
(MI = 18). The failure of metric invariance is probably the worst possible outcome, as it 
implies non-uniform bias with respect to cohorts (Lubke et al., 2003a). Consequently, we 
present the next steps for illustrative reasons only. In fitting Model 3 (Θ1 = Θ2) the fit 
deteriorated still further. The fit indices of the factorial invariance models (4a and 4b) all 
indicate a clear deterioration in fit. Clearly the measurement intercepts are not invariant 
over cohorts (i.e., τ1 ≠ τ2). The latter is primarily caused by the Information subtest. 
Because of the large number of parameters that show large modification indices in all non-
fitting invariance models, we do not attempt to fit a partial factorial invariance model. The 
conclusion regarding the Estonian comparison is clearly that factorial invariance does not 
hold, and that the gains (either increases or decreases) found could not be explained by 
latent (i.e., factor mean) differences between the cohorts. Overall, the greatest modification 
index is found with the intercept of the Information subtest.  

Again, factorial invariance between cohorts most clearly fails at the intercept level. 
This result is in line with the results from the Jensen test conducted by Must et al. (2003). 
The most notable difference between the analyses in that study and ours is the finding 
concerning the factor structure. 
 
4.8 General Discussion 

 

 The present aim was to determine whether observed between-cohort differences 
are attributable to mean differences on the common factors that the intelligence tests are 
supposed to measure. Stated otherwise, we wished to establish whether the Flynn Effect is 
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characterized by factorial invariance. To this end, we conducted five studies comprising a 
broad array of intelligence tests and samples. The results of the MGCFAs indicated that the 
present intelligence tests are not factorially invariant with respect to cohort. This implies 
that the gains in intelligence test scores are not simply manifestations of increases in the 
constructs that the tests purport to measure (i.e., the common factors). Generally we found 
that the introduction of equal intercept terms (τ1 = τ2; Models 4a and 4b, see Table 4.1) 
resulted in appreciable decreases in goodness of fit. This is interpreted to mean that the 
intelligence tests display uniform measurement bias (e.g., Mellenbergh, 1989) with respect 
to cohort. The content of the subtests, which display uniform bias, differs from test to test. 
On most biased subtests, the scores in the recent cohort exceeded those expected on basis 
of the common factor means. This means that increases on these subtests were too large to 
be accounted for by common factor gains. This applies to the Similarities and 
Comprehension subtests of the WAIS, the Geometric Figures Test of the BPP, and the 
Learning Names subtest of the RAKIT. However, some subtests showed bias in the 
opposite direction, with lower scores in the second cohorts than would be expected from 
common factor means. This applies to the DAT subtests Arithmetic and Vocabulary, the 
Discs subtest of the RAKIT, and several subtests of the Estonian NIT. Although some of 
these subtests rely heavily on learned content (e.g., Information subtest), the Discs subtest 
does not.  

Once we accommodated the biased subtests, we found that in four of the five 
studies the partial factorial invariance models fitted reasonably well. The common factors 
mean differences between cohorts in these four analyses were quite diverse. In the WAIS, 
all common factors displayed an increase in mean. In the RAKIT, it was the nonverbal 
factor that showed gain. In the DAT, the verbal common factor displayed the greatest gain. 
However, the verbal factor of the RAKIT, and the abstract factor of the DAT showed no 
clear gains. In the BPP, the single common factor, which presumably would be called a 
(possibly poor) measure of g showed some gain. Also in the second order factor model fit 
to the WAIS, the second order factor (again presumably a measure of g) showed gains. 
However in this model, results indicated that the first order perceptual organization factor 
also contributed to the mean differences.  

It could be argued that the current results depend to a large extend to the choice of 
factor models. We put considerable effort in finding the best fitting models as the baseline 
models. In addition, we have tested for factorial invariance using alternative models, and 
found similar results to those reported here. Nevertheless, the interested reader is invited to 
replicate results with other factor models. The samples used in the studies differ 
substantively in size, resulting in differences in power to reject across-cohort equality 
constraints. However, we considered several fit measures that differ in their sensitiveness to 
sample size. Since those fit measures show a similar pattern, differences in statistical power, 
although important, do not seem to be a critical issue. 
  Here we investigated factorial invariance at the subscale level. Measurement 
invariance can also be investigated at the item level. Flieller (1988) compared two cohorts 
of French eight-year-olds that were administered the "Gille Mosaïque Test” in 1944 and 
1984. Using a Rasch model to describe item responses in both cohorts, Flieller (1988) 
found that two-thirds of the 64 items were biased with respect to cohort. That is, the 
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majority of item parameters (i.e., item difficulty of the logistic item response function) in 
the 1984 cohort differed from the item parameters in the 1944 cohort. This uniform bias 
explained a large part of the test score increase on this Binet-type test over this 40-year 
period (Flieller, 1988). Thus, like we did in the analysis of subtest scores, Flieller, in an 
analysis of item scores, detected uniform measurement bias with respect to cohort. 

With MGCFA it is possible to identify the subtests that display measurement bias. 
Similarly, by means of analyses based on item response theory (IRT), such as Rasch 
modeling, one can identify the individual items that are biased with respect to cohort 
(Flieller, 1988). Knowing which subtests or items are biased enables one to formulate 
testable hypothesis regarding the causes of the bias. Lubke et al. (2003a) have discussed 
how covariates can be incorporated in a multi-group factor model to investigate the sources 
of measurement bias. To do this, however, one has to identify covariates or “nuisance 
variables” (Millsap & Everson, 1993) that can account for the bias. At the item-level several 
approaches also have been proposed (Mellenbergh & Kok, 1991), such as correlational 
research, quasi-experimental research, and experimental research. Research on the effects 
of video games on intelligence test performance as described by Greenfield (1998) could be 
seen as an example of the latter. 

Generally speaking, there are a number of psychometric tools that may be used to 
distinguish true latent differences from bias. It is notable that with the exception of Flieller 
(1988), little effort has been spent to establish measurement invariance (or bias) using 
appropriate statistical modeling. The issue whether the Flynn Effect is caused by 
measurement artifacts (e.g., Brand, 1987; Rodgers, 1998), or by cultural bias (e.g., 
Greenfield, 1998) may be addressed using methods that can detect measurement bias, and 
with which it is possible to test specific hypothesis from a modeling perspective. Consider 
the famous Brand hypothesis (Brand, 1987; Brand et al., 1989), that test taking strategies 
have affected scores on intelligence tests. Suppose that subjects nowadays more readily 
resort to guessing than subjects in earlier times, and that this strategy results in higher 
scores on multiple-choice tests. A three-parameter logistic model that describes item 
responses is perfectly capable of investigating this hypothesis, since this model has a 
guessing parameter (i.e., lower asymptote in the item response function) that is meant to 
accommodate guessing. Changes in this guessing parameter due to evolving test taking 
strategies would lead to the rejection of measurement invariance between cohorts. 
Currently available statistical modeling is perfectly capable of testing such hypotheses. 

MGCFA is greatly preferred above the method of correlated vectors. In view of its 
established lack in specificity (Dolan et al., 2004; Lubke et al., 2001) it is not surprising that 
the method of correlated vectors gives contradictory results when it is applied to the Flynn 
Effect (Colom et al., 2001; Flynn, 1999b; Must et al., 2003). For instance, following 
Jensen’s method, we computed the correlations between the g-loadings and the 
standardized increases in subtest means in the Dutch WAIS and RAKIT data. This resulted 
in correlations of 0.60 (WAIS data) and 0.58 (RAKIT data). We know that in both datasets 
factorial invariance is not tenable. Yet correlations of about 0.60 are invariably interpreted 
in support of the importance of g. For instance, the repeated application of the correlated 
vectors method to Black-White differences in intelligence test scores are resulted in a mean 
correlation of about 0.60 (Jensen, 1998).  
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The recent applications of method of correlated vectors to intelligence score gains 
(e.g., Colom et al., 2001; Flynn, 2000b; Must et al., 2003) followed Flynn’s critique on the 
conclusions that Jensen and particularly Rushton (2000a) based on this method (Flynn, 
1999c, 2000a, 2000b). From its beginning the Flynn Effect has been regarded to have large 
implications for the comparison of these B-W differences (e.g., Flynn, 1987, 1999c). Since 
the current approach (MGCFA) was previously applied in US B-W comparisons, we have 
the opportunity to compare those B-W analyses to the current analyses of different 
cohorts. Here we use results from Dolan (2000) and Dolan and Hamaker (2001), who 
investigated the nature of racial differences on the WISC-R and the K-ABC scales. We 
standardized the AIC-values of the Models 1 to 4a within each of the seven data sets, in 
order to compare the results of tests of factorial invariance on the Flynn Effects and the 
racial groups. These standardized AIC values are reported in Figure 4.2.  
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Figure 4.2  Plot of standardized AIC values of data sets by stepwise models to achieve   
  strict factorial invariance. 
 
 As can be seen, the relative AIC-values of the five Flynn comparisons show a 
strikingly similar pattern. In these cohort comparisons, models one and two have 
approximately similar standardized AICs, which indicates that equality of factor loadings is 
generally tenable. A small increase is seen in the third step, which indicates that residual 
variances are not always equal over cohorts. However, a large increase in AICs is seen in 
the step to Model 4a, the model in which measurement intercepts are cohort-invariant (i.e., 
the strict factorial invariance model). The two lines representing the standardized AICs 
from both B-W studies clearly do not fit this pattern. More importantly, in both B-W 
studies it is concluded that measurement invariance between Blacks and Whites is tenable, 
since the lowest AIC values are found with the factorial invariance models (Dolan, 2000; 
Dolan & Hamaker, 2001). This clearly contrasts with our current findings on the Flynn 
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Effect. It appears therefore that the nature of the Flynn Effect is qualitatively different 
from the nature of Black-White differences in the US. Each comparison of groups should 
be investigated separately. IQ gaps between cohorts do not teach us anything about IQ 
gaps between contemporary groups, except that each IQ gap should not be confused with 
real (i.e., latent) differences in intelligence. Only after a proper analysis of measurement 
invariance of these IQ gaps is conducted, can anything be concluded concerning true 
differences between groups. 
 Whereas implications of the Flynn Effect for B-W differences appear small, the 
implications for intelligence testing in general are large. That is, the Flynn Effect implies 
that test norms become obsolete quite quickly (Flynn, 1987). More importantly however, 
the rejection of factorial invariance within a time period of only a decade implies that even 
subtest score interpretations become obsolete. Differential gains resulting in measurement 
bias for example imply that an overall test score (i.e., IQ) changes in composition. The 
effects on validity of intelligence tests are unknown, but one can easily imagine that the 
factors that cause bias over the years also influence within-cohort differences. Further 
research on the causes of the artifactual gains is clearly needed.  

The overall conclusion of the present chapter is that factorial invariance with 
respect to cohorts is not tenable. Clearly this finding requires replication in other datasets. 
However, if this finding proves to be consistent, it should have implications for 
explanations of the Flynn Effect. The fact that the gains cannot be explained solely by 
increases at the level of the latent variables (common factors), which IQ tests purport to 
measure, should not sit well with explanations that appeal solely to changes at the level of 
the latent variables.  
 
4.9 Appendix A: Description of the WAIS Subtests 

 

Source: Wechsler (1955; 2000) & Stinissen et al. (1970) 
 
Information (INF) contains 22 open-ended questions measuring general knowledge 
concerning events, objects, people and place names. 
Comprehension (COM) contains 14 daily-life or societal problems, that the subject has to 
understand, explain, or solve. For this the subject needs to comprehend social rules and 
concepts.  
Arithmetic (ARI) contains 16 arithmetic items that the subject has to solve without the use 
of paper and pencil. 
Similarities (SIM) contains 13 word pairs about daily objects and concepts. The subject has 
to explain the similarities of the words. 
Digit Span (DSP) contains 14 series of digits that subjects has to recall verbally forwards (12 
items) or backwards (2 items). 
Vocabulary (VOC) contains 30 words of which the subject has to give the meaning.  
Digit Symbol (DSY) contains 115 items containing pairs of numbers and symbols. The 
subject uses a key to write down the symbol related to a number. 
Picture Completion (PCO) contains 20 incomplete pictures of everyday events and objects 
about which the subject has to name the missing parts. 
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Block Design (BDE) contains 13 two-dimensional geometric figures that the subject has to 
copy by arranging two-colored blocks. 
Picture Arrangement (PAR) contains 10 items in which pictures have to be arranged in a 
logical order. 
Object Assembly (OAS) contains 5 puzzles of everyday objects that the subject has to 
assemble. 
 

4.10 Appendix B: Description of the Subtests from Børge Prien’s Prøve 

 
Source: Teasdale & Owen (1987; 1989; 2000) 
 
Letter Matrices (LEM) contains 19 items (15 min) in a 3 x 3 matrix format, with cells 
containing series of letters conforming to a pattern. The subject has to give the letter series 
that conforms to this pattern.  
Verbal Analogies Test (VAT) contains 24 verbal analogies that the subject has to 
complement (5 min). The answers have to be chosen from a two lists of 100 possible 
responses. 
Number Series Test (NST) contains 17 series of four numbers, that the subject has to 
complement (15 min). 
Geometric Figures Test (GFT) contains 18 items (10 min) with complex geometric figures that 
have to be composed by five simple figures.  
 

4.11 Appendix C: Description of the DAT’83 Subtests 

 
Source: Evers and Lucassen (1992)  
 

Vocabulary (VO) contains 75 items (20 min) in which out five words the respondent 
has to choose the word with the same meaning as the target word, measures lexical 
knowledge. 

Spelling (SP) contains 100 words (20 min) of which the respondent has to judge the 
correctness of spelling, measures spelling ability. 

Language Use (LU) contains 60 sentences (25 min) in which the respondent has to 
look for grammatical errors, measures grammatical sensitivity. 

Verbal Reasoning (VR) contains 50 verbal analogies (20 min) that the respondent has 
to complement, measures lexical knowledge and inductive ability. 

Abstract Reasoning (AR) contains 50 items (25 min) containing series of four 
diagrams. The respondent has to choose the diagram that logically follows these series. 
Measures inductive ability. 

Space Relations (SR) contains 60 items (25 min) in which the respondent has to 
imagine unfolding and rotating objects, measures visualization.  

Numerical Ability (NA) contains 40 arithmetic problems (25 min) that the 
respondent has to solve, measures quantitative reasoning. 
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4.12 Appendix D: Description of the RAKIT Subtests 

 
Source: Bleichrodt, et al. (1984) 
 
Exclusion (EX) contains 30 items in which the child has to choose one out of four figures 
that is deviant. This subtest measures inductive reasoning. 
Discs (DI) contains 12 items in which the child has to put discs with holes on sticks. This 
subtest measures spatial orientation and speed of spatial visualization.  
Hidden Figures (HF) contains 30 items in which the child has to recognize two concrete 
figures in a complex drawing. This subtest measures transformation of a visual field. 
Verbal Meaning (VM) contains 40 words, which meaning the child has to denote by pointing 
out one out of four pictures. This subtest measures passive verbal learning. 
Learning Names (LN) contains 10 pictures of animals whose names the child has to learn. 
This subtest measures active learning. 
Idea Production (IP) contains 5 items in which the child has to produce names of objects and 
situations that belong to a broadly described category. This subtest measures verbal fluency. 
 

4.13 Appendix E: Description of the National Intelligence Test Subtests 

 

Source: Must et al. (2003) 
 
Arithmetic (AR) contains 16 arithmetic problems that require a solution for an unknown 
quantity. 
Computation (CT) contains 22 items requiring addition, subtraction, multiplication, and 
division of both integers and fractions. 
Sentence Completion (SC) contains 20 items requiring filling in missing words to make 
sentences understandable and correct. 
Information (IN) contains 40 items about general knowledge. 
Concepts (CC) contains 24 items requiring selecting two characteristic features from among 
those given. 
Vocabulary (VO) contains 40 items requiring knowledge about the qualities of different 
objects. 
Synonyms-Antonyms (SA) contains 40 items requiring evaluation of whether the words 
presented mean the same or opposite. 
Analogies (AN) contains 32 items requiring transferring the relation between two given 
words to other presented words. 
Symbol-Number (SN) contains 120 items in which the correct digit must be assigned to a 
presented symbol from a key. 
Comparisons (CP) contains 50 items requiring same or different judgments about sets of 
numbers, family names, and graphic symbols presented in two columns. 
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The dark past, obscure present, and 
bright future of African IQ 
 
 

On the basis of extensive reviews of the literature, Lynn concluded that average IQ of the 
Black population of sub-Saharan Africa lies below 70. In this chapter, the authors 
evaluate published empirical data on this issue. Focus is on average scores of African 
samples on Raven's Standard Progressive Matrices (SPM), Coloured Progressive 
Matrices, Goodenough-Harris Draw-a-Man test, and several other IQ tests. Validity of 
IQ tests in African samples is evaluated critically. Because of a general lack of rigorous 
measurement invariance studies, it is uncertain to what degree IQ scores in Africa reflect 
levels of general intelligence. Results show that average IQ in Africa lies somewhere 
around 80 when compared to US norms, and that SPM scores among African adults 
have shown a secular increase over the years. Variables representing health, fertility, 
nutrition, educational attainment, modernization, and urbanization are shown to 
correlate highly with national IQ over the world. It is concluded that the Flynn Effect is 
in its infancy in Africa. Implications for genetic theories of race differences in intelligence 
are discussed. 

 
  

5.1 Introduction 

  
 On the basis of several extensive reviews of the literature, Lynn concluded that the 
average IQ of the Black population of sub-Saharan Africa lies below 70 (Lynn, 1978, 1991, 
1997, 2003, 2006; Lynn & Vanhanen, 2002; cf. Rushton & Jensen, 2005a). In a critique on 
Lynn’s 1978 and 1991 reviews, Kamin (1995) accused Lynn of distortions and 
misrepresentations of data, which, according to Kamin, constituted “a truly venomous 
racism” (p. 86). Lynn (2006, p. 244), in turn, accused anyone who might disagree with his 
review of IQ in Africa of ignorance and/or political correctness (cf. Rushton, 1996). 
Clearly, the topic of IQ of Africans is highly controversial. 
 Ad hominem arguments, poor research (followed by simplistic conclusions), or 
shying away from this subject (for whatever reason), will certainly not advance our 
understanding. We view the study of group differences in IQ test scores as a valid scientific 
undertaking, regardless of the nature of the groups. Our understanding of ethnic or racial 
group differences depends on rigorous and careful research. The aim of the present chapter 
is to present a balanced and critical evaluation of the present body of results of IQ testing 
in Africa. The specific aims of our study are threefold. First, we want to arrive at an 
estimate of the average performance of the Black population of sub-Saharan Africa 
(henceforth Africans) on three non-verbal tests of general cognitive ability. We express the 
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average test performance in terms of IQ based on western norms because we want to 
compare our estimate of average test performance to the only presently available results, 
namely Lynn’s. The reader should be aware, however, that observed IQ scores do not equal 
particular levels of general intelligence or g. Whether or not these observed test scores 
actually reflect relative positions on the latent dimension of g, depends on many conditions, 
which relate to our second aim. The second aim is to arrive at a better understanding of the 
meaning of IQ test scores in Africa by focusing on the validity and the psychometric 
properties of western IQ tests when applied to Africans. The notion of IQ testing in Africa 
seems to elicit either a knee jerk rejection of the possibility of obtaining a valid measure 
(e.g., Berry, 1974), or a blithe acceptance of this possibility (e.g., Herrnstein & Murray, 
1994; Lynn, 2006). In our review, we attempt to determine whether the conditions for good 
psychometric measurement have been met in African studies. The third aim of our study is 
to evaluate the environmental correlates of mean IQ test scores, which are often proffered 
in support of some causal interpretation of mean group differences in IQ. Here we 
concentrate on environmental variables that are suspected to have caused gains in IQ levels 
of western populations over the years (i.e., the Flynn Effect; Flynn, 2006; Neisser, 1998). 
This part of our review suggests that it is very difficult to arrive at rigorous causal claims 
concerning the nature of group differences in mean IQ test scores. However, when viewed 
in the light of common explanations of the Flynn Effect (e.g., Barber, 2005; Blair, Gamson, 
Thorne, & Baker, 2005; Ceci, 1991; Lynn, 1990; W. M. Williams, 1998; Zajonc & Mullally, 
1997), there is reason to be optimistic about the future of average IQ in sub-Saharan 
Africa. 
 
5.2 Is Average IQ in Africa Really Below 70? 

 
 To estimate average IQ of countries or racial groups all over the world, Lynn draws 
mainly on published data from cognitive ability tests such as Raven's Coloured Progressive 
Matrices (CPM; J. C. Raven, 1956) or the Standard Progressive Matrices (SPM; J. C. Raven, 
1960). These tests are generally considered to be excellent non-verbal indicators of general 
intelligence or g (Carroll, 1993; Jensen, 1998), and have been administered often in Africa. 
For instance, Fahrmeier (1975) collected CPM data of schooled and unschooled Nigerian 
children. Lynn compared their CPM scores to British norms,30 which resulted in an average 
IQ of about 69 (Lynn, 2006; Lynn & Vanhanen, 2002). In another study conducted in 
Nigeria, Wober (1969) administered the SPM twice to a group of male factory workers. 
Lynn compared their pretest scores to British norms and concluded that their average IQ 
was below 65. On the basis of these two convenience samples Lynn claims that average IQ 

                                                 
30 Throughout this chapter, we assume that the work on IQ in Lynn and Vanhanen’s book is by Lynn. The 
estimation of IQ is described as follows: "Around 1973, data for the Coloured Progressive Matrices for a sample of 
375 6-13 year-olds were collected by Fahrmeier (1975). In relation to the 1979 British standardization of the Standard 
Progressive Matrices, the mean IQ is 70. Because of the 6-year interval between the two data collections, this needs 
to be reduced to 69" (Lynn & Vanhanen, 2002, p. 215). Lynn probably used a table provided on page 60 of the SPM 
manual (J. C. Raven, Court, & Raven, 1996) to convert raw CPM scores to raw SPM scores, to compare these CPM 
scores to British SPM norms of 1979. Note that his downward correction for outdated norms is an error because the 
norms are more recent than the test scores in Fahrmeier’s sample. Hence, according to the appropriate use of this 
correction (i.e., 2 IQ points per decade), the IQ should have been raised by one point, not lowered by one. 
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in Nigeria is below 70 (Lynn & Vanhanen, 2002). Additional published data of over 50 
samples from various sub-Saharan countries have led him to conclude that the average IQ 
of Africans is around 67 (Lynn, 1978, 1991, 1997, 2003, 2006; Lynn & Vanhanen, 2002; cf. 
Rushton & Jensen, 2005a). This low IQ level is rather implausible, because by western 
standards (cf. DSM-IV; American Psychiatric Association, 1994), it would imply that more 
than half of the African population suffers from mental retardation. This raises the 
question whether Lynn’s estimate is accurate.  

Several aspects of Lynn's work on African IQ have been criticized (Barnett & 
Williams, 2004; Dambrun & Taylor, 2005; Hunt & Sternberg, 2006; Kamin, 1995; Lane, 
1994), although none of Lynn’s critics have brought new data to bear on the issue. One 
point of critique is that Lynn’s estimate of average IQ among Africans is primarily based on 
convenience samples, and not on samples carefully selected to be representative of a 
particular population (Barnett & Williams, 2004; Hunt & Sternberg, 2006). For example, 
the samples of Fahrmeier (N = 375) and Wober (N = 86) neither were intended to be, nor 
could be considered to be representative of the entire population of Nigeria, a country with 
over 130 million inhabitants. Moreover, despite his objective of providing a “fully 
comprehensive review [...] of the evidence on […] differences in intelligence worldwide” 
(Lynn, 2006, p. 2), in his review of IQ in Africa, Lynn does not consider a sizeable portion 
of the literature. For instance, Lynn did not consider several studies with the SPM in 
Nigeria (Maqsud, 1980a, 1980b; Okunrotifa, 1976) that clearly indicated that average IQ in 
this country is considerably higher than 70. In the current study, we tried to locate 
additional published data of western IQ tests that are most commonly used throughout 
Africa, namely the SPM, CPM, and the Goodenough-Harris Draw-a-Man test (DAM; 
Goodenough, 1926; Harris, 1963). In addition, we review and discuss all sources of data 
given by Lynn in his two latest books (Lynn, 2006; Lynn & Vanhanen, 2002). These 
additional IQ data are based on the Kaufman-Assessment Battery for Children (Kaufman 
& Kaufman, 1983), the Wechsler scales (Wechsler, 1974, 1981), and several other IQ tests. 
Implications 

Lynn’s work on African IQ is often taken at face value (e.g., Abdel-Khalek & 
Raven, 2006; Campbell, 1996; Herrnstein & Murray, 1994; Kanazawa, 2004; Miller, 1992; 
Reeve & Hakel, 2002; Rindermann, 2006; Rushton & Skuy, 2000; Rushton, Skuy, & Bons, 
2004; Rushton, Skuy, & Fridjhon, 2002, 2003; Sarich & Miele, 2004; Skuy et al., 2002; Te 
Nijenhuis, De Jong, Evers, & van der Flier, 2004; Teasdale & Owen, 2005), even by his 
critics (e.g., MacEachern, 2006). Moreover, Lynn’s estimates of national IQ are used as data 
in several studies (Barber, 2005; Dickerson, 2006; Jones & Schneider, 2006; Kirkcaldy, 
Furnham, & Siefen, 2004; Meisenberg, 2004; Morse, 2006; Templer & Arikawa, 2006; 
Voracek, 2004; Weede & Kampf, 2002; Whetzel & McDaniel, 2006), which were mainly 
concerned with predicting national differences in economic development. In addition, 
Lynn’s reviews of low average IQ in sub-Saharan Africa are accorded a central role in 
theories, which state that race differences in intelligence test scores have a substantial 
genetic component (Jensen, 1998; Levin, 1997; Lynn, 2006; Miller, 1995; Rushton, 2000b; 
Rushton & Jensen, 2005a; Templer & Arikawa, 2006).  

The essence of these theories is that lower intelligence test scores of Africans and 
African Americans compared to people of European or Asian descent have evolutionary 
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causes (Lynn, 2006; Rushton, 2000b; Rushton & Jensen, 2005a). These theories further 
state that African Americans have a certain degree of genetic European-African admixture, 
which should raise their intelligence levels as compared to Africans (Lynn, 1991; Rushton 
& Jensen, 2005b). The implicit assumptions underlying this reasoning (Loehlin, 2000) are: 
(1) that Africans and people from European descent differ in the frequencies of genes 
affecting intelligence, (2) that these genes act in an additive fashion, and (3) that the African 
and European gene pools among African Americans are representative of the ancestral 
African and European gene pools, respectively. If this is the case, it follows that African 
Americans should have considerably higher IQ levels than Africans. Average IQ of African 
Americans is usually estimated to be 85 (Gottfredson, 2005; Jensen, 1998; Rushton & 
Jensen, 2005a) or somewhat higher (Dickens & Flynn, 2006). On the basis of his genetic 
theory of race differences in intelligence and the genetic Black-White admixture of African 
Americans, Lynn asserts that if the environmental circumstances of Africans would be as 
good as those of African Americans, average IQ of Africans should be around 80. He 
states that adverse environmental circumstances in Africa depress African IQ levels 
considerably below 8031 (Lynn, 2006, p. 71). Thus, our estimate of average IQ in Africa 
provides as an empirical test of Lynn’s theory.  

The genetic or evolutionary theories of race differences in intelligence presuppose 
that IQ test scores are valid indicators of general intelligence throughout the world. The 
question arises whether these scores are valid and comparable to scores in western samples 
in terms of general intelligence (Barnett & Williams, 2004; Ervik, 2003; Hunt & Sternberg, 
2006; Lane, 1994).  

 
5.3 Measurement Problems and Psychometric Comparability 

 

 A person’s IQ score and a person’s level of latent general intelligence or g can not 
simply be equated for the simple reason that IQ tests are fallible instruments. Often in 
Africa, IQ tests are not administered in conditions resembling those in developed 
countries. For instance, in Fahrmeier’s study with the CPM in Nigeria, "children were 
tested on porches, in entrance rooms, or under trees" (Fahrmeier, 1975, p. 282) by untrained 
personnel. This does not compare very well with the official guidelines as formulated in the 
test manual: "The person to be tested is seated comfortably opposite the psychologist at a 
table about 2 feet wide" (J. C. Raven, 1956, p. 13). Often more than not, test administration 
in Africa occurs on the ground, on veranda’s, under trees, or in overcrowded and sparsely 
furnished classrooms (e.g., Berry, 1983; Fahrmeier, 1975; Hunkin, 1950). Such non-
standard test settings, combined perhaps with harsh climatic circumstances (cf. Sternberg, 
2004), are likely to depress performance. 
 Moreover, the claim that non-verbal IQ tests are “devoid of cultural content” (e.g., 
Templer & Arikawa, 2006, p. 122) does not sit very well with the following measurement 
problems. Several items in the CPM and SPM contain geometric shapes which have no 
names in many African languages (Bakare, 1972). It is not uncommon in (rural) Africa to 

                                                 
31 Based on his estimate of an average IQ in Africa, Lynn asserts that adverse environmental circumstances lower 
average IQ in Africa by 13 points.  
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come across test takers who are unfamiliar with color-printed material (Giordani, Boivin, 
Opel, Dia Nseyila, & Lauer, 1996), or who are inexperienced with using a pencil (Badri, 
1965b). Giving such test takers a paper-and-pencil test with unknown colored geometric 
shapes (e.g., CPM) is not likely to produce test scores that accurately measure general 
intelligence. Unfamiliarity with the stimulus material in western IQ tests are only the tip of 
the iceberg of the many possible cultural effects that may affect performance of African 
test takers when diagrammatic non-verbal intelligence tests such as the CPM or SPM are 
used to assess general cognitive ability. Other IQ tests include similar or alternative formats 
that may be equally unfamiliar to African test takers. For instance, for some African 
children photographs are an entirely new phenomenon (Fahmy, 1964). Besides, Africans 
may not think that acting fast represents intelligent behavior (Mpofu, 2004; Wober, 1974), 
the idea of responding to a multiple choice format may be entirely new to some African 
test takers (Irvine, 1966), and it cannot be assumed that a standard instruction enables test 
takers to fully comprehend what is expected from them (e.g., Kendall, Verster, & Von 
Mollendorf, 1988; MacArthur, Irvine, & Brimble, 1964). Such problems have led several 
authors to conclude that intelligence testing is strongly culturally determined (Berry, 1974, 
1976; Greenfield, 1997; Irvine, 1969b; Nell, 2000; Sternberg, 2004). Clearly, measurement 
problems associated with IQ testing in Africa should not be ignored. 

Others have claimed that IQ test scores are nevertheless comparable across 
cultures (Lynn, 2006; Rushton, 2000b). However, before one can interpret IQ test scores 
differences across individuals or groups in terms of some latent cognitive ability (e.g., g), 
several conditions have to be met. Necessary but insufficient conditions for such an 
interpretation concern reliability and validity of tests. That is, the test scores must show 
some level of consistency, either internally, or in repeated testing. In addition, the test 
scores should show merit in their correlation with other cognitive ability test scores (i.e., 
convergent validity). Ideally, structural equation modeling is employed to shed some light 
on factors involved in test performance. Test scores’ validity may be substantiated by their 
prediction of criteria such as school grades (i.e., predictive validity). Predictive regression 
lines can be compared across groups, but these do not establish conclusively the absence of 
measurement bias (Millsap, 1997a). For a comparison across diverse cultural groups to be 
truly valid, tests and items should function equivalently in all groups of test takers to be 
compared. Specifically, tests and items should display measurement invariance with respect 
to groups (Mellenbergh, 1989; Millsap & Everson, 1993).  

Measurement invariance across groups implies that the relation between test scores 
and latent traits, which are supposed to underlie those scores, is identical across groups. 
Measurement invariance can be tested by employing a measurement model in which this 
relation between test scores and latent trait(s) is explicitly modeled (Holland & Wainer, 
1993; Meredith, 1993; Millsap & Everson, 1993). The relation between test scores and 
latent traits is central to the question of cross-cultural comparability of IQ test scores (e.g., 
Little, 1997; Poortinga & van der Flier, 1988). Within Item Response Theory (IRT) models, 
measurement bias is called Differential Item Functioning (DIF). DIF is said to be absent 
when, in a sufficiently restrictive measurement model (e.g., an unidimensional three 
parameter logistic item response model), measurement parameters linking ability to tests 
scores are approximately equal across groups (i.e., not-significantly different). The absence 
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of DIF (i.e., measurement invariance) provides strong support for the claim that the test 
score differences across groups reflect group differences on the latent trait that is supposed 
to underlie those scores. Put differently, if measurement invariance is supported, this 
implies that we are measuring the same thing in different groups. However, as long as 
measurement invariance has not been established, one cannot simply conclude that the 
measurement problems with IQ testing in Africa are irrelevant.  

IQ scores may or may not reflect accurately levels of general intelligence or g. For 
instance, in factor analytic studies (Carroll, 1993) the SPM has often shown a high g loading 
(i.e., strong correlation with g), but that does not mean this test does not measure additional 
traits (e.g., Carpenter, Just, & Shell, 1990; Dillon, Pohlmann, & Lohman, 1981; Mackintosh 
& Bennett, 2005; van der Ven & Ellis, 2000). If groups differ on such an additional trait 
besides g, a group difference in SPM scores does not solely reflect a group difference in g. 
In one of the few factor analyses in which SPM scores of Africans were factor-analyzed 
with additional cognitive ability tests, the SPM did appear in some samples to load on 
additional factors besides g (Irvine, 1969b). Therefore, group differences in SPM or CPM 
scores can not simply be interpreted as group differences in g. In our review, we consider 
psychometric properties, measurement invariance, and factorial nature of the SPM, CPM, 
and DAM tests in Africa. 

Misunderstanding instructions, measurement bias, and suboptimal testing 
conditions may all lead to an underestimation of cognitive ability of IQ of Africans. 
Therefore, we exclude from our review of average IQ in Africa those samples in which 
such effects were obvious. However, measurement invariance studies involving Africa 
samples are very sparse, and not all data sources include sufficient information to establish 
whether testing conditions were acceptable (e.g., whether test takers understood the 
context and the instructions). Therefore, we stress the importance of care in interpreting 
the IQ scores in Africa, which we will provide below: IQ test scores and general 
intelligence are distinct entities (Bartholomew, 2004). 
 
5.4 The Flynn Effect 

 
Besides psychometric problems, there are several possible reasons that average IQ 

scores among Africans are often lower than average IQ scores in western populations. 
Lynn (2006) and Rushton and Jensen (2005a) have claimed that genes play an important 
role, while environmental circumstances are less important. However, the prenatal, 
postnatal, and childhood circumstances of many African children are not as good as those 
in the developed world (e.g., Mung'ala Odera, Snow, & Newton, 2004; Sigman, Neumann, 
Jansen, & Bwibo, 1989). Moreover, variables related to economic and social development 
are known to have a strong positive effect on average IQ scores. In the western world, 
average IQ scores have shown remarkable gains over the course of the twentieth century 
(Flynn, 1984, 1987, 2006). These gains have been largest for non-verbal tests once 
considered relatively unaffected by cultural factors. For instance, in The Netherlands an 
unaltered version of Raven's SPM test was administered to male military draftees from 
1952 to 1982. The 1982 cohort scored approximately 20 IQ points higher than the 1952 
cohort (Flynn, 1987). Proposed causes of this so-called Flynn Effect include gains in test 
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sophistication (Brand, 1987) and improvements in test specific skills (Greenfield, 1998; 
Wicherts et al., 2004). Other proposed causes are related to gains in latent cognitive ability, 
such as improvements in nutrition (Lynn, 1989, 1990), urbanization (Barber, 2005), 
improvements in health care (W. M. Williams, 1998), a trend towards smaller families 
(Zajonc & Mullally, 1997), increases in educational attainment (Ceci, 1991; Husén & 
Tuijnman, 1991; Tuddenham, 1948), improvement of educational practices (Blair et al., 
2005), greater environmental complexity (Schooler, 1998), the working of gene by 
environment correlation in the increasing presence of more intelligent others (Dickens & 
Flynn, 2001), and the genetic effect of heterosis (Mingroni, 2004). Although there is some 
indication of a similar secular trend in IQ scores on the CPM in Kenya in recent years 
(Daley, Whaley, Sigman, Espinosa, & Neumann, 2003), little is known about the Flynn 
Effect in Africa. However, in developing countries south of the Sahara, most of the 
environmental variables assumed to be responsible for the Flynn Effect, have not been 
subject to the improvements that the developed world has enjoyed over the last century. As 
far as the data permit, we will also focus on possible secular trends in IQ test scores in 
Africa. In addition, in the last part of our study we relate estimates of national IQs of sub-
Saharan African countries and other countries around the world to variables that have been 
proposed as causes for the Flynn Effect in the developed world. The results of this exercise 
may contribute to our understanding of the current status of African IQ levels and of the 
potential of the Flynn Effect in sub-Saharan Africa.  

 
5.5 Average IQ in Africa 

 
Our review focuses primarily on the SPM and CPM. These tests are commonly 

used in Africa, and Lynn’s review of African IQ draws mainly on SPM and CPM data. In 
addition, the SPM and CPM are non-verbal tests that are often claimed to be the best 
indicators of g. According to Spearman’s hypothesis (Jensen, 1998), which states that g is 
the main locus of mean differences in IQ scores, these tests should show the largest 
difference between African and European samples. We also consider the DAM test 
because it is used commonly in Africa. Because the DAM test is less highly g loaded 
(Jensen, 1980), Spearman’s hypothesis implies that African IQ on the DAM should be 
higher than IQ on the CPM and SPM tests.  

 
Method 

Selection bias 
 It is well known that the use of convenience sampling may result in highly 
inaccurate estimates of the characteristics of a population. In his attempts to estimate 
average scores of the population of (countries in) sub-Saharan Africa, Lynn uses published 
studies, which often employed convenience sampling. For instance, Fahrmeier (1975) did 
not intend his sample to be representative for the entire population of Nigerian school-
aged children. If so, he would not have sampled children solely from one of the many 
ethnic groups in Nigeria. More importantly, he would not have restricted his sampling 
scheme to children in one town in North-Nigeria, a part of Nigeria where primary school 
attendance was considerably below the national average in the 1970s (i.e., under 30% as 



110                                                                                                                                        CHAPTER 5 

 

opposed to 71% nationwide; Maduagwu, 2003). Nevertheless, some samples used by Lynn 
to arrive at population estimates of average test scores in sub-Saharan Africa were in fact 
sampled carefully to be representative of a (sub)population of a particular country (e.g., 
Costenbader & Ngari, 2001; MacArthur et al., 1964). Unfortunately, Lynn ignores a sizeable 
portion of studies in which IQ tests were administered in Africa. Besides, he gives small 
unrepresentative samples as much weight as large representative ones in his estimates of 
average IQ of Africans. Because in most cases representative samples are much larger than 
convenience samples, one straightforward, albeit partial, solution to the issue of selection 
bias is to weight average IQ scores by sample size. An additional reason to do so, is that the 
effect of sampling variability decreases as sample size increases.  
 Note that our review of the literature and our estimates of average IQ are 
concerned with the overall Black population of sub-Saharan Africa. This represents a crude 
generalization that does not do justice to the wide cultural, social, and economic differences 
between the many peoples of sub-Saharan Africa. However, the data are generally 
insufficient to arrive at an acceptable estimate of average IQ per country or cultural group.  
 

Selection of Studies 
We did not limit our attention to studies identified by Lynn. Instead, we tried to 

locate studies in which the IQ tests most commonly used in Africa (SPM, CPM, DAM) 
were administered to samples of Africans. To this end, we used Psychinfo and a 
combination of various search terms. The search terms we used were "Raven", "IQ", 
"progressive matrices", "Draw", combined with the words "Africa", “African”, and the 
names of all countries in the continent (e.g., "Nigeria" or "Nigerian"). We located additional 
papers while scanning the reference lists of the papers we found. In addition, we collected 
in Web of Science all articles (from 1988 onwards) referring to the various manuals of the 
SPM, CPM, and the DAM. This resulted in about 2500 papers for the SPM/CPM and 300 
papers for the DAM. The titles of all these papers were scanned for relevance. We used 
only books, papers, or reports that were available through the IBL system in the 
Netherlands, a system to which 400 Dutch libraries are connected. Although our approach 
resulted in a large sample of studies of African IQ, it is conceivable that we missed other 
studies.  

The following criteria were employed in the selection of studies. First, the 
condition of administration of the tests should reasonably approximate those stipulated in 
the test manual. For instance, we excluded the SPM scores of Zindi's (1994a) sample of 
Zimbabwean school children, because the SPM was not administered in its entirety (i.e., 
only 36 of the 60 items were given), and because it is not clear how Zindi arrived at his IQ 
estimate of 70. We also disregarded Klingelhofer's large sample of secondary school 
students from Tanzania (average IQ of 78 according to Lynn), because Klingelhofer 
imposed a time limit on the SPM (a nonstandard condition). He did so to "[preclude] some 
of the kinds of comparisons that have marked the literature" (Klingelhofer, 1967, p. 206). 
Whenever tests were administered twice, we used the pretest scores. We did not assign IQ 
values to studies in which the SPM, CPM, or DAM did not meet basic psychometric 
standards, as will be discussed in the results section. For instance, the test-retest reliability 
in Wober’s sample of Nigerian factory workers was 0.59, i.e., lower than the 0.80 typically 
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found with the SPM (J. C. Raven et al., 1996), and the correlation between pretest SPM 
scores and educational attainment did not deviate significantly from zero (see also Wober, 
1966). Therefore, we did not consider this sample in our estimation of average IQ. 
 We used only data sets from sources which included sufficient descriptive statistics. 
This excluded a large number of studies, in which raw means or percentile scores were not 
given. Whenever medians were given, we took the median as an estimate of the mean. In 
one source (Morakinyo, 1985), percentile scores were reported, and we translated these to 
approximate raw means to compare the scores to a more recent norm table. Unless stated 
otherwise, all IQs are standardized IQs normed in Great Britain (CPM, SPM) or the US 
(DAM).  

The last criterion is concerned with norms. We excluded CPM data of age ranges 
for which no British norms exist. This criterion resulted in the exclusion of several studies 
in which the CPM was administered to adolescents and adults (Berlioz, 1955; Berry, 1966; 
Binnie Dawson, 1984; Boissiere, Knight, & Sabot, 1985; Kendall, 1976; Sternberg et al., 
2001). Lynn assigns average IQs below 70 to these samples (cf. Herrnstein & Murray, 
1994). However, there are no (British) CPM norms above the age of 11. Lynn (R. Lynn, 
personal communication, June 22, 2006) employs a table from the SPM manual (J. C. 
Raven et al., 1996) with which CPM scores can be converted to SPM scores (cf. Lynn, 
1997). These approximate SPM scores can be compared to norms for adults, allowing a 
rough estimate of IQ. However, this method does not result in accurate estimates of IQ, 
because the CPM is too easy for healthy test-takers above the age of 11. This results in a 
problematic ceiling effect. Because of this ceiling effect, it is very hard to get an above-
average SPM-norms IQ on the CPM. For instance, the only possible CPM score equivalent 
to an above average IQ for a twenty-year-old would be a perfect score on this 36-item test. 
That is, an CPM score of 36 is equivalent to an SPM score of 57 (J. C. Raven et al., 1996), 
which corresponds to an IQ of 115. Likewise, a CPM score of 34 corresponds to an IQ of 
93. However, some unreliability would normally lead an above average intelligent adult to 
make a few mistakes on the CPM. With 4 errors, the adult’s IQ score drops to 84. This 
effect virtually guarantees an underestimation of IQ with the CPM in samples above the 
age of 11, particularly in adults. The drawbacks of this conversion method are evidenced by 
the fact that a carefully selected norm sample of 894 normal healthy adults from Italy and 
San Marino (Measso et al., 1993) would have had an average IQ of 75 on the CPM 
according to this conversion method. Even in the subsample of those with at least 14 years 
of schooling (N = 89), average IQ based on this method would be as low as 84. Because 
this conversion method does not result in reasonable IQ estimates, we do not consider IQ 
scores based on CPM scores of adults and adolescents. 

 
Converting Raw Scores to IQ 

While IQ scores on the DAM are usually provided in the original source, the SPM 
and CPM raw scores need to be converted to percentile scores given in norm tables. These 
percentile score are then translated to IQ scores on the basis of a normal distribution with 
M = 100 and SD = 15. For the SPM scores collected during the 1950s and 1960s, we use 
British norms of 1938 for children and 1948 norms for adults (both of which are given in: 
J. C. Raven, 1960). For the data collected after 1965 (i.e., the midpoint of various 
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SPM/CPM standardizations), we used British SPM norms of the 1979 standardization for 
children (J. Raven, 2000) and the 1992 standardization for adults (J. C. Raven et al., 1996). 
Likewise, we used the 1956 British norms (J. C. Raven, 1956) of the CPM for samples in 
the 1950s and the first half of the 1960s. For samples beginning 1966, we employed the 
British CPM norms of 1982 (J. C.  Raven, Court, & Raven, 1990). In contrast to Lynn's 
approach, we did not correct for the Flynn Effect. The primary reason is that the secular 
trend has not been documented in African countries, and so we cannot reasonably correct 
for an effect, which has not been established. In addition, we chose the year of 1965 as a 
midpoint, so the upward and downward corrections would be approximately32 balanced. 

It is important to note that Raven never intended to use the Progressive Matrices 
tests to be used as an IQ test. There are indeed several reasons for not converting Raven’s 
scores to IQs. First, the Progressive Matrices are limited to a single test-format. If the test 
taker is unfamiliar with this format, or the stimulus material in it, intelligence will be 
underestimated. In addition, in comparison to IQ batteries, such as the Wechsler scales 
(Wechsler, 1974, 1997), the number of items in Raven's scales is quite small in the SPM 
(i.e., 60 items), and smaller still in the CPM (i.e., 36 items). An additional problem arises in 
the translation from SPM/CPM raw scores to IQ scores, particularly in the extreme score 
ranges. For instance, a raw SPM score of 9 for a 7 year-old equals the first percentile of the 
British 1979 norms of this age group. Given a normal distribution with a mean of 100 and 
an SD of 15, this first percentile is equivalent to an IQ of 65. However, suppose that by 
chance our 7-year-old were to guess one additional item correctly. This would raise the raw 
score to 10, which is equivalent to the fifth percentile in the 1979 SPM norms, which 
corresponds to an IQ of 75. In the extremes of the distribution, norm tables include large 
leaps, and a single item that functions differentially between groups (i.e., is biased) might 
mean a 10-point IQ effect.  
 In our calculation of IQs based on raw SPM and CPM scores, we tried to be as 
careful as possible. Because most of these norms tables do not give percentiles for all raw 
scores, some inter- and extrapolation was necessary to arrive at percentile scores. In the few 
cases in which a raw mean was below the 1st percentile, we assigned an IQ of 64 (similar to 
the approach employed by Lynn & Vanhanen, 2002). In studies where scores were reported 
for subsamples, we first estimated IQs for the separate groups, and then computed an N-
weighted average of IQ scores. Whenever scores were given for a particular age range (e.g., 
7-8 years), the average IQ was compared to the norms for the corresponding age groups 
(e.g., 7, 7½, 8, and 8½ year-olds). The average IQ was an average of these age-norms after 
weighing for sample size. If a data source indicated that the age distribution was peaked at a 
certain age, we adjusted our estimates accordingly. Our approach almost always resulted in 
an IQ estimate that was equal to the estimate that was based on the overall average raw 
score of the sample, when compared to the norm that corresponded to the average age of 
the entire sample. If not, we took the average IQ of both approaches. All steps in the 
                                                 
32 Nevertheless, we did check whether the Flynn Effect correction made a difference. The correction used in our 
check is based on Lynn’s approach in which British norms on the SPM and CPM should be lowered by 2 IQ points 
per decade when data is more recent than standardization, or 2 points per decade upwards whenever the data is older 
than the standardization (Lynn & Hampson, 1986). Similarly, for the DAM, we also follow Lynn’s adjustments of 3 
IQ points per decade. 
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estimation of IQ scores are available upon request by the first author. We note that in 
determining IQ, it is conceivable that the aggregation of raw scores from different test 
takers with varying ages does not necessarily match the average of IQ scores, when these 
are computed at the individual level. In sum, the assignment of IQ values for the SPM and 
the CPM is problematic, and the values we provide are only given in order to arrive at a 
rough estimate of average IQ that can be compared to the average IQs estimated by Lynn. 
 

Results 
The overview of studies into IQ of samples sub-Saharan African is now provided 

for each of the most commonly used tests separately. Next, we will focus on some of the 
additional data provided by Lynn to back up his claim that average IQ in Africa lies around 
67. After that, we will discuss the issue of measurement invariance, and the data employed 
by Lynn to validate his estimates of national IQ. 

 
Raven's Standard Progressive Matrices 

IQ estimate. Table 5.1 gives average SPM scores and corresponding IQ scores for 38 
samples in sub-Saharan Africa, totaling 13,880 cases, of which 8,808 cases (63%) were 
included in Lynn’s (2006) latest literature review. The table reports the country of origin, a 
short description of the sample, the sample size, the approximate or given year of 
administration, the age range or average age, the percentage of formally schooled (i.e., more 
than 3 years of education) persons in each sample, reliability of the SPM (where given), the 
average raw score, range of raw SD values per subsample (where given), our IQ estimates, 
and the IQ estimates provided by Lynn (2006). Of the 36 samples to which we did assign 
an IQ (N = 13,727), the average IQ varies between 69 and 97 compared to an average IQ 
of 100 in Great Britain. Combining these averages results in an N-weighted mean IQ of 78 
(median 78, SD = 5.8).33 Average IQ on the SPM in the United States is approximately 2 
points lower than the average in Great Britain (Lynn & Vanhanen, 2002; J. C. Raven et al., 
1996). If we choose to compare the African SPM scores to an IQ of 100 for the United 
States, average SPM IQ in sub-Saharan Africa would be 80 (median 80) on the basis of the 
present samples. 

The samples that were considered by Lynn, but to which we did not assign an 
average IQ are Wober's (1969) sample of factory workers, and Verhaegen’s (1956) sample 
of uneducated adults from a primitive tribe in then Belgian Congo in the 1950s. Verhaegen 
indicated that the SPM test format was rather confusing to these test takers and that the 
test did not meet the standards of valid measurement. In Wober's study, the reliability and 
validity were too low for valid measurement (Wober, 1975). Besides, it is rather hard to 
believe that the highest scoring person in Wober’s sample (whose raw score was 27) did not 
reach the cognitive level of an average 8-year-old British child. Unless one subscribes to the 
view that these employed men are mentally retarded, these data cannot be taken seriously.  

Three of the remaining samples show average IQs below 70. These are Owen's 
large sample of Black school children South African tested in the 1980s, the 17 (not 26 as 

                                                 
33 Were one to correct for the Flynn Effect in a way comparable to Lynn (cf. Footnote 32), the average IQ equals 77.  
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Lynn reports) Black South Africans carefully selected because of their illiteracy by Sonke 
(2001), and a group of uneducated Ethiopian Jewish children who lived isolated from the 
western world in Ethiopia, and immigrated to Israel in the 1980s (Kaniel & Fisherman, 
1991). Apart from Owen's sample, these samples cannot be considered population samples.  

Carefully selected samples are Irvine's (1969b) random selection from the 1962 
standardization of several tests among schooled children in Zimbabwe (then Southern 
Rhodesia), the standardization data from the Northern Rhodesia Mental Survey 
(MacArthur et al., 1964), Notcutt's (1950) standardization samples of Zulu school children 
and literate and illiterate Zulu adults in South Africa, and Jedege and Bamgboye's (1981) 
randomly selected secondary school students in Nigeria. These more carefully sampled 
groups of test takers all show average IQs of 75 or higher.  

There are some large discrepancies between our IQ estimates and those provided 
by Lynn. In some instances this is due to the Flynn Effect correction employed by Lynn 
(e.g., Nkaya, Huteau, & Bonnet, 1994). Other discrepancies are due to the use of different 
norm tables. For samples from before 1966, we used the UK norms of 1938/1948, whereas 
Lynn calibrated all samples against the UK norms of 1979 for children, and the 1993 US 
norms for adults. Despite his Flynn Effect correction, Lynn’s use of recent norm tables for 
older samples leads to lower IQ estimates in several samples (Latouche & Dormeau, 1956; 
Notcutt, 1950; Ombredane, Robaye, & Robaye, 1957; Pons, 1974). In some instances, 
however, we were unable to replicate Lynn's IQ estimate (Kozulin, 1998; Laroche, 1959; 
Lynn & Holmshaw, 1990).34 For instance, Laroche's sample of adolescent boys (average 
age 12.7) tested in 1955 scored on average 29.5, which corresponds roughly to the 8th 
percentile (i.e., IQ of 79) for these age groups in the 1979 British standardization. Because 
of Lynn's Flynn Effect correction (i.e., 24 years), this should be increased to an IQ of 84. 
However, Lynn writes that the average scores were below the 1st percentile (Lynn & 
Vanhanen, 2002, p. 202), and assigns an average IQ of 68 to this sample. Our estimate of 
IQ in this sample is based on the comparison with 1938 norms, which gives a mean score 
near the 17th percentile (IQ of 86) for these age groups.35 Further differences may have 
arisen from the fact that we added two points to SPM scores when persons were tested 
individually (Ahmed, 1989; Grieve & Viljoen, 2000; Lynn & Holmshaw, 1990; Sonke, 
2001), in accordance with the explicit instructions in the test manual (J. C. Raven et al., 
1996). For several adult samples, Lynn's estimates lie somewhat higher than ours, possibly 
because Lynn employed United States norms for adults, where IQ is slightly lower than in 
Britain.  

                                                 
34 Lynn’s IQ estimate of children aged 9 and a half (Lynn & Holmshaw, 1990) is 65 (he additionally subtracts two 
points for the Flynn Effect). This is probably based on a (rounded) score of 12. However, the mean of this sample 
(i.e., 12.7) is closer to 13 and that score corresponds to an IQ of 72 for 9-1/2 year-olds. Our estimate is higher still 
because the SPM was administered individually in this study. 
35 Note that with the addition of the Flynn Effect correction of 2 points per decade, this value should be lowered by 
3 IQ points, resulting in an IQ of 83.  



 

 

Table 5.1 
Sub-Saharan African scores on the Standard Progressive Matrices 
Source Country Sample description N Year Age Edu Rel M SD IQ IQ Lynn 

(Ahmed, 1989) Sudan School children from Khartoum 146 ±1988 8-12 100 - 18.56 - 77 72 
(Crawford Nutt, 1976) South Africa Children from high school in Soweto 228 ±1975 19 100 .82 45.00 5.6-6.1 83 - 
(Grieve & Viljoen, 
 2000; Sonke, 2001) 

South Africa Impoverished University students  
in rural Venda 

30 1996 19-29 100 - 37.37 6.79 75 77 

(Irvine, 1969b) Zimbabwe Random selection of children with 8 years 
of education 

200 1962 14-18 100 - 27.8 9.89 81 - 

(Jedege & Bamgboye, 
1981) 

Nigeria Random selection of secondary school  
students in Oyo State  

755 1977 11-15 100 - 28.49 - 77 - 

(Kaniel & Fisherman, 
1991) 

Ethiopia Uneducated Ethiopian Jews in Israel 250 ±1985 14-15 0 - 27 - 69 69 

(Kozulin, 1998) Ethiopia Ethiopian Jews immigrated to Israel 46 ±1995 14-16 100 - 28.41 8.81-10.50 72 65 
(Laroche, 1959) Congo-Zaire Boys in schools in Elizabethville 222 1955 10-15 100 .94 29.5 8.9-11.9 86 68 
(Latouche & Dormeau, 
1956) 

Central  
Afr. Republic 

Candidates for centre for accelerated 
 technical learning in Bangui 

1144 ±1953 17+ 100 - 19.54 7.82-9.45 72 64 

(Latouche & Dormeau, 
1956) 

Congo-Braz. Candidates for centre for accelerated  
technical learning in Brazzaville 

1596 ±1953 17+ 100 - 23.93 9.15-9.74 78 64 

(Latouche & Dormeau, 
1956) 

Congo-Braz. Candidates for centre for accelerated 
 technical learning in Pointe-Noire 

580 ±1953 17+ 100 - 23.55 7.90-9.14 78 - 

(Lynn & Holmshaw, 
1990) 

South Africa Children from socially representative state 
primary schools 

350 1988 9.5 100 - 12.7 4.5 77 63 

(MacArthur et al., 1964) Zambia Repr. sample of students in class 6 759 1963 15.5 100 - ≅ 27 - 79 77 
(MacArthur et al., 1964) Zambia Repr. sample of students in Form II 649 1963 17.5 100 - ≅ 34 - 87 - 
(MacArthur et al., 1964) Zambia Technical college students 195 1963 18+ 100 - ≅ 30 - 84 - 
(MacArthur et al., 1964) Zambia Mine farm youth students 292 1963 16.5 100 - ≅ 26 - 79 - 
(Maqsud, 1997) South Africa High school students of Batswana Tribe 140 ±1995 17-20 100 .83 ≅ 39 - 75 - 
(Maqsud, 1980b) Nigeria Secondary school girls in Kano city 136 ±1979 13-15 100 - 38.7 5.33-6.12 85 - 
(Maqsud, 1980a) Nigeria Boys from two primary schools 120 ±1979 11-12 100 - 22.1 4.1 72 - 
(Morakinyo, 1985) Nigeria Psychiatric out-patients and controls 28 ±1983 18+ ? - ≅ 47 - 87 - 

(table continues) 



 

 

Table 5.1 (continued) 
Source Country Sample description N Year Age Edu Rel M SD IQ IQ Lynn 

(Nkaya et al., 1994) Congo-Braz. Secondary school children 88 ±1992 13.25 100 .91 29.6 11.6 75 73 
(Notcutt, 1950) South Africa Zulus in primary schools near Durban 1008 1948 8-16 100 - 22.49 3.70-10.90 81 75 
(Notcutt, 1950) South Africa Literate and illiterate Zulu adults 703 1949 17+ 44 - 22.15 6.90-11.85 75 64 
(Ombredane et al., 1957) Congo-Zaire Members of Baluba tribe 320 1954 17-29 74 - 22.14 - 75 64 
(Okunrotifa, 1976) Nigeria Rural primary school children  50 1974 5.5 100 - ≅ 12 - 87 - 
(Okunrotifa, 1976) Nigeria Urban primary school children  100 1974 7.0 100 - ≅ 13 - 84 - 
(Owen, 1992) South Africa Children from schools in PWV  

and Kwazulu-Natal 
1093 1986 16 100 .93 27.65 10.72 69 63 

(Pons, 1974) Zambia Bemba adult males employed in mining 152 ±1961 18+ 100 .82 23.18 8.5 77 64 
(Pons, 1974) Zambia Bemba adult males employed in mining 1011 ±1965 18+ 100 .88 33.66 9.79 87 - 
(Raveau, Elster, & 
Lecoutre, 1976) 

Madagascar African adults working in France 143 ±1975 18-49 100 - 40.92 12.47 79 82 

(Raveau et al., 1976) Various African adults working in France 588 ±1975 18-49 100 - 38.47 12.02 74 - 
(Rushton & Skuy, 2000) South Africa University students in psychology 173 1998 17-23 100 .91 43.32 8.79 80 83 
(Rushton et al., 2002) South Africa University students in engineering 198 ±2000 17-23 100 .87 50 6.4 92 93 
(Skuy et al., 2002) South Africa University students in psychology 70 ±2000 17-29 100 - 43.20 7.84-10.24 80 81 
(Sonke, 2001) South Africa Illiterates from rural Venda 17 1995 13-20 50 - 25.7 7.67 69 68 
(Verhaegen, 1956) Congo-Zaire Unschooled adults from Kasai  67 ±1955 18+ 0 - 12.89 3.87 NA 64 
(Wober, 1969) Nigeria Male factory workers 86 1965 18+ ? .59 15.9 4.84 NA 64 
(Zaaiman, van der  
Flier, & Thijs, 2001) 

South Africa Disadvantaged university students 147 1995 18+ 100 - 52.3 4.2 97 100 

Note: The assignment of IQ values is problematic and these values are only provided in order to compare them to the IQs estimated by Lynn. 
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From Table 5.1, it is apparent that the samples not considered by Lynn have 
considerably higher average IQ than the samples that he did consider. In some cases, Lynn 
chose not to include in his review particular data despite the fact that these additional data 
were presented in the same sources from which he drew his data (Crawford Nutt, 1976; 
MacArthur et al., 1964; Raveau et al., 1976). In this respect, Lynn’s exclusion of the large 
representative sample that MacArthur and colleagues collected for Form II students in 
Zambia is particularly striking.36 

Note that five of the SPM samples reviewed here contain Black university students 
from South Africa (Grieve & Viljoen, 2000; Rushton & Skuy, 2000; Rushton et al., 2002; 
Skuy et al., 2002; Zaaiman et al., 2001). These students (N = 618) score higher on average 
(IQ: M = 88, median = 92) than the remaining samples. In some studies (Grieve & Viljoen, 
2000; Rushton & Skuy, 2000; Skuy et al., 2002), the university samples scored lower than 
would be expected from academically selected groups. One aspect of these samples is that 
they were all tested by White researchers, which may have lowered test performance among 
these Black students (Dambrun & Taylor, 2005; but see Jensen, 1980). Moreover, various 
studies have shown that African American students may suffer from the performance 
lowering effects of stereotype threat (Steele & Aronson, 1995; Steele et al., 2002). For 
instance, in one study (McKay, Doverspike, Bowen Hilton, & Martin, 2002) African 
American students were administered the Advanced version of Raven’s Progressive 
Matrices under one of two conditions that differed in the presentation of this test. Students 
who were told that they were doing an IQ test supposedly suffered from stereotype threat 
(i.e., the fear of conforming to the stereotype of lower IQ among African Americans), 
which lowered their scores by about 5 IQ points as opposed to African American students 
who were led to believe they were making a non-intellectual test (i.e., a less threatening 
condition in which the stereotype is irrelevant). Although we are not familiar with any 
studies of the effect of stereotype threat on test performance in (South) Africa, given the 
long history of constitutionalized discrimination of Blacks in South Africa, it would not be 
surprising if stereotype threat has an effect (Suzuki & Aronson, 2005). According to 
stereotype threat theory (Steele et al., 2002), this effect should have particularly strong 
negative effects on test performance of test takers who are academically well motivated and 
for whom intelligence is an important aspect of their identity, such as university students. 
Further research into the effects of stereotype threat in (South) Africa is clearly needed.37 

In contrast to the university students, 734 cases (5.3%) in Table 5.1 had no formal 
schooling (defined as 3 years of education or less). These 734 uneducated test takers had an 
N-weighted average IQ of approximately 71, which is considerably below the overall 
average. Note that the SPM may lack validity in samples with no formal schooling (Dague, 
1972), but lower scores among non-schooled test takers may also reflect true levels of 

                                                 
36 Lynn only used the representative sample of Standard 6 students of this elaborate study. It is unclear why he 
excluded the other large sized samples in the Northern Rhodesia Mental Ability Survey, most notably the large 
representative sample of Form II students. The raw median values of all samples are presented next to one another 
in one table on page 84 of the report, so he could not have missed the other sample medians.  
37 Dambrun and Taylor (2005) claimed that the entire Black-White IQ gap in the US can be accounted for by the 
effects of stereotype threat, but this conclusion is not warranted (Sackett, Hardison, & Cullen, 2004; Wicherts, 
2005b). In addition, the effects of stereotype threat have not been studied on representative samples of African 
Americans, but mostly on small samples of university students.  
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lower ability. Because in sub-Saharan Africa the percentage of unschooled young people is 
around 20%,38 we may want to correct for this underrepresentation of unschooled persons. 
A rough stratification for educational level could be achieved by adding 2514 fictional 
uneducated cases with an IQ of 71 to the total sample. This would lower the average IQ by 
one point to 77. In sum, average IQ of sub-Saharan samples covered in this review equals 
78, or 77 when corrected for the underrepresentation of uneducated subjects. This needs to 
be raised to 79 or 80 when compared to US norms. This is considerably higher than Lynn's 
estimate of sub-Saharan African IQ based on the SPM data, which, when weighted by 
sample size, would result in a mean IQ of 69 and a median of 64.  
 Psychometric properties. As can be seen in Table 5.1, the reliability of the SPM was 
computed in several studies in Africa. Reliabilities are generally above 0.80, which is 
comparable to those found in western samples (J. C. Raven et al., 1996). Only in Wober’s 
(1969) sample, the reliability was unacceptably low.  

Convergent validity of the SPM is studied mainly in South-Africa. Grieve and 
Viljoen (2000) report a correlation of 0.40 between SPM scores and a reasoning test. 
MacArthur et al. (1964) and Notcutt (1950) correlated SPM scores with various 
achievement and cognitive ability tests, which resulted in reasonably high correlations. 
Moreover, SPM scores were found to correlate considerably with the performance of a 
perceptual learning potential test among South-African students (Skuy et al., 2002), and 
with the performance on a verbal learning task among healthy and unhealthy adults in 
Nigeria (Morakinyo, 1985). Likewise, Crawford Nutt (1977) reports significant correlations 
between the SPM and several reasoning tests.  

In Crawford Nutt’s (1977) principle axis analyses on these data, the SPM scores did 
not show the highest factor loading on the dominant axis, indicating that the SPM may not 
be as highly g loaded as it is in western samples. Irvine (1969b) conducted a factor analysis 
of SPM items and concluded that, unlike in the western samples studied by him, the SPM 
was not unidimensional in African samples. In a large scale factor analytic study employing 
data from Zambia and Zimbabwe, Irvine (1969a) found that the SPM was not solely an 
indicator of g in one sample, although it was in another sample.  

Predictive validity of the SPM was studied by Zaaiman et al. (2001), who found that 
the SPM correlated reasonably well with college performance. In addition, Maqsud (1980a) 
found highly significant correlations between SPM scores and school grades. An interesting 
aspect of Maqsud’s study was that these correlations were generally higher in the modern 
school than in the more traditional school. However, this could also be due to differences 
between schools in grading practices or student population. 

Some studies failed to support validity of the SPM in Africa. Laroche (1959) found 
non-significant or only low correlations between SPM scores and school grades. In stark 
contrast to comparable samples of children from Britain, Japan, and Hong Kong (cf. Lynn, 
1991), Lynn and Holmshaw (1990) did not find SPM scores in their sample of Black South 
African children to correlate significantly with reaction time tasks (at least not with the 
cognitive aspects of these tasks; Jensen, 1998). Ogunlade (1978, not in Table 5.1) obtained 
a correlation of only 0.15 between SPM scores and school achievement among 537 

                                                 
38 Based on UNESCO estimates of gross enrollment ratio in primary education over the period 1970-2003. 
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secondary school students in Nigeria. Finally, Wober (1966; cf. Wober, 1969) reported a 
non-significant negative correlation between SPM scores and assessments of job efficiency 
among 173 Nigerian employees. These negative results signal the need for more validity 
studies of the SPM in Africa. 

To summarize, judged by correlations with criteria and other tests, the SPM has 
been found to be valid as well as invalid in Africa. Several studies support convergent and 
predictive validity of the SPM in Africa, particularly among samples with relatively high 
scores. However, in light of the many claims of unsuitability of the SPM in Africa (Irvine, 
1969b; Ogunlade, 1978; Verhaegen, 1956; Wober, 1966, 1975) more research into the 
construct validity of the SPM is clearly needed. There is also a clear need for more work on 
the factorial status of the SPM in African samples (Irvine, 1969a). It is unclear (Crawford 
Nutt, 1977) whether the SPM is as highly g-loaded in Africa as it is in the west (Carroll, 
1993), and whether the SPM is factorially pure remains to be seen. Additional factor 
analyses with a larger battery of tests could shed light on this issue.  
 In none of the studies reported in Table 5.1 was measurement invariance studied 
with the methods of contemporary item response theory, and we are unfamiliar with any 
study of differential item functioning in which western SPM scores are compared to scores 
of African samples. We return to the issue of measurement invariance below. In the 
absence of information on measurement invariance of the SPM, the degree to which 
measurement bias may have led to an underestimation of ability in the sub-Saharan African 
samples remains unknown. Nevertheless, considering the low scores in some samples, such 
an underestimation is rather likely. 

The Flynn Effect in the SPM. The results in Table 5.1 are based on data from diverse 
samples, of varying age groups, and from different countries. Therefore, any secular trend 
in these data represents only a tentative indication of African IQ trends. Nevertheless, the 
adult samples (ages 17 and higher) are fairly comparable with respect to age, because they 
all include young adults (even the Raveau samples only include a handful of cases above the 
age of 40). In the study of adult trends, we excluded the university samples, because all of 
these are quite recent. We studied the Flynn Effect in the current samples by comparing all 
raw scores to the norms from the older standardization samples (i.e., 1938 for children and 
1948 for adults). For the newer samples this resulted in higher IQs than the values in Table 
5.1. The results are plotted in Figure 5.1. In this figure, we present separate (N-weighted) 
regression lines of IQ on year of administration for adults (solid line) and children (dashed 
line), separately.  

As can be seen, the steep regression line for the adults suggests the presence a 
considerable Flynn Effect, while the regression line of the children samples is more flat. 
Both (N-weighted) regression lines deviate significantly from zero (p < .001). These 
regression lines are equivalent to increases of 7 IQ points per decade for adults,39 and 2 IQ 
points per decade for children. The rise of adults is comparable to that reported for male 
adults in the Netherlands from 1952-1982 (Flynn, 1987), while the increase for children is 
comparable to the increase in Great Britain among children from 1949 to 1982 (Lynn & 

                                                 
39 Note that a Flynn Effect correction of the average IQs on the basis of this result is not necessary, because we aim 
to compare these IQs to British norms. In Britain, the gain in SPM scores equals about 2 IQ points (Lynn & 
Hampson, 1986). As said, this correction lowers average IQ by one point. 
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Hampson, 1989). A comparison of the adult samples from the different eras does not 
provide a compelling reason to think that samples are incomparable, so the rise in adult 
samples appears to be a robust phenomenon. When tested for significance without 
weighing for sample size, the Flynn Effect for adults remains significant (p < .001), whereas 
in the samples of children, the Flynn Effect is no longer significant (p > .05). In sum, there 
appears to have been a considerable Flynn Effect for African adults on the SPM among the 
samples considered here. More comparable adult samples are needed for more accurate 
estimates of the Flynn Effect in Africa. Nonetheless, the secular gain in Africa suggests that 
the IQ gap between British and African adult test takers has diminished over the years. 
There is an indication of a smaller rise in the children’s samples, but a more definitive 
indication of a Flynn Effect among African children should await more comparable 
samples.  
 

1940 1950 1960 1970 1980 1990 2000

YEAR

70

80

90

100

110

IQ
 S

P
M

 1
9

3
8

/1
9

4
8

 n
o

rm
s

group

children

adults

Cases weighted by sample size

 
Figure 5.1  Secular trends in IQ for adult and children samples on the SPM. 

 
 

Coloured Progressive Matrices 
IQ estimates. Table 5.2 reports on the twelve studies in which the Raven's Coloured 

Progressive Matrices was administered to sub-Saharan African children (combined N = 
4,313). The average IQs vary from 68 to 94. The N-weighted average of the twelve samples 
equals 78, (median 77, SD = 7.2). If we exclude Fahrmeier's (1975) study, in which the 
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CPM was administered in a non-standard fashion, we arrive at an average IQ of 79 (median 
82, SD = 6.9). Therefore, the average IQ of children in sub-Saharan Africa on the CPM 
appears to be 78 or 79.40 When compared to an average IQ of 100 for the US, this IQ 
among sub-Saharan African children equals 80 or 81.  

Besides the Fahrmeier's data, the samples that score relatively low are the children 
from poor rural areas tested by Jinabhai et al. (2004), a sample of Ethiopian orphans 
(Aboud, Samuel, Hadera, & Addus, 1991), and the representative sample of Ghanaian 
children (Glewwe & Jacoby, 1992; Heady, 2003). The low IQ for orphans is not surprising 
(but see Wolff, Tesfai, Egasso, & Aradom, 1995), given the harsh circumstances that such 
children often encounter (Aboud et al., 1991). Moreover, IQ in rural areas is often lower 
than in urban areas (e.g., Loehlin, 2000). However, the low average IQ of the representative 
sample of children in Ghana is peculiar, given that of all sub-Saharan countries Ghana is 
relatively well-developed (UN Development Programme, 2005). The low scores could be 
explained by the fact that the tests were administered in children’s houses. As the principle 
investigator put it: “[the test takers] may have been sitting in a chair or even on the ground” 
while taking the tests (P. Glewwe, personal communication, January, 17, 2006). This may 
have lowered the scores. Two recent representative standardization samples in Kenya 
(Costenbader & Ngari, 2001) and South-Africa (Knoetze, Bass, & Steele, 2005) show 
average IQs around 80. The highest scoring samples are those of private school children, 
whose fathers’ SES is high (Okonji, 1974), and a small sample of Ethiopian Jewish children 
in Israel (Tzuriel & Kaufman, 1999). 

Of the total of 4,165 children in the school-aged range, about 793 children (19 %) 
did not attend school. This is approximately equivalent to the population estimates of 
school attendance in current day sub-Saharan Africa (cf. Footnote 38). Moreover, the 
number of rural children and urban children in the samples in Table 5.2 appear to roughly 
reflect the population distribution in sub-Saharan Africa. Moreover, of the 11 samples 
considered, four are considered by the authors to be representative for a particular 
population. Although definitive statements require completely stratified random population 
samples, the data in Table 5.2 appear to provide a reasonable estimate of average IQ of 
African children on the CPM. 

In two instances, Lynn's estimate of average IQ is lower than would be expected 
from his Flynn Effect correction (Costenbader & Ngari, 2001; Jinabhai et al., 2004). It is 
conceivable that Lynn’s estimates are lower because he used the CPM-to-SPM conversion 
method to estimate IQ. With respect to the Ghanaian data, Lynn used as his source one 
average CPM score from a larger sample of ages 9-18 given by Glewwe and Jacoby (1992; 
see also Rushton & Jensen, 2005a). Our IQ estimate of this sample is based on mean scores 
reported separately for age and gender (from Heady, 2003), and can be regarded more 
accurate. In addition, we excluded age groups for which there no British CPM norms exist.  

                                                 
40 With the addition of a Flynn Effect correction of 2 IQ points per decade, the average IQ should be lowered by 2 
points. 



 

 

 
Table 5.2 
 Sub-Saharan African scores on the Coloured Progressive Matrices 
Source Country Sample description N Year Age Edu M SD IQ IQ Lynn 

(Aboud et al., 1991) Ethiopia Children in an orphanage in Jimma 134 ±1989 5-11 100 13.56  - 72 - 

(Costenbader & Ngari, 
2001) 

Kenya Children from representative schools 1222 ±1998 6-10 100 15.86 3.51-7.82 82 75 

(Daley et al., 2003) Kenya Children from rural district of Embu 118 1984 7.5 100 12.82 3.21 75 76 
(Daley et al., 2003) Kenya Children from rural district of Embu 537 1998 7.5 100 17.31 2.56 90 89 
(Fahrmeier, 1975) Nigeria Schooled and unschooled children in town 

 in North-Nigeria 
334 ±1973 6-11 57 11.42 - 68/NA 69 

(Heady, 2003) Ghana Representative population sample 589 1988 9-11 82 15.80 - 72 - 
(Heyneman & Jamison, 
1980) 

Uganda Students in 61 representative primary schools 1907 1972 10-18 100 27.07 8.47 NA 73 

(Jinabhai et al., 2004) South Africa Children from 11 rural primary schools 
 in poor  
Vulamehlo district 

806 ±2002 8-10 100 13.9 3.9 72 67 

(Knoetze et al., 2005) South Africa Xhosa-speaking primary school students 
 in peri-urban Eastern Cape 

172 ±2002 7.5-11 100 17.21 2.50-5.84 77 - 

(Okonji, 1974) Nigeria Children in private school in Lagos 73 1972 8-11 100 23.52 4.09-6.10 94 - 
(Ombredane, Robaye, & 
Plumail, 1956) 

Congo-Zaire Children of "very underdeveloped"  
Asalampasu tribe  

151 ±1955 6-11 79 14.50  76 - 

(Tzuriel & Kaufman, 1999) Ethiopia Ethiopian Jews immigrated to Israel 29 ±1992 6-7 100 15.60 1.65 94 - 
(Wolff et al., 1995) Eritrea Orphans and refugee children during war 148 1990 4-7 NA 12.4 3.0-3.6 87 - 
Note: The assignment of IQ values is problematic and these values are only provided in order to compare them to the IQs estimated by Lynn. 
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The average IQ in samples considered by Lynn is lower than the average IQ in 
than the samples that Lynn did not consider. But then we did not consider several adult 
and adolescent samples that were administered the CPM. It is certainly the case that the 
adult samples studied by Berry (1966) and others (Berlioz, 1955; Binnie Dawson, 1984; 
Kendall, 1976) showed very low CPM averages as compared to western samples (Measso et 
al., 1993). However, in some cases these averages are too low to be credible. For instance, 
Berry's sample of adults scored below 14 on average. It is hard to believe that these men 
were all severely mentally handicapped (if so, Berry would have presumably mentioned this 
in his paper). Besides, these samples cannot be considered random population samples. In 
two studies with the CPM (Berry, 1966; Binnie Dawson, 1984), the authors deliberately 
sampled adults with very little knowledge of western culture. The samples of adults in 
Tanzania and Kenya (Boissiere et al., 1985), and a large sample of adolescents from Uganda 
(Heyneman & Jamison, 1980) were more carefully sampled, and showed much higher 
average CPM scores. Even if we had included these adult and adolescent samples, average 
IQ based on the CPM scores in sub-Saharan Africa would not change very much. The 
reason is that most of these low scoring samples are small, whereas the large sample of 
adolescents in Uganda (N = 1907) showed an average score equivalent to an average IQ 
above 79.41 
 Psychometric properties of the CPM. Only in the study by Costenbader and Ngari (2001), 
is the reliability of the CPM reported. Both the internal reliability (0.87) and the test-retest 
reliability (0.84) in this study are sufficient and comparable to those in western samples. 
Several studies in Table 5.2 focused on convergent and predictive validity of the CPM. For 
instance, Tzuriel and Kaufman (1999) found that the CPM correlated reasonably well with 
two dynamic tests of cognitive ability, Aboud et al. (1991) found the CPM predicted school 
grades (r of 0.36 with age partialled out), and Heady found that CPM scores correlated 
significantly with scores on math and reading tests. In a study among 85 adolescents in 
Kenya (not in Table 5.2), CPM scores correlated reasonably well with vocabulary test 
scores, but non-significantly with the scores on a practical intelligence test (Sternberg et al., 
2001). 
 In several studies, the validity of the CPM was not supported. For instance, the 
correlation of the CPM with school grades in Fahrmeier’s of sample of school children was 
only significant in two of the seven classrooms, where these correlations could be 
computed (although power may have been low due to small sample sizes). Similarly, 
correlations of CPM scores with other cognitive ability tests were low in two other studies 
(Jinabhai et al., 2004; Okonji, 1974). In yet another study (not in Table 5.2) among 196 
children in Benin, the CPM correlated quite lowly with seven other cognitive tests (van den 

                                                 
41 Lynn (2006) states that the 1907 primary school students tested with the CPM in Uganda (Heyneman & Jamison, 
1980) are 11 years old, but most of these students are around 13. It is important to note that the score reported in 
Lynn’s source (Heyneman & Jamison, 1980) is based on the number correct out of 33 instead of 36 items 
(Heyneman, 1975), but Lynn’s source does not mention this. The first three items were used for instruction, so the 
average score needs to be raised by 3 points (these items typically have p-values of 1). If we add three points to the 
score and employ the CPM to SPM conversion (J. C. Raven et al., 1996), we can compare scores to the SPM norm 
table for the correct age range. This results in a rough estimate of an average IQ of 79. Due to the ceiling effect 
discussed earlier, this figure is likely to be too low. 
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Briel et al., 2000). In sum, validity of the CPM in sub-Saharan Africa shows some promise, 
but has not been established, and needs to be studied further.  

Unfortunately, in none of the studies in Table 5.2, measurement invariance was 
studied. Nevertheless, Ombredane and colleagues did study item characteristics in their 
samples (Ombredane, 1957; Ombredane et al., 1956) and found that the CPM showed a 
relatively large number of Guttman errors (e.g., Meijer & Sijtsma, 2001) in their samples. 
We were unable to locate any rigorous study of DIF in which CPM scores were compared 
across western and African samples, neither did we find studies into the factorial 
characteristics of the CPM. In the absence of such studies, it is uncertain to what degree 
lower CPM scores of sub-Saharan African children as opposed to western children reflect 
lower levels of general intelligence in the former group. The degree to which measurement 
bias may have led to an underestimation of ability in the sub-Saharan African samples 
remains unknown. 
 Flynn Effect in the CPM. Daley et al. (2003) already documented a Flynn Effect in the 
CPM among two comparable samples of children from rural Kenya. If we exclude these 
two Kenyan samples, there is no indication of a Flynn Effect in the remaining samples in 
Table 5.2. The number of studies is fairly small, and all but three of the samples antedate 
1980. More definitive conclusions with respect to a Flynn Effect on the CPM in Africa 
require more comparable samples. 
 

Draw-a-Man Test 
Goodenough-Harris Draw-a-Man test (DAM; Goodenough, 1926; Harris, 1963) is 

a non-verbal intelligence test for children aged two to thirteen in which children are 
required to make a drawing of a man. This drawing is rated on 51 (original version; 
Goodenough, 1926) or 73 (revised version; Harris, 1963) criteria that reflect cognitive 
development. Scores on the Draw-a-Man test have been shown to correlate reasonably well 
with scores on cognitive ability tests such as the Stanford-Binet (e.g., J. H. Williams, 1935) 
and the SPM (Carlson, 1970). It should be noted that the DAM test is not generally 
considered as good an indicator of general intelligence as tests like the SPM or CPM. We 
have nevertheless included this test in the current review, because the DAM can be 
administered easily and at low cost. For that reason, it is used commonly throughout 
Africa. Also, Lynn used DAM scores to estimate the average IQ in Africa. 

IQ estimates. The results of eleven studies of the DAM in sub-Saharan Africa are 
reported in Table 5.3. There are several samples to which we did not assign an IQ estimate 
for the simple reason that the administration of the DAM in these samples proved was 
fraught with difficulties. The first of these is Fahmy’s (1964) study among schooled and 
unschooled children of a primitive tribe in Sudan. He indicates that “[the] children who had 
no schooling, never used a pencil, and have no experience in how to conceptualize their 
visual image” (p. 172). Moreover, most of the unschooled children “recruited from under 
the bush” by Fahmy were naked. It is noteworthy that within Goodenough’s scoring 
scheme of the DAM test, five out of a total of 51 points are awarded for clothing worn by 
the drawn man. Not surprisingly, Fahmy considered the DAM test unsuitable for these 
Sudanese children, regardless of school attendance. In a study with the DAM also involving 
Sudanese children, Badri (1965b) noted that: “Many [children from remote villages] hold 
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pencils in unusual ways and say they have never before made a drawing on paper” (p.333). 
Badri therefore reaches a conclusion similar to Fahmy's with respect to the unsuitability of 
the DAM for these Sudanese children he tested. Despite these obvious problems, Lynn 
assigned these samples low IQs on the basis of their DAM performance. However, the 
DAM appears to unsuitable for African children without schooling (cf. Serpell, 1979). The 
most obvious reasons for this are inexperience with pencil drawing and the unfamiliarity 
with two-dimensional pictures, which is often encountered among these children. 

The nine samples to which we assigned an average IQ (combined N = 4,459) have 
average IQs varying from 76 to 99. The N-weighted average IQ equals 81 (median 76, SD 
= 6.3) when compared to the US norms published in 1926 for the older and 1963 for the 
more recent samples.42 Combined, the samples with assigned DAM IQs appear to be 
roughly representative for school-going children. However, more definitive statements on 
average IQ of African children on the DAM have to await more carefully sampled data. 
The lowest scoring sample, which is described as fairly representative for the urban school 
children in South Africa, is also the largest sample. The DAM in this study appeared not to 
have been administered under ideal circumstances: “Classroom conditions were not ideal 
from the point of view of scientific test administration” (Hunkin, 1950, p. 54). This may 
have lowered test performance to an unknown degree. 

One aspect that needs attention is the fact that the IQs in the three samples for 
which the 1926 norms were used (Badri, 1965a; Bardet, Moreigne, & Sénécal, 1960; 
Hunkin, 1950; Vernon, 1969) are not regular IQs (i.e., those based on the standardized 
normal distribution with M = 100, SD = 15), but IQs based on the outdated concept of 
mental age (i.e., the mental age times 100, divided by the chronological age). Raw scores in 
the Badri and Vernon studies are not given. However, Hunkin and Bardet et al. provide the 
average raw scores of their samples. Together with the means and SDs for US norm groups 
for ages 6-10 (from Goodenough, 1926), this enables a computation of the standardized IQ 
for these age groups in the samples in Hunkin (N = 1067) and Bardet et al. (N = 494), 
which results in average IQs of 83 and 76, respectively. When only the data of standardized 
IQs are used (combined N = 2,805), the N-weighted average IQ as compared to the US 
DAM norms equals 84 (median 83, SD = 5.1).43 It is again apparent from Table 5.3 that the 
samples not considered by Lynn showed higher IQs than the samples he did consider. In 
this table, however, any discrepancy between Lynn’s IQ estimates and ours are due to 
Lynn’s corrections for outdated norms.  

                                                 
42 The norms used are relatively old. A correction for the Flynn Effect according to Lynn’s approach (3 IQ points 
per decade), results in an overall average IQ of 74. 
43 With a Flynn Effect correction, this needs to be lowered with 6 points.  



 

 

Table 5.3 
Sub-Saharan African scores on Goodenough’s Draw-A-Man test 
Source Country Sample description N year age Edu IQ IQ Lynn 

(Badri, 1965a) Sudan 4th grade boys from rural and urban areas 293 ±1963 Not given 100 861 74 

(Badri, 1965b) Sudan Culturally deprived preschool boys 80 ±1963 6 NA NA 64 
(Bakare, 1972) Nigeria Upper-class and lower-class school children 393 ±1970 6-15 100 87 - 
(Bardet et al., 1960) Senegal School children from Dakar and rural area 750 ±1958 6-15 100 76 / 761 - 
(Fahmy, 1964) Sudan Children from primitive Shilluk tribe 184 1954 7-13 M NA 52 
(Hunkin, 1950) South-Africa Children from native schools in Durban 1729 1947 6-13 100 83 / 761 70 
(Minde & Kantor, 1976) Uganda Children in three primary schools 514 1972 9-14 100 89 - 
(Nwanze & Okeowo, 1980) Nigeria Children with reading problems 13 ±1978 5-10 100 99 - 
(Ohuche & Ohuche, 1973) Sierra Leone Children in experimental school  202 1968 5-11 100 95 - 
(Richter, Griesel, & Wortley, 1989) South-Africa Urban school children from townships 415 1988 5-13 100 84 77 
(Skuy, Schutte, Fridjhon, 
& O'Carroll, 2001) 

South-Africa Soweto secondary school children 100 ±1998 12-24 100 83 - 

(Vernon, 1969) Uganda Boys of above average SES 50 ±1965 12 100 951 - 
Notes. 1 IQs based computation with mental age. Remaining IQs are based on standardized IQs.  

The assignment of IQ values is problematic and these values are only provided in order to compare them to the IQs estimated by Lynn. 
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The 1963 norms of the DAM have been strongly criticized for being inaccurate 
(Howard Scott, 1981). If we add to the IQs in the recent samples the 10 points to correct 
for the inaccuracy of the 1963 norms (as suggested by Howard Scott), the average N-
weighted standardized IQ on the DAM of the samples (N = 2,805) becomes 88 (median 
83, SD = 9.3).44  

In sum, the average IQ on the DAM test can not be accurately determined. It is 
clear, however, that the average IQ of African samples is well above 80, and not the 
average IQ of 70 that Lynn reported. 
 Psychometric properties of the DAM. Two studies in Table 5.3 provide information of 
reliability of the DAM in sub-Saharan Africa. Test-restest reliability reported by Ohuche 
and Ohuche (1973) equals 0.82, but those reported by Minde and Kantor were considerably 
lower (0.63 - 0.66). Nonetheless, these values are in the range of values given in Harris’ 
(1963) manual. Predictive and convergent validity was studies in several samples. Richter 
and colleagues (Richter et al., 1989) found a strong correlations (multiple r = 0.64) between 
the DAM and five cognitive ability tests among the younger age group (ages 5 - 7). 
However, among children aged 8 - 13, the DAM did not correlate significantly with four 
(other) cognitive ability tests (multiple r = .20, NS).45 In the same sample, DAM scores 
correlated significantly with school performance, although common variance was rather 
small (r = .37, r2 =.14). Other studies in Africa also documented low correlations between 
DAM scores and school performance (Bakare, 1972; Minde & Kantor, 1976), particularly 
for older age groups (Hunkin, 1950; Ohuche & Ohuche, 1973). Predictive validity of the 
DAM for school performance appears to be reasonable for young children, but insufficient 
for those above age 8 (but see Nwanze, 1985). These results are in line with studies in the 
US that showed that DAM scores do not predict academic achievement very well (Howard 
Scott, 1981). 

Of all studies in Table 5.3, only Hunkin (1950) considered item characteristics in a 
rigorous manner. She documents several items on which African children score lower than 
US children. For instance, among the African children, the item related to clothing on the 
drawn man (Item 9a) showed marked lower performance than in the US standardization 
sample. Whereas Hunkin (1950) concludes that the test is suitable in principle for Urban 
Black children, she clearly states that US norms should not be used for that population. In 
fact, several authors (Badri, 1965a; Minde & Kantor, 1976; Munroe & Munroe, 1983; 
Serpell, 1979), including the test developers themselves (Goodenough & Harris, 1950), 
have argued that the comparison of DAM scores across cultures is problematic, because of 
cultural differences in experience with pencil-drawing on paper, and because several aspects 
of the scoring scheme are clearly culturally loaded. These problems signal a strong need for 
more insight into differential item functioning of the DAM test. However, we were unable 
to locate studies into measurement bias of this test using modern methods. In light of the 
absence of such studies, severe caution should be entertained in the interpretation of these 
                                                 
44 With a Flynn Effect correction, this estimate of average overall IQ equals 82.  
45 Richter et al. (1989) argue that the DAM test underestimates the IQ of test takers of eight years and older. This 
appears to be based on the fact that the mean scores of these older test takers differ more from the US mean than 
the mean scores of younger children. However, they have failed to take into account that the SD increases with age. 
When IQs are computed, the age groups above 7 have slightly higher IQ than the younger age groups. The exclusion 
of these age groups does not alter the overall N-weighted average IQ. 
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average scores in Table 5.3, and the average IQs we reported above. There is a real 
possibility that the DAM underestimates latent cognitive ability among African test takers. 
Nevertheless, the DAM shows some promise as a test of cognitive ability in Africa, 
particularly for younger test takers, provided that these are familiar with pencils and 
drawing. 
 Flynn Effect in the DAM. Richter et al. (1989) reported a secular rise in test scores 
among Zulu children in South Africa from 1947 to 1988, but this may be due to the 
suboptimal testing conditions in Hunkin’s (1950) study. The number of remaining samples 
in Table 5.3 is small, and there is no apparent secular rise in these samples. The study of 
Flynn Effect in the DAM is further complicated because of the use of different scoring 
schemes in older and newer samples. 
 

Kaufman Assessment Battery for Children 
In a series of studies, Boivin, Giordani and co-workers administered the K-ABC to 

children in the Democratic Republic of Congo (Boivin & Giordani, 1993; Boivin, Giordani, 
& Bornefeld, 1995; Giordani et al., 1996). Lynn used these data sets to substantiate his 
claim of low IQ levels among Africans. However, the African data from the K-ABC are 
not very convincing as far as average IQ of the African population is concerned. The first 
problem with these data is that the studies were mainly concerned with the effect of 
intestinal parasites (Boivin & Giordani, 1993) and malaria (Boivin, Giordani, Ndanga, 
Maky, & et al., 1993) on cognitive development. For that reason, the children in these 
samples were all from underdeveloped rural areas. In some studies, children were especially 
selected for their poor health (Boivin & Giordani, 1993). Of course, malaria and intestinal 
parasite infections are common in tropical Africa, but such selective samples cannot be 
used to estimate the average IQ of the African population.  

To make matters worse, in these samples K-ABC tests were adapted to be 
administrable to rural children in Africa (Giordani et al., 1996). For that reason, the 
instructions and items were changed. It is unclear to what extend this has altered the 
measurement properties of the K-ABC. For all of these children, individual cognitive 
assessment was an entirely new experience. More importantly, for most of the children, it 
was their first encounter with color-printed material. Giordani and colleagues (1996) 
studied the psychometric properties of the K-ABC in their rural African samples. However, 
they are also severely cautious with respect to the comparability of these African scores to 
US norms. For instance, in some K-ABC subtests, items included objects that were rather 
unfamiliar to these test takers, such as telephones. It is therefore likely that at least some 
items in the K-ABC show DIF (Giordani et al., 1996), and that several subtests are not 
comparable across Western and African samples. Lynn uses these samples in his overview 
without regard of the clear warnings by the original authors with respect to the 
incomparability of these scores to western samples. Lynn also included in his overview the 
scores from a sample of 184 Kenyan rural children who all suffered from malaria (Holding 
et al., 2004). In this study, all subtests of the K-ABC were altered. Lynn assigned the sample 
an IQ of 63, but it is entirely unclear to what degree the alterations in the test even allows 
for the comparison to US norms.  
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There exist additional data from the K-ABC in Africa, but these data are not 
considered by Lynn. First, in one study (Skuy, Taylor, O'Carroll, Fridjhon, & Rosenthal, 
2000) the K-ABC was administered to 21 Black children from South Africa, and the 
average IQ was found to be 98. In yet another study, the average IQ on the basis of the K-
ABC in a sample of Senegalese children equaled 81 (Boivin, 2002). As was the case with the 
other tests, the samples not considered by Lynn show higher average IQs than the samples 
he did consider. In sum, because of the special nature of the samples, the changes in this 
test, and the likely presence of measurement bias, the data from the K-ABC considered by 
Lynn cannot reasonably be used to arrive at an estimate of the average IQ of African 
children. 

 
Wechsler Scales 

Lynn included in his overview of African IQ several studies using the Wechsler 
Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981) (Avenant, 1988 in Nell, 2000; 
Nell, 2000) and the Wechsler Intelligence Scale for Children-Revised (WISC-R; Wechsler, 
1974) (Fernández-Ballesteros, Juan Espinosa, Colom, & Calero, 1997; Skuy et al., 2001; 
Zindi, 1994a). Lynn's choice of studies with the Wechsler scales is rather awkward. First, he 
uses data from Nell, who argued strongly that the use of WAIS-R and WISC-R among 
South African Blacks can lead to underestimations of ability (Nell, 2000). Nell provides the 
results of the Avenant study and of one of his own studies to illustrate his point, and Lynn 
subsequently presented the results obtained in these two samples in support of a low IQ 
among sub-Saharan Africans. Nell concludes on the basis of these studies that "the 
Wechsler tests lack validity for these subjects" (p. 27). Lynn has every right to disagree with 
Nell’s assessment of the unsuitability of the Wechsler scales for African test takers. 
However, in the WAIS-R46 subtests used by Avenant some items were changed, and it is 
uncertain whether this has changed the difficulty of items. It is also noteworthy that these 
samples cannot be considered population samples. 

One study often referred to in the literature (Lynn, 2006; Rushton & Jensen, 2005a) 
is that by Zindi (1994a). This particular study was concerned with the suitability of the US 
version of the WISC-R for Zimbabwean high school children. Zindi clearly indicated that 
the WISC-R needed adaptation to remove language difficulties, and he stressed that some 
instructions and items in the WISC-R may not be appropriate for Zimbabwean children. In 
a subsequent study, Zindi (1994b) eventually found that some small alterations in the 
WISC-R greatly enhanced average IQ in Zimbabwean children, a fact neither discussed nor 
mentioned by those who attach value to the average IQ found by Zindi in his first study.  

In yet another study with the WISC-R, Skuy and colleagues indicate that “language 
has a considerable effect on test performance” (Skuy et al., 2001, p. 1422). In fact, in this 
sample average IQ is lowered because of the low performance on the vocabulary subtest 
and other verbal subtests. For most Black Africans, English is not the native language, and 
it is well known that the Wechlser scales have a strong English language component. In 
addition, several of the non-verbal (performance) subtests in the Wechsler scales have 
items displaying typically western objects and situation that may be less familiar to African 

                                                 
46 Lynn reports that the WISC-R was given, but these subjects completed the WAIS-R.  
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test-takers. Thus, cultural bias in the Wechsler scales cannot simply be ignored. 
Unfortunately, in none of the studies with the WAIS-R or WISC-R mentioned by Lynn, 
reliability, inter-subtest correlations, or validity were reported. Besides, we are not familiar 
with any factor analyses on western Wechsler scales among Africans. The WISC-R data 
from Zindi (1994a) and Skuy et al. (2001) were submitted to analyses with the method of 
correlated vectors (Rushton, 2001; Rushton & Jensen, 2003). However, these analyses did 
not test whether the factorial structure the WISC-R of both these African samples was 
comparable to that of western samples. Moreover, the method of correlated vectors is not a 
suitable method to study measurement invariance (Dolan, 2000; Dolan et al., 2004; Lubke 
et al., 2001). Moreover, we were unable to locate a single study into the measurement 
invariance of Wechsler tests between western samples and samples of Africans.  

In the last study with the WISC-R in Africa that Lynn reports to substantiate his 
claim of low African IQ, the IQ of a sample of forty-eight 10-14 year-old children was 
found to be 63 (which Lynn corrected downwards because of the Flynn Effect). This small 
sample was used to estimate the average IQ of the entire population of Equatorial Guinea, 
resulting in an IQ estimate of 59 for this country (Lynn & Vanhanen, 2002). Unfortunately, 
the use of this particular sample cannot possibly be more inaccurate. The average IQ of the 
people of Equatorial Guinea is based on a lengthy book chapter (Fernández-Ballesteros et 
al., 1997). Although this chapter reports research conducted on an illiterate tribe in 
Equatorial Guinea, the WISC-R was not administered to these African subjects. The forty-
eight children who were administered the WISC (not the WISC-R) were not from 
Equatorial Guinea, and not even from Africa. In fact, the sample in question solely 
contains Spanish children who attended a Spanish school for handicapped children. Half of 
these subjects were mentally handicapped; the other half attended the school because of 
their low IQ. Clearly, Lynn has made a mistake in using this sample to estimate African 
IQ.47 

In addition to ignoring explicit statements on the inappropriateness of the WISC-R 
and WAIS-R by original authors who provided Wechsler data, Lynn also missed other 
Wechsler data from sub-Saharan Africa. These additional data on Wechsler IQ of Black 
South-Africans provided higher IQs than those Lynn reported. In one study, 40 educated 
adults scored an average IQ of 94 on the US WAIS-III (Shuttleworth Edwards et al., 2004). 
In yet another study, the average WISC-R IQ of 21 Black children with learning difficulties was 
found to be 84 (Skuy et al., 2000).48 To conclude, data from the Wechsler scales in Africa 
provided by Lynn does not lend much credibility to his claim that average IQ in Africa is 
below 70. In addition, there is a need for more research into the appropriateness of the 

                                                 
47 It is rather disconcerting that Lynn makes a bold statement to the effect that the majority of the people in this 
West-African country are mentally retarded, yet has not read his source more carefully. The chapter clearly indicates 
that this experimental study with 48 subjects was conducted in Spain. The mean IQ is mentioned two times, the first 
time as follows: "A similar design was used in our second experiment with forty-eight subjects, 10 to 14-year-olds, 
attending a school for handicapped children (63.025 IQ mean)" (Fernández-Ballesteros et al., 1997, p. 253). Indeed, 
this is the only IQ mean mentioned in the entire chapter, and there are no other samples of size 48 of this age range 
in the chapter. In a later part of the chapter, the same sample and the same mean IQ are again mentioned. There, the 
text clearly states that half of the subjects were diagnosed as having brain organic disorders. Moreover, judging by the 
reference list, the test at hand was the Spanish WISC, and not the US WISC-R.  
48 This is the same sample of 21 Black South African children who completed the K-ABC.  
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Wechsler scales in Africa. Without such research it is unclear what low Wechsler IQ scores 
in Africa mean. 

 
Remaining Tests 

We now discuss the additional data sets used by Lynn to support his claim that 
average IQ in Africa lies below 70. One of these studies was concerned with the effects of 
coaching on test performance (Lloyd & Pidgeon, 1961). In this study, a “fairly 
representative sample” (p. 147) of South African Zulu children were administered the Non-
Verbal Test, a test normed among English children and published in 1951 (Buros, 1959). 
The Zulu children (N = 275) had an average IQ of 87 on the pretest (i.e., without 
coaching). Lynn (2006) does not discuss how he arrived at his estimate of an IQ of 74 for 
this sample, but his estimate is clearly off the mark (in his 1978 review he correctly reported 
a value of 87).  

In another study, Buj (1981) provided the results of the administration of the 
Culture Fair Intelligence Test to 225 adults in the Ghanaian capital of Accra. This sample, 
which was stratified for gender, age (6 groups), and Socio-Economic Status (3 levels), was 
assigned an average IQ of 80 by Lynn. The original source provides an average IQ of 82, 
but Lynn lowered this IQ estimate by two points because he aims to use an IQ of 100 for 
Britain as calibration. The 2-point correction was based on the fact that in the same study 
British adults from London scored an average IQ of 102. Lynn (2006) claimed that the 
average IQ of 80 for the inhabitants of Accra is "exceptionally high for sub-Saharan Africa" 
(p. 30). He explains this "high" average IQ by the fact that "the [Ghanaian] sample came 
from the capital city [and] people in capital cities typically have higher IQs than those in the 
rest of the country" (p. 30). However, average IQ scores of sub-Saharan Africans on the 
Culture Fair Test may be considerably higher than the average scores found by Buj in 
Ghana’s capital. Namely, Nenty and Dinero (1981) administered this test to 803 students in 
seven secondary schools in both urban and rural areas in Nigeria. Interestingly, they found 
that these Nigerian adolescents scored on a par with a sample of 600 high school students 
from four schools in Portage County, Ohio. The average IQ on the Culture Fair Test in 
this large Nigerian sample was 98. In contrast to studies considered thus far, this study 
actually considered the possibility of measurement bias, which was studied using 
contemporary item response theory modeling. Some evidence for DIF was found, although 
the effects were not large and not necessarily in one direction. Lynn did not consider these 
data in any of his reviews of IQ in Africa. 
 Besides the DAM test, Fahmy (1964) administered additional tests to his sample of 
Sudanese children. The average IQ on these three tests was 94, 76.5, and 73.5, respectively. 
It appears that the average IQ of this sample given by Lynn was considerably lowered 
because of the unfamiliarity of these children with drawing, resulting in their low 
performance on the DAM test. Note also that the unweighted average IQ on the four tests 
should be 74, not the 69 that Lynn (2006) provides (in Lynn & Vanhanen, 2002 an IQ of 
73.5 was given). As said, Fahmy considered the DAM test unsuitable for these children, so 
a fair estimate of IQ in this sample should be the average of the remaining tests (i.e., 81). 
This could still probably represent a considerable underestimation of these children’s 
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cognitive capacity, because the administration of the remaining tests in Fahmy’s study was 
all but successful. 

Vernon administered a battery of IQ tests to fifty Ugandan boys of above average 
SES. On 16 of the 21 tests, mean IQ was above 80. The mean of the 21 subtests equals 86 
(median 86). This becomes 88 when we leave aside the IQ of an English vocabulary subtest 
on which these boys scored very low (M = 57). Lynn gives an estimate of 80 for this 
sample, but provides no rationale for his downward correction. Vernon himself computed 
inter-subtest correlations in this sample and found no indication of a g factor comparable 
to that in other samples. A later factor analysis over part of Vernon's data by Hakstian and 
Vandenberg (1979), corroborated that "the cognitive structure among Ugandan subjects 
may be slightly different from that of other cultures" (p. 87). This is an interesting result, if 
only because several tests used by Vernon were also used in older studies in Africa. 

In one of those old studies, fifty 5-13 year-old children from the Sousou tribe in 
rural Guinea were administered the Army Beta Test (Nissen, Machover, & Kinder, 1935). 
These unschooled test takers suffered from "inexperience in manipulating a pencil" (p. 
325), which can be considered a serious handicap in taking the Army Beta. Moreover, on 
some subtests it was clear that most test takers did not understand what was expected from 
them. For instance, "[t]he subjects appeared utterly bewildered" (Nissen et al., 1935, p. 331) 
when confronted with the Manikin and Feature Profile subtest of the Army Beta. These 
difficulties notwithstanding, Lynn assigned this particular sample an IQ of 63. The Army 
Beta was also administered to 293 Black South-African children by Fick (1929). With 
respect to representativeness of samples, Fick clearly stated that "sweeping generalizations 
regarding whole groups should be avoided" (p. 904). He also acknowledged that the test 
scores may have been lowered due to the fact that "the native does not grow up with 
pictures and diagrammatic representations of things" (p. 909). In light of these difficulties, 
and because of the absence of any indication of the reliability, validity, or correlational 
structure of the Army Beta tests in this sample, we do not adhere to Lynn’s assignment to 
this sample of an average IQ of 65. Another old study on the suitability of western 
intelligence tests among Black South Africans is that by Dent (1937). Dent considered his 
sample of 80 test takers too small for making any generalizations. With regard to the use of 
the Koh's Block test (the predecessor of the Block Design test in the Wechsler scales), 
Dent remarks that "all subjects experienced difficulty with this test" (p. 462). Difficulty with 
a test may either mean that the subjects did not understand instructions, or that their 
cognitive ability is low. Lynn apparently subscribes to the second option, and used the 
scores on this particular test to estimate the average IQ of this sample at 68 (which is a 
mental age IQ).  

The studies reported in the last paragraph, which represent the dark past of IQ 
testing in Africa, were severely criticized as early as the 1940s (Biesheuvel, 1943), and 
cannot be taken seriously anno 2006. To begin with, the Army Beta test originates from the 
first years of intelligence testing and is now completely obsolete (Jensen, 1982 called this 
test "primitive"). More importantly, administering a paper and pencil test with pictures and 
diagrammatic representations to persons inexperienced with pencils and unfamiliar with 
pictures and diagrammatic representations does not provide a valid indication of 
intelligence. The situation is exacerbated by the fact that the pictures used in the Army Beta 
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are likely to be culturally biased because the pictures display typically American objects and 
situations. For instance, one item displays a tennis match, and test takers are required to 
draw the missing tennis net (Lane, 1994). These old papers are surely an interesting read for 
anyone interested in the invalid use of intelligence tests, and for those interested in the 
political role of psychology in the pre-apartheid era in South Africa (e.g., Krige, 1997). 
However, these old studies cannot be taken seriously by modern psychometric standards, 
certainly not to estimate average IQ of the African population.  

Ferron (1965)49, who states that Fick's "work is obviously biased" (p. 50), reports 
test results from an unknown IQ test in seven samples of children in Nigeria and Sierra 
Leone. Ferron considers this test unsuitable for African children. Despite this, Lynn 
included in his review the average IQs from the two lowest scoring samples, and briefly 
discussed (but did not include in his review table) a third sample with an average IQ of 80. 
Unfortunately, Lynn did not explain why he excluded the scores of the four higher scoring 
samples in Ferron’s overview, such as a sample of 100 Sierra Leonean children who scored 
an average IQ of 93.  

In several studies, sub-Saharan African children were administered the Wisconsin 
Card Sorting Test (WCST; Akande, 2000; Skuy et al., 2001; Sternberg et al., 2002). Note 
that this test is not meant to be a measure of general intelligence. In addition, none of these 
samples can be considered representative of a particular population. From one paper (Skuy 
et al., 2001), Lynn used only WCST data (“IQ of 64”), but did not include additional data 
from the DAM (IQ of 83) to estimate IQ. It is a commonly accepted that the use of more 
intelligence scores provide a more accurate estimate of general intelligence. Whereas he did 
use both the PMA test and the CPM test to estimate IQ of Fahrmeier’s sample in his earlier 
work (Lynn, 1991), he excluded PMA (IQ=78) data in his later reviews (Lynn, 2003, 2006; 
Lynn & Vanhanen, 2002). Moreover, Lynn used WCST data from a study in Tanzania by 
Sternberg and colleagues (2002) to argue for a low IQ among Africans. Additional data of 
the WCST of Black South African children showed considerably higher average scores on 
this particular test (Akande, 2000), but Lynn did not consider these additional data. 

Lynn also mentions data from the JAT in South-African Blacks (Lynn & Owen, 
1994). At the level of the subtests, this test is severely biased, as is shown in a study by 
Dolan and colleagues (Dolan et al., 2004). In none of the samples considered by Lynn, was 
measurement invariance tested. Although we did not search for additional data on all 
remaining tests, additional data from the Culture Fair Test and the Wisconsin Card Sorting 
Test again shows considerably higher average IQ scores than the data Lynn has considered. 
No sample provided by Lynn in any way adds credibility to his claim that African IQ is 
below 70. Our review suggests strongly that additional tests show average IQ around or 
above 80 among African test takers. However, this still cannot be taken to mean that IQ 
scores are valid and free of measurement bias. 

 
Differential Item Functioning 

 The question of measurement invariance is central to the question of the meaning 
of sub-Saharan IQ. Measurement invariance assures that the test measures the same 

                                                 
49 This study is referred to by Lynn as Farron, 1966. 
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construct across groups. Measurement invariance is a starting point to understand the 
nature of group differences in test scores. 

In a series of studies, Rushton and coworkers (Rushton, 2002; Rushton & Skuy, 
2000; Rushton et al., 2004; Rushton et al., 2002, 2003) studied whether the Raven tests have 
similar item characteristics for Whites and Blacks in South Africa (cf. Owen, 1992). 
Rushton claims that these studies establish the construct validity for IQ tests among 
Africans (Rushton et al., 2004). Unfortunately, in none of these studies was DIF studied 
across groups. Instead, studies employed two straightforward methods to study biasedness 
of Raven's items. Central to the methodology employed by Rushton and Owen is the rank-
order correlation between item p-values across groups (see also Mpofu & Watkins, 1994). 
This method is a simple method to study group differences in scale characteristics, which 
dates back to the 1920s (L. L. Thurstone, 1925). However, this method, and more refined 
methods based on it (e.g., the Delta-Plot method; Angoff & Ford, 1972) have been 
criticized extensively in the psychometric literature for not being sensitive to item bias. On 
the basis of their simulation study of the merits of various methods to detect bias, 
Shephard and colleagues conclude concerning the Delta-plot method that: "It should not 
be used for bias detection" (Shepard, Camilli, & Williams, 1985, p. 103). This method is 
simply incorrect when groups differ markedly in latent ability, and when items differ in 
discrimination parameter (Angoff, 1982; Ironson, Homan, Willis, & Signer, 1984; Lord, 
1977, 1980; Shepard et al., 1985). In the comparison of African samples to western 
samples, group differences in test scores are generally large. Moreover, item analyses of the 
SPM and its advanced version (i.e., the Advanced Progressive Matrices or APM) have 
generally shown that items show considerable differences in discrimination parameter 
(Abad, Colom, Rebollo, & Escorial, 2004; J. C. Raven et al., 1996). Another method often 
employed in testing the suitability of Raven’s tests in Africa employs the (point) biserial 
correlations.50 This method is also shown to be rather suboptimal. "Using the classical 
point biserial item statistic and taking the discrimination differences between groups as a 
measure of bias appears to be inadequate" (Ironson & Subkoviak, 1979, p. 222). 

Rushton uses yet another method (Rushton, 2002; Rushton & Skuy, 2000; Rushton 
et al., 2002, 2003), which may be seen as a combination of these two methods. In this third 
method, Rushton correlates the vector of group differences in item difficulty (i.e., group 
differences in p-values) with the vector of item-total correlations (i.e., point-biserial or 
biserial item-total correlations). In fact, this new method is an item-level equivalent of the 
method of correlated vectors (Jensen, 1998). This method has been shown to be 
problematic in factor analytic work (Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke et 
al., 2001). Until this new item-level method is spelled out formally and investigated 

                                                 
50 Rushton and Jensen (2005a) claim that the “item–total score correlations for Africans, Whites, and East Indians 
were also similar, indicating that the items measured similar psychometric constructs in all three groups” (p. 243). 
This statement is false both logically and empirically. The vectors of item-total score correlations in Whites, Blacks 
and East Indians will not be similar when groups differ in ability (Gulliksen, 1950). More importantly, in none of the 
studies mentioned, these vectors were similar across groups. For instance, the correlation between the vector of 
Whites and the vector of Blacks in Rushton’s (Rushton et al., 2003) study of the APM among South African students 
equals 0.105 (pmcc) or 0.099 (rho). This means neither that the items measure similar constructs, nor that they 
measure something else. In fact, a comparison of item-total correlations does not adequately address the issue of 
measurement properties. 
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properly, we cannot tell whether or not it actually works to detect DIF. However, ingenious 
though it may seem, in the presence of group differences in latent ability and under most 
common IRT models, this method does not appear to work. First, in the presence of group 
differences in latent ability, the item-total correlations will not be equal across groups 
(excluding some special conditions under highly restrictive assumptions, which will 
certainly not hold in the SPM or APM; see, e.g., van der Ven & Ellis, 2000). Second, in all 
but a few special cases, the vector of these item-total correlations (that will differ across 
groups) will have a non-linear relation with the vector of group differences in item 
difficulty.51 Even if a test is fully measurement invariant across groups, and the IRT model 
fits perfectly, this correlation between vectors will not equal one. Because we do not know 
how this correlation works under ideal conditions (i.e., equal item response functions 
across groups), we have no idea of how it will work in cases in which the test is severely 
biased across groups. Thus, the merits of this new method are unclear, but it does not show 
much promise.  

The field of psychometrics52 has provided a host of methods to detect DIF with 
crystal clear underlying assumptions and with well-established sensitivity to detect DIF 
(Holland & Wainer, 1993; Millsap & Everson, 1993). Unfortunately, none of these have 
been applied to the issue of African IQ (but see Nenty & Dinero, 1981). It is about time 
that rigorous methods to detect DIF were applied to shed some light on the meaning of IQ 
test scores in Africa. One cannot employ outdated or non-established methods that appear 
insensitive to bias, and reasonably conclude that bias does not exist. Such would be 
equivalent to claiming that a Petri dish is sterile, because no microorganisms are visible 
through a magnifying glass. The claim that IQ tests are unbiased with respect to Africans is 
simply baseless. Clearly, more research is needed to clear up the present obscure meaning 
of IQ test scores in Africa.  

 
More on Validity 

 Lynn has estimated the average IQ of countries over the world and set out to 
validate his estimates of national IQ using data from several internationally comparable 
surveys of school achievement, in which representative samples of primary and secondary 
students were given Math and Science tests. In his latest book, he uses a combination of 
such studies given by Hanushek and Kimko (2000), in which the average IQs of Nigeria 
(IQ according to Lynn 69), Swaziland (IQ according to Lynn 68), and Mozambique (IQ 
according to Lynn 64) appear alongside that of 34 other countries53 (Lynn, 2006). In Figure 
5.2, we display the results of his validity study, which is typical of Lynn’s validity studies. 
Lynn reports a correlation of 0.81 between these two variables and claims that this result 

                                                 
51 Some preliminary computations using a scenario with established SPM item parameters in a 3 parameter logistic 
model and a large group difference in ability indicated that this relation has the shape of an inverted U. The results of 
Rushton’s method depended greatly on the choice of group from which the item-total correlations were drawn. This 
is also apparent in the results of these studies (Rushton, 2002; Rushton et al., 2002, 2003). 
52 We are referring to rigorous psychometrics here (e.g., Hambleton & Swaminathan, 1985; Lord & Novick, 1968; 
Van der Linden & Hambleton, 1996). 
53 The original source also reports data from South-Africa, but Lynn did not include South Africa in this analysis. 
The data from South Africa would nevertheless also represent a bivariate outlier. Inclusion of South Africa lowers 
the correlation further to 0.77.  
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validates the estimates of national IQs. However, a look at the scatterplot suggests 
otherwise. In fact, this scatterplot shows clearly the presence of three outliers, which are the 
three data points on the low-left side. In the absence of these three data points, the 
correlation is 0.864. Incidentally, these three outliers correspond to the three countries 
from sub-Saharan Africa. These outliers have large negative residuals of over 13 IQ points, 
indicating that in the regression of IQ on Math and Science scores, the estimated IQs of 
these African countries is much higher than the IQs reported by Lynn. Lynn argues that 
the correlation of 0.81 is lowered by measurement error of the educational measures 
(begging the question of how an average score of several thousand test takers in each 
country would be affected by random measurement error). There is a more straightforward 
explanation for this result, namely that Lynn’s estimates of national IQ in Africa are 
consistently too low. In fact, if anything can be learned from Lynn’s validity study, it would 
be that the average IQ in these countries is around 80 or higher.  
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Figure 5.2  Regression lines of Lynn’s national IQ estimates on average Math and Science scores of 
  international studies of student achievement (Hanushek & Kimko, 2000). 
 

African IQ Conclusion 
 Based on published data of the CPM and SPM, average IQ in Africa lies 
somewhere around 78 or 79, when compared to British norms. When compared to US 
norms, average IQ in Africa equals 80 or 81. There are several large samples in which IQ is 
considerably higher (Lloyd & Pidgeon, 1961; MacArthur et al., 1964; Nenty & Dinero, 
1981). Despite the many measurement difficulties with the DAM, and the inaccuracy of its 
norms, the IQs on this test are higher than the IQs based on the CPM and SPM. We must 
again stress the importance of caution in the interpretation of these IQ scores. There have 
been no published IRT analyses that studied item bias of the SPM, CPM, and the DAM. It 
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is quite likely that these IQs represent an underestimation of ability, because with these 
tests even a few biased items can decrease IQ scores considerably. 

The bulk of the data on which Lynn based his claim of low average IQ in Africa, is 
based on the following nine tests: K-ABC, WISC, WAIS, DAM, CPM, SPM, WCST, 
Culture Fair Test, and the IQ test discussed by Ferron. For all these tests, we came across 
additional African samples that showed markedly higher average IQs than the samples that 
were considered by Lynn. In none of the samples that were not included in Lynn’s 
overviews, the average IQ was below 70. The literature missed by Lynn appears not to be 
missing completely at random (in the sense of Little & Rubin, 1986). In fact, the 31 samples 
in Tables 5.1-5.3 that Lynn considered in his latest review show significantly lower average 
IQs than the 27 samples he did not consider: t(56) = 2.44, p < .05. Lynn presented his 
review as a “fully comprehensive review” of the literature on African IQ. However, 
because he missed a sizeable portion of the relevant literature, his estimate of average IQ of 
Africans is too low.  
 The most serious omissions in the literature are rigorous tests of measurement 
invariance. In none of the samples used by Lynn IQ, measurement invariance was tested 
and found to be tenable, so the degree to which measurement bias has lowered IQ levels in 
African samples is unclear. The conclusion that the average IQ in sub-Saharan Africa is 
lower than average IQ in western countries is warranted, but the degree to which these low 
scores reflect lower general intelligence is unknown. These low scores might not reflect an 
accurate or valid assessment of general intelligence.  
 We found a clear indication of a Flynn Effect among adults on the SPM. Besides 
two studies (Daley et al., 2003; Richter et al., 1989), there is no clear indication of a 
comparable Flynn Effect among African children. The various samples are not ideal to 
study the Flynn Effect. The absence of gains among children may be due to the fact that 
the older samples are primarily of school-going children in times when school attendance in 
Africa was mainly restricted to higher SES levels. Hence, differences in sampling may be an 
issue. More comparable samples are required to shed some light on the Flynn Effect 
among African children. 
 In what follows, we are going to leave aside the measurement problems with IQ. 
The reason is that we would like to understand more fully the implications of these low 
scores if they would eventually prove to be accurate and valid. The main question we are 
left with is as follows: Suppose that an average IQ of 80 would be valid, would they lend 
credence to the idea that low African IQs are impervious to environmental variables? 
 
5.6 Nature versus Nature & Nurture 

 
In his most recent book, Lynn (2006) claims, as did Rushton (2000b), that racial 

differences in general intelligence have evolutionary causes (cf. Jensen, 1998). Rushton's 
(2000b) evolutionary theory supposes that the races differ in their reproductive strategies, 
causing racial differences in intelligence. Lynn's theory states that ancestors of Europeans 
(i.e., Whites) and Asians have developed higher genetic intelligence during their 
evolutionary struggle to survive in colder and therefore more demanding climates outside 
of Africa. According to Lynn, people from European and Asian descent are more 
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intelligent than people from Africa because the latter group did not encounter a similar 
evolutionary pressure towards high intelligence in the relatively warm climates of Africa. 
The theories by Lynn and Rushton stand in stark contrast with archeological evidence that 
clearly shows that people in sub-Saharan Africa have been as advanced as Eurasians 
(MacEachern, 2006). In a recent study that was criticized by Hunt and Sternberg (2006), 
Templer and Arikawa (2006) set out to substantiate Lynn’s evolutionary theory. To that 
end, Templer and Arikawa correlated Lynn and Vanhanen's estimates of average IQ in 81 
countries all over the world to the average temperature in these countries and to an 
estimate of national skin color.54 They found a correlational structure that, according to 
them, substantiated Lynn’s theory. However, any claim to causality using correlational data 
requires the consideration of confounding variables. There exist a host of alternative 
explanations for national differences in IQ. To these, we turn next. 

 
Ecological Correlations 

In this section we correlate Lynn & Vanhanen's (2002) national IQ estimates with 
several environmental variables that are suggested to play a role in the Flynn Effect. 
Various studies have shown that these national IQ estimates correlate with national wealth 
as expressed in Gross Domestic Product (GDP) per capita (Dickerson, 2006; Jones & 
Schneider, 2006; Lynn & Vanhanen, 2002; Morse, 2006; Weede & Kampf, 2002; Whetzel & 
McDaniel, 2006). It is noteworthy that several authors have claimed that the relation 
between national IQ and GDP is nonlinear (Dickerson, 2006; Morse, 2006; Whetzel & 
McDaniel, 2006). This nonlinearity may be partly due to the fact that IQ of African 
countries is underestimated considerably by Lynn and Vanhanen. This results in 
(impossible) negative predictions of GDP on the basis IQ, which, in turn, results in a non-
linear relation between these two variables. Nevertheless, it is clear that mean IQ levels 
across the world are related to economic development. 

In several studies, the correlation between national IQ as estimated by Lynn and 
Vanhanen and adult literacy rate was found to be around .70 (Barber, 2005; Meisenberg, 
2004; Morse, 2006), suggesting that national differences in school attendance are related to 
national IQ levels. The relation of IQ levels to health variables at the national level is less 
clear. Barber (2005) found moderate correlations between national IQs and several health 
variables, but his analysis suffered from missing data. In addition, Whetzel and McDaniel 
(2006) found a correlation of 0.56 between Lynn and Vanhanen’s estimates of national IQ 
and health expenditure per person. The many variables related to social and economic 
development are probably not only related with national IQ, but will also show strong 
intercorrelations. Therefore, it is worthwhile to integrate several variables in one analysis. 
Because we are mainly concerned with the Flynn Effect, we focus on variables that have 
been proposed to have caused the Flynn Effect.  

                                                 
54 The study by Templer and Arikawa is concerned with the evolution of intelligence, yet uses contemporary data on 
temperature to study this. Moreover, the measurements of skin color and temperature in that study do not stand up 
to scientific scrutiny. The temperature estimates are based on a weather guide for travelers, which is unsuitable for 
estimating national temperature. The skin color estimates are based on students' judgments of a 65-year old skin 
color world map of 10 by 5 inches (Biasutti, 1959). This outdated (Robins, 1991) and inaccurate (Coon, 1966) map 
was based on a subjective method to measure skin color, which has been in scientific disrepute since the 1950s 
(Jablonski, 2004). 
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Method 

 The results provided below are based on analyses not weighted by size of 
populations of countries. Although such an N-weighted analysis has a small effect on the 
some of the correlations, this alternative analysis does not alter our main conclusion. We 
now discuss our choice of variables to consider, and we provide descriptions of the data 
employed.  
 National IQ. We employ Lynn and Vanhanen's estimates of national IQ in 81 
countries over the world, excluding Equatorial Guinea (for obvious reasons given above) 
and Taiwan because of missing data. To enable a comparison to the literature, we used 
Lynn and Vanhanen's original IQ estimates. We also computed more accurate IQs for 
African countries based on IQs in Tables 5.1, 5.2, and 5.3, which we corrected for the 
Flynn Effect in a way similar to that employed by Lynn and Vanhanen (cf. Footnote 32). 
For instance, in the case of Nigeria we used a weighted average based on eleven studies 
which results in an IQ of 76 for this country. For countries not included in Tables 5.1-5.3, 
we added 10 IQ points to Lynn and Vanhanen’s estimates, because this is approximately 
the underestimation of IQ in African countries in Lynn and Vanhanen’s list.  
 Nutrition. Poor nutrition during childhood is generally considered to lower adult IQ 
(e.g., Sigman & Whaley, 1998). An improvement in nutrition has been suggested as one of 
the prime reasons for the Flynn Effect (Lynn, 1989, 1990). The data on nutrition were 
retrieved from the Food and Agriculture Organization (FAO), an agency of the United 
Nations. We use three nutrition variables that are averages per capita of calories per day, 
proteins in kg per day, and fat in kg per day. We averaged the numbers over the years 1985-
2000, but the use of data from alternative or separate years does not greatly alter the results 
provided below. 
 Health. Poor health is generally considered to have a negative effect on IQ (e.g., 
Mackintosh, 1998), and improvements in health have been proposed as an important 
contributor to the Flynn Effect (W. M. Williams, 1998). We used three indicators of a 
countries' health status. These are under five mortality rate, maternal mortality rate, and 
neonatal mortality rate. The under five mortality rate was estimated by UNICEF for the 
years 1990-2003. The neonatal and maternal mortality rates are estimates from the WHO 
for the year 2003. The use of data of alternative years does not have a large effect on the 
correlations we provide below. 
 Education. Education has been suggested to be an important factor in the Flynn 
Effect (Barber, 2005; Ceci, 1991; Husén & Tuijnman, 1991; Tuddenham, 1948). We use 
data from UNESCO of gross enrollment ratio in primary and secondary education, as well 
as estimates of teacher-to-student ratio within each country. All educational variables are 
averages over the period 1970-2003, but the use of data from alternative or separate years 
does not greatly alter the results provided below. 
 Computers. The introduction of computers and computer games may have enhanced 
test-specific skills, contributing to the Flynn Effect (Greenfield, 1998). We use estimates of 
the number of computers per 1000 inhabitants over the period 1998-2002, provided by the 
International Telecommunication Union (ITU) and retrieved from the World Bank 
database.  



140                                                                                                                                        CHAPTER 5 

 

Family size. It has been suggested that the trend towards smaller families has also 
been partly responsible for the Flynn Effect (Zajonc & Mullally, 1997). Fertility rate per 
country was retrieved from the World Development Index. We took the averages over 
years 1970-2003, but the use of data from separate years does greatly not alter the results 
provided below.  

Urbanization. The transition from a rural to a (sub)urban society has also been 
suggested as a cause of the Flynn Effect, because of a decrease in inbreeding depression 
(Mingroni, 2004) and an increase in environmental complexity (Dickens & Flynn, 2001; 
Schooler, 1998). Urbanization estimates for 2005 were retrieved from World Health 
Organization tables, but the results provided below are robust to the use of data from 
alternative years. 

Water quality. The lack of improved drinking water and sanitation may have a 
negative effect on health, which may negatively affect cognitive development through the 
effects of intestinal parasites (Boivin et al., 1993). Because increases in improved drinking 
water and sanitation in the developing world are both part of the millennium goals of the 
UN, the UNICEF has estimated these variables for 2002. We used the data for that year. 
Results 
 The ecological correlations between Lynn & Vanhanen’s (2002) IQ estimates 
(excluding Equatorial Guinea and Taiwan) with the environmental Flynn Effect variables 
are given in Table 5.4. Because data did not exist for all countries on some variables 
(particularly water quality variables), missing values (6.3 % of all data points) were imputed 
by using multiple imputation with the program PRELIS (Jöreskog & Sörbom, 2003). The 
correlations based on the imputed data are however similar to those computed using pair-
wise deletion. The correlations in Table 5.4 are a textbook example of multicolinearity. All 
environmental variables correlate highly and significantly (p < 0.001) with IQ, and (with 
one exception) significantly (p < 0.005) with each other. As a matter of fact, a principal 
components analysis on these 15 variables results in one highly dominant principle 
component, as can be seen by the scree plot in Figure 5.3. This first principle component 
explains 74 % of the variance. This dominant component is nothing more than 
developmental status of countries. The loadings on this component are given in the last 
row of Table 5.4. Viewed in this light, IQ is just another indicator of development. On all 
the variables in Table 5.4, sub-Saharan African countries fall on the negative side of the 
world wide distribution. It is also apparent from Table 5.4 that the use of more accurate 
estimates of national IQs does not have a large effect on the correlations between IQ and 
the exploratory variables.55 
 

                                                 
55 The correlation between our adjusted estimates of IQ and the estimates of GDP for the year 1998 (from Lynn & 
Vanhanen, 2002) for the 79 countries equals 0.77 (p < .01). This is slightly higher than the correlation between GDP 
and Lynn and Vanhanen’s estimates of national IQ (r = 0.75). The exponential relation between our estimates of 
national IQ and GDP does not add much to the linear relation (i.e., r2 increases by .08) indicating that the nonlinear 
relation between GDP and national IQ (Dickerson, 2006; Morse, 2006; Whetzel & McDaniel, 2006) is indeed partly 
due to the underestimation of African IQs by Lynn and Vanhanen. Note also that GDP correlates highly with all the 
variables in Table 4.  



 

 

Table 5.4 
Correlations between estimates of national IQ with explanatory variables (N=79) 
 IQ Prim. 

educ. 

enroll. 

Sec. 

educ. 

enroll. 

Pupil- 

teach. 

ratio 

PCs 

per 

1000 

Fer- 

tility 

Urba-

niza-

tion 

%  

impr. 

sanit. 

% 

impr.

water 

Ch. 

mort. 

rate 

Neona

tmort. 

rate 

Mat. 

mort. 

rate 

Cal. 

/day 

cap. 

Prot. 

g/day 

cap. 

Fat. 

g/day 

cap. 

IQ  1  .426  .737 -.665  .700 -.817  .630  .658  .607 -.699 -.721 -.626  .688  .730  .731 

Prim.educ.enrollment  .518  1  .540 -.376  .124* -.492  .454  .555  .610 -.667 -.572 -.617  .450  .364  .372 

Sec. educ.enrollment  .784  .540  1 -.765  .682 -.846  .659  .801  .757 -.817 -.827 -.759  .757  .791  .827 

Pupil-teacher ratio -.719 -.376 -.765  1 -.522  .764 -.575 -.850 -.741  .731  .718  .677 -.734 -.743 -.767 

PCs per 1000 persons  .656  .124*  .682 -.522  1 -.617  .573  .516  .482 -.472 -.559 -.382  .538  .621  .675 

Fertility -.860 -.492 -.846  .764 -.617  1 -.628 -.761 -.729  .853  .868  .759 -.711 -.745 -.734 

Urbanization  .666  .454  .659 -.575  .573 -.628  1  .654  .611 -.626 -.625 -.588  .609  .588  .604 

% Improved sanitation  .727  .555  .801 -.850  .516 -.761  .654  1  .879 -.827 -.815 -.750  .713  .714  .764 

% Improved water  .702  .610  .757 -.741  .482 -.729  .611  .879  1 -.831 -.771 -.719  .747  .715  .699 

Child mortality rate -.811 -.667 -.817  .731 -.472  .853 -.626 -.827 -.831  1  .932  .916 -.694 -.705 -.676 

Neonatal mortality rate -.790 -.572 -.827  .718 -.559  .868 -.625 -.815 -.771  .932  1  .818 -.677 -.700 -.714 

Maternal mortality rate -.763 -.617 -.759  .677 -.382  .759 -.588 -.750 -.719  .916  .818  1 -.694 -.670 -.617 

Calories/day per cap.  .728  .450  .757 -.734  .538 -.711  .609  .713  .747 -.694 -.677 -.694  1  .935  .872 

Proteins g/day per cap.  .757  .364  .791 -.743  .621 -.745  .588  .714  .715 -.705  -.700 -.670  .935  1 .875 

Fat g/day per cap.  .712  .372  .827 -.767  .675 -.734  .604  .764  .699 -.676 -.714 -.617  .872 .875  1 

Loading on 1st PC  .884  .560  .926 -.891  .701 -.944  .776  .904  .839 -.929 -.933 -.865  .837  .867  .872 

Note: Correlations below diagonal are based on Lynn & Vanhanen’s IQ estimates, correlations above diagonal adjusted IQs;  All correlations p < .005, except *p > .05 
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Figure 5.3  Scree plot of principal components analysis of variables in Table 5.4. 
 
 

Conclusion 
These correlations indicate that of countries across the globe, environmental 

variables that have been proposed to have caused the Flynn Effect are also the variables 
that have yet to show improvements in Africa. Because of the strong relation between 
these environmental variables and average national IQ, the claim that low levels of IQ in 
Africa are due to genetic factors (Lynn, 2006; Rushton, 2000b; Templer & Arikawa, 2006) 
is hard to maintain.  
 As is the case with any cross-sectional study employing ecological correlations, we 
can not claim to have established any causal relation of the variables in Table 5.4. It is 
certainly the case that these data are consistent with a host of environmental explanations 
of why average IQ in Africa is around 80, as opposed to 100 in developed countries. The 
comparison of African countries to developed countries is fraught with confounds. In light 
of all these confounding variables, any claim to causality needs to be made very carefully. 
Unfortunately, such caution is all but absent in Lynn and Vanhanen’s claim that the wealth 
of nations is caused by intelligence levels of a population. In view of Table 5.4, one could 
equally claim that insufficient computers, insufficient food, an unhealthy population, poor 
schooling, etc. are responsible for the fact that some countries are poorly developed 
economically. Such variables have generally been ignored or dismissed as irrelevant in 
studies claiming that there are evolutionary reasons related to climate that cause lower IQ 
in countries in Africa (Lynn, 2006; Templer & Arikawa, 2006). 
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 Because on all variables in Table 5.4, Africa is on the negative end, it is safe to 
assume that these variables might have a depressing effect on IQ levels. Schooling, health, 
nutrition, and urbanization are serious confounds in the comparison of IQs across the 
world. When viewed in this light, national IQ does not appear to be anymore than just 
another indicator of the development of a country. 
 
5.7 General Discussion 

 
Several conclusions can be drawn on the basis of our review of the literature on 

African IQ. First, the proposition that Africans have an average IQ of 67 is untenable. It 
appears to lie somewhere around 80, and it is likely to be even higher. Second, the claim 
that African IQ scores are comparable to western IQ scores in terms of the construct of 
general intelligence or g has to date not been substantiated by rigorous data analyses. Third, 
low IQ levels in Africa are not surprising in light of the fact that environmental variables 
that are believed to suppress IQ levels are omnipresent in Africa. Fourth, the Flynn Effect 
has occurred in Africa among adults on the SPM. Fifth, as the environmental effects on IQ 
will continue to improve, they will almost certainly raise IQ levels in Africa in the years to 
come. Sixth, our results do not sit well with the genetic theory of race differences in 
intelligence as put forth by Lynn. We will now focus on each of these conclusions more 
closely.  

 
The Dark Past of African IQ 

There has been a long history of IQ testing in Africa. In some instances IQ tests 
were administered under non-standard circumstances to test takers that were so unfamiliar 
with IQ tests and the material in it (Dent, 1937; Fick, 1929; Nissen et al., 1935), that their 
scores cannot and should not be used to claim anything concerning latent cognitive ability 
(Biesheuvel, 1943). It is about time we leave that dark past of IQ testing in Africa behind 
us. 

It is apparent that average IQ in Africa is lower than average IQ in western 
countries. However, average IQ in Africa does not appear to be as low as Lynn maintains. 
The majority of studies on African IQ not taken into account by Lynn showed considerably 
higher IQs than the studies he reviewed over the years. Lynn's reviews of IQ in sub-
Saharan Africa are skewed, and have resulted in an underestimation of average IQ in 
Africa. Clearly, Lynn has missed a large part of the literature on African IQ. However, in 
several cases (Crawford Nutt, 1976; Ferron, 1965; Irvine, 1969b; MacArthur et al., 1964; 
Pons, 1974; Skuy et al., 2001), he must have been familiar with additional data, for the 
simple reason that he used these sources in his own work. It is unfortunate that Lynn did 
not discuss his reasons to exclude these additional data. Without knowing his reasons, it 
would not be fair to jump to conclusions with respect to Lynn’s scientific integrity (e.g., 
Kamin, 1995). For instance, in some cases, tests were administered with additional 
instruction (Crawford Nutt, 1976; Pons, 1974). We felt it reasonable to include these data 
because this instruction is highly similar to an instruction as described in the test manual (J. 
C. Raven et al., 1996), but some have argued that this instruction artificially heightens test 
performance (cf. Rushton & Skuy, 2000). Nonetheless, it is safe to say that Lynn’s 
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conclusion that average IQ in Africa is around 67 is based on unsound reviews of the 
literature.  

 
The Obscure Present of African IQ 

An IQ score should never be equated uncritically with a particular level of general 
intelligence because IQ tests are fallible instruments, particularly for test takers less familiar 
with western culture as reflected in these IQ tests. IQ testing in Africa is a complicated 
issue (MacArthur et al., 1964; Nell, 2000). Based on our reading of the literature, validity 
studies of the DAM, SPM, or CPM in Africa provide little support that these tests provide 
accurate assessments of g. More importantly, the degree to which IQ differences between 
countries in any way reflect national differences in general intelligence is unknown. The 
reason is that the comparison of test scores across such various groups as westerners and 
Africans requires standardized testing conditions and measurement invariance across 
groups. The testing conditions in Africa are not always ideal. More importantly, 
measurement invariance between western and African samples has not been studied using 
contemporary methods such as multi-group confirmatory factor analysis (with mean 
structure) or DIF analyses based on IRT models. Where it has been studied rigorously, 
results have shown that measurement invariance is rejected (Dolan et al., 2004; Nenty & 
Dinero, 1981). Therefore, there is a real possibility that IQ averages in sub-Saharan African 
samples are an underestimate of latent cognitive ability.  

The average IQ scores of Africans that we documented in our review are nothing 
more than average transformed scores on measurement instruments that we call IQ tests. 
These tests may be well-validated in developed countries, but they are not well-validated in 
African countries. Further research should shed light on what these test scores may or may 
not mean. The true meaning of IQ scores differences between western samples and African 
samples only becomes clear after thorough psychometric modeling. What is required is a 
study in which testing conditions across groups are controlled and in which it is ascertained 
that test instructions are crystal clear to all test-takers. This study should involve a battery 
of tests each of which can be studied for DIF. After that, one can establish that between 
group mean differences are on the (higher order) latent factor called g, by employing multi-
group factor analysis with mean structure (Dolan, 2000; Dolan & Hamaker, 2001; Lubke et 
al., 2003a). Suppose we would establish that tests are fully measurement invariant, and that 
between-group differences are mainly (or entirely) due to between-group differences in g. 
All we know then is that we have tackled the enormous measurement problem. This opens 
the door to study of why groups differ in this latent variable we call g, and we can study 
which reasons may lie behind the group difference in g. Until that day, we do not know 
what group differences in IQ scores mean, and evolutionary, genetic, and environmental 
theories with respect to race differences in intelligence only have a very weak empirical 
foundation. In addition, evolutionary and genetic theories also should take into account the 
fact that global differences in national IQ are strongly correlated with a vast number of 
environmental variables that are known or at least suspected to be responsible for the 
Flynn Effect.  
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The Bright Future of African IQ 
 An average IQ of 80 among Africans may appear to be low, but from a historical 
perspective this average is not low at all. That is, when we compare the SPM scores of a 
representative sample of British adults in 1948 to British norms collected in 1992 (J. C. 
Raven, 1960; J. C. Raven et al., 1996), average adult British IQ in 1948 would be 
approximately 81. Likewise, compared to the test performance of Dutch 18-year-olds in 
1982, a sample containing 79% of all 18-year-old Dutch males in 1952 has an average IQ of 
80 (Flynn, 1987). Despite the supposedly “low average IQ” of their populations around 
1950, Great Britain and The Netherlands developed fairly well economically, scientifically, 
and culturally in the last five decades. In fact, the average IQs (based on more recent 
norms) of samples around 1950 turned out so low because these countries developed since 
1950! Therefore, the average IQ of Africans would be close to 100 if we would have 
compared SPM and CPM performance to British norms of around 1950. This is evident in 
Figure 5.1, where we compared SPM scores of Africans to older norms. In this figure, the 
average IQ of several African samples is clearly above 100. Note that in terms of societal 
development, contemporary African countries are more similar to developed countries in 
1950 than in 2006. 
 The rise in average intelligence test scores over the years has been shown to occur 
in most developing countries over the world (Flynn, 1984, 1987, 1999c; Neisser, 1998). The 
fate of intelligence test scores in Africa should not be cause for pessimism, because there is 
much room for improvement of IQ levels in Africa. Whethzel and MacDaniel (2006) 
indicated that countries (with low average IQ) could improve their IQ levels by 
encouraging high IQ individuals to procreate and discouraging low IQ individuals from 
procreation. That appears to be a very slow and highly inefficient way to improve IQ levels 
in countries like Sierra Leone, where more than 25% of children die before the age of five, 
because of malnutrition and disease. Improving education, health care, sanitation, and 
nutrition would seem to be a better idea. Luckily, these are also variables that the UN aims 
to have improved before the year 2015, as formulated in the so-called Millennium Goals 
(United Nations, 2005). As we saw, it is safe to say that there has also been a rise in IQ 
scores in sub-Saharan Africa. There is a lot of empirical support for the claim that 
malnutrition (Sigman & Whaley, 1998), health (W. M. Williams, 1998), sanitation (Boivin et 
al., 1993), and schooling (Ceci, 1991) have an effect on IQ. When the Millennium Goals 
will be accomplished, IQ levels in Africa will surely go up.  

What, in terms of the exploratory variables we studied, is the potential of the Flynn 
Effect in Africa? The average infant mortality rate in current day sub-Saharan Africa is 
about 84. This is comparable to the infant mortality rate in 1920 in the US. Urbanization in 
Africa is about 40%, which is comparable to urbanization in the US around 1900. Fertility 
rate in Africa is comparable to the fertility rate in the US in 1870. The average pupil-to-
teacher ratio in primary schools in current-day sub-Saharan Africa roughly equals that in 
the US before 1910. Thus, in terms of the variables that have been proposed as causes of 
the Flynn Effect, people in sub-Saharan Africa grow up under circumstances that are 
comparable to a western civilization before the First World War. Future will tell whether 
average IQ in sub-Saharan Africa will show gains similar to those found in western 
countries. Either way, given that the Flynn Effect has stood at about 3 points rise in IQ per 
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decade in the developed world, the Flynn Effect has a potential of at least 27 IQ points 
(i.e., 90 years worth of Flynn Effect) in sub-Saharan Africa. Anyone who claims that 
African IQ is low because of genetic or evolutionary factors, should take this simple fact 
into account.  

 
Admixture 

The results of our study do not sit well with theories that assign a substantial role 
to genes in racial differences in intelligence. It has been argued that because most African 
Americans are admixtures of European and African genes, that the IQ of "pure blacks" in 
Africa should be much lower than the average IQ among African Americans (Lynn, 1991; 
Rushton & Jensen, 2005a). This appears not to be the case. The average IQ of African 
Americans has been around 85 for quite a long time (Gottfredson, 2005; Jensen, 1998; 
Rushton & Jensen, 2005a), although it appears to have changed upwards to approximately 
89 in recent years (Dickens & Flynn, 2006). Based on our extensive review of studies, 
average IQ of the African population lies somewhere in the neighborhood of 80, when 
compared to a mean IQ of 100 for the US. We are left with a mean difference somewhere 
from 5 to 9 IQ points between Africans and African Americans. If we take into account 
the real possibility that African IQ represents an underestimation of ability because of 
measurement bias and sub-optimal testing conditions, this difference is likely to be smaller. 
Were one to correct for the large differences in environmental circumstances (e.g., 
education, nutrition, health) between those two groups, this difference could easily drop to 
zero. This would falsify the genetic theory of racial differences in intelligence, as put forth 
by Lynn (2006). In light of our results, the admixture argument in favor of the genetic 
theory of race differences in intelligence is unconvincing.  

 
Concluding Remarks 

Controversial topics such as group differences in IQ should not deter researchers, 
but should encourage better research (Hunt & Carlson, 2006). Group differences in IQ 
exist, whether one likes it or not. The fact remains that science has an important role to 
play in understanding these group differences. One does not learn much by claiming that 
IQ tests are simply unsuitable for Africans (e.g., Berry, 1974), or that race differences in IQ 
are not worthy of study (Sternberg, 2005). Some have argued that IQ tests are suitable for 
Africans (Lynn, 2006; Rushton & Jensen, 2005a), and particular social and political 
conclusions are drawn on the basis of (incorrect) IQ levels in Africa (e.g., Herrnstein & 
Murray, 1994; Lynn & Vanhanen, 2002; Rushton & Jensen, 2005a). Scientists do not 
contribute to knowledge by claiming that certain persons are racist (Kamin, 1995), or that 
people are being too politically correct to see the truth (Rushton, 1996). Scientists 
contribute to knowledge by doing what they are good at, namely conducting rigorous, fair, 
and open research. Besides, the exposure of erroneous claims (e.g., that Africans have an 
average IQ of 67) is an empirical issue, not a matter of a priori belief. We certainly hope 
that our study has shed some more light on the complicated issue of IQ scores in sub-
Saharan Africa. Regardless of what these scores may eventually turn out to mean.  

 
 



 

147 

6 
 
Discussion 

 
 
6.1 Introduction 

 
“Does IQ have a future? The short answer is: no”             (Bartholomew, 2004, p. 33). 
 
 The study of cognitive abilities requires the use of measurement models. In this 
chapter, I will highlight the merits of using such models by focusing on an idealized 
(measurement) model of intelligence. Practical issues often hinder the implementation of 
this idealized model. I will argue that the analysis of IQ test scores in the absence of an 
explicit measurement model cannot add much to our understanding of group differences in 
cognitive ability. In addition, I will discuss the results of the approaches employed in the 
studies of this thesis, as well as the results of other approaches, in light of this idealized 
model.  
 
6.2 Idealized Model of Cognitive Abilities 

  
 Figure 6.1 displays a simplified hierarchical model of cognitive abilities, on which 
there is considerable consensus in the literature (e.g., Carroll, 1993; Jensen, 1998; McGrew, 
2005). On the top or apex of this model is the second order factor called g or general 
intelligence. Below g is a particular first order factor, which is influenced by g, and by other 
factors independent of g. This first order factor influences the two narrowly defined latent 
traits, both of which again are also subject to other factors, independent of the first order 
factor. The two narrow latent traits are each measured by a collection of items composing a 
scale (i.e., subtest). The item characteristic curves of these items are displayed on the 
bottom of the figure. Suppose that g, the first order factor, and the narrow traits are all 
linearly related, and suppose that the dichotomous item scores conform to an 
unidimensional56 Rasch model. The model is far from complete. As Carroll (1993) has 
shown, there might be an intermediate level between the first order and second order 
factor, and there exist several first order factors (e.g., crystallized intelligence, processing 
speed, long term retrieval, etc.). Despite the incompleteness of this model, Figure 6.1 
illustrates how complicated the accepted inter-individual structure of human cognitive 
abilities actually is. Things are further complicated by the fact that none of the depicted 
variables in Figure 6.1 are directly observable; they are latent traits. Even the item 
characteristic curves require estimation by fitting an Item Response Theory (IRT) model on 
dichotomous item scores, which are the only observed variables.  

                                                 
56 Note that the hierarchical model might be inconsistent with the unidimensional IRT model. This may be solved by 
employing multidimensional IRT models. 
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 As any model, the model in Figure 6.1 requires empirical verification, which can be 
accomplished by first fitting the Rasch model on item scores of a sufficiently large sample 
of test takers. This results in item parameter estimates and ability estimates. Subsequently, 
these ability estimates (or the sufficient statistics in case of a multivariate normally 
distribution) can be used as input in a confirmatory factor analysis.57 With the program M-
Plus (Muthen & Muthen, 2003) this analysis can be conducted in one run. Fitting of the 
model can shed light on the dimensions of inter-individual differences, and on the merits of 
the measurement model. Fitting the entire model is not always feasible for practical 
reasons. For instance the IRT model is often not fitted, but the item scores are summed to 
arrive at scale scores. This was the approach employed in the studies in the current thesis, 
where we focused on the factorial structure of subtest scores. Note that the summation of 
item scores is not ideal, but may provide a reasonable approximation, provided that the 
number of items is sufficiently large. 

                                                 
57 More 1st order factors and indicators are required to identify the factor model, but this is immaterial to the current 

discussion. 
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 Now consider the exogenous Variable X, upon which the variables in the model 
are regressed. X may be a continuous variable, like the amount of intellectual stimulation 
during childhood, test sophistication, or the additive influence of a large number of genes. 
X may also represent group membership (e.g., race, cohort, sex), although in this case it 
might be more appropriate to not speak of a causal effect, but rather of a correlation 
between X and the variables in the model. As depicted in Figure 6.1, Variable X can affect 
(or be related to) the variables in the model at four levels: (I) The higher order factor called 
g, (II) the first order factor, (III) a particular narrow trait represented by a subtest, and (IV) 
the location of individual item characteristic curves. Suppose that the regression on X of 
the variables at Levels I, II, and III is linear, and that the regression on the dichotomous 
item is suitably linearized (e.g., probit or logit regression). Thus, a Level IV effect is such 
that it affects the difficulty parameter of particular items. The difference between these four 
levels is highly relevant to the understanding of the (causal) relation between X and 
cognitive abilities. For instance, if X affects item parameters, this amounts to uniform bias 
(Mellenbergh, 1982) or Differential Item Functioning (DIF) with respect to X in the Rasch 
model. In that case X is related to the measurement of cognitive ability, but not to any of 
these abilities themselves. Hence, an effect on Level IV may be considered a measurement 
artifact. If X affects the narrow trait (i.e., Level III effect), this would mean that the effect 
of X is limited to the unique ability tapped by a subtest. If X represents group membership, 
such an effect at Level III implies the presence of an intercept difference across groups (cf. 
Chapter 2). Such an effect may be seen as a measurement artifact, but it may also be 
interesting in its own right (cf. Chapter 3 and 4). In addition, it makes quite a difference, 
both theoretically and practically, whether X affects the first order factor (i.e., Level II 
effect) or the second order g factor (i.e., Level I effect). For instance, if intellectual 
stimulation during childhood affects the first order factor (e.g., crystallized intelligence), this 
would imply that intellectual stimulation has an effect limited to this particular first order 
cognitive ability. On the other hand, if intellectual stimulation during childhood affects g, 
this effect generalizes to other first order factors and narrow abilities, which are affected 
directly or indirectly by g.  
  
6.3 The IQ approach 

  
 Figure 6.2 displays an approach to study cognitive ability denoted the IQ approach. 
In this approach, IQ is used as a proxy for g. The IQ approach looks neat and tidy, but 
looks can be deceiving. In fact, in the IQ approach, all test score information is wiped onto 
a big pile (i.e., the summation of item scores), and denoted by the catchall term IQ. In 
reality IQ is a hodgepodge of first order factors, narrow traits, item scores, and g.  
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 The use of IQ in the study of cognitive ability is quite common. For instance IQ is 
used to study intelligence in Africa (Lynn, 2006; cf. Chapter 5), sex differences in 
intelligence (Jackson & Rushton, 2006), the relation between intelligence and brain size 
(Thoma et al., 2005), and the Flynn Effect (Dickens & Flynn, 2001). In addition, a variant 
of the IQ approach is the dominant approach in experimental research, where summed 
item scores are generally treated as if they were latent variables. The IQ approach has led to 
much misunderstanding. For instance, the lay public generally sees IQ as synonymous with 
g. Even intelligence researchers sometimes make such mistakes. For example, the following 
sentence appears to confuse directions of causality. “IQ determines the efficiency of 
learning and comprehension of all cognitive tasks” (Lynn & Vanhanen, 2002, p. 39).  
 The IQ approach does not do justice to the complexity of human cognitive 
abilities, nor is the IQ approach appropriate for the difficult task of measuring these. This 
concept of IQ ignores the fact that first order factors and subtests invariably measure 
additional traits besides g, and that IQ may not be a good indicator of g. g may make a large 
contribution to the variance of IQ scores, but g is certainly not the whole story. For 
instance, a(2003) confirmatory factor analysis (Carroll, 2003) of the US standardization 
sample of the 29 cognitive ability tests of the Woodcock-Johnson-Revised (WJ-R; 
Woodcock & Johnson, 1989) showed that of the total test score variance, 33 % could be 
attributed to g, 22 % to nine first order factors, and 45 % to subtest specific factors and 
measurement error.  
 The use of the IQ does not contribute very much to our understanding of the 
nature and causes of cognitive abilities (see also Bartholomew, 2004), or to our 
understanding of the nature of group differences in intelligence test scores. That is, the 
(causal) relation between Variable X and IQ can be due to the effect of X on g (i.e., Level 
I), the effect of X on the first order factors (i.e., Level II), direct effects of X on subtest 
specific ability (i.e., Level III), or DIF with respect to X (i.e., Level IV). In other words, 
Level I, II, III, and IV effects are all confounded in the IQ approach. For instance, the 
relation between intelligence and educational attainment appears to be rather more 
complicated (Dolan et al., 2006) than expected on the basis of previous research that used 
IQ. Even when a particular IQ test (e.g., Raven’s Progressive Matrices) has a high loading 
on g, this does not mean that the effects of X on other levels are irrelevant. Group 
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 Figure 6.2  The IQ approach and the effect of Variable X on cognitive ability. 
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differences in IQ cannot be simply dubbed group differences in g, just because IQ is based 
on IQ test scores (cf. Chapter 5).  
 
6.4 Analytical Approaches 

  
 Given the hierarchical model, an appropriate approach to the study of cognitive 
abilities is based on statistical techniques from item response theory and/or Structural 
Equation Modeling (SEM) approaches, like Confirmatory Factor Analysis (CFA). These 
approaches are not always employed in the study of cognitive abilities. There exist several 
approaches to study intelligence that are intermediate to the idealized modeling approach 
described above (cf. Figure 6.1) and the IQ approach (cf. Figure 6.2). Most of these 
intermediate approaches are applied for practical reasons, although in many instances the 
use of less sophisticated models is not warranted. For instance, consider the widely used 
Method of Correlated Vectors (MCV; Jensen, 1998). In this method, subtests’ factor 
loadings on g are estimated by means of Exploratory Factor Analysis (EFA), Principal 
Components Analysis (PCA), or principal axis factor analysis (i.e., a variant of PCA). 
Subsequently, the subtests’ g loadings are correlated with subtests’ correlations with 
Variable X. In the model underlying MCV, two variables of cognitive ability remain: a 
causal effect of (or a group difference in) Variable X is either on g (i.e., Level I), or on all 
other variables in the model (i.e., Levels II, III, and IV). In other words, a g-or-not-g 
conceptualization underlies the method of correlated vectors. If the correlation that forms 
the crux of this method is close to one (i.e., a "Jensen Effect"; Rushton, 1998), this is 
interpreted as an indication that X is related to g. Any correlation larger than 0.50 is 
generally seen as an indication of the rather vague notion that Variable X is mostly related 
to g (e.g., Lynn & Owen, 1994). Likewise, a correlation of zero between g loadings and a 
subtests’ correlations with Variable X are interpreted as if g is not correlated with X at all 
(e.g., Rushton, 1999). This, however, is not necessarily the case (Ashton & Lee, 2005). 
There are several reasons that the method of correlated vectors is suboptimal, the most 
important being a lack in specificity (Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 
2004; Lubke et al., 2001; Lubke et al., 2003a). Specifically, with MCV it is not possible to 
disentangle effects on the different levels in which X can be related to cognitive ability 
and/or test scores. Whenever feasible, the use of SEM approaches with latent variables 
(Bollen, 1989) is preferred. With SEM X’s relation to the different levels in Figure 6.1 can 
be studied from a statistically sound perspective. If X represents group membership, Multi-
Group Confirmatory Factor Analysis or MGCFA is preferred, for the simple reason that 
MGCFA models approach the idealized model much more closely. If the factorial structure 
of a battery of subtests is unclear, Multi-Group Exploratory Factor Analysis (MGEFA) can 
be employed (Hessen et al., 2006). In most applications of the method of correlated 
vectors, the presence of sufficient statistics and sufficiently large sample sizes allow for the 
use of MGCFA or MGEFA. Hence, in such cases, there is no reason to use the method of 
correlated vectors, as this method is suboptimal. 
 There are many more approaches that are intermediate to the IQ approach and the 
idealized model, such as Principal Components Analysis (PCA), multiple linear regression, 
and equivalent techniques such as analysis of variance (ANOVA). However, the application 
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of these techniques does not do justice to the fact that cognitive abilities are latent variables 
that underlie test scores (e.g., PCA). When group differences in intelligence test scores are 
studied, MANOVA approaches can be used, but these are only related to mean differences. 
Most importantly, MANOVA, PCA, and regression analyses do not comprise a 
measurement model. For example, Camarata and Woodcock (Camarata & Woodcock, 
2006) recently used ANOVA to study sex differences on a large battery of cognitive ability 
tests. However, this approach does not identify the exact level on which group differences 
lie. The use of MGCFA or MGEFA allows for a more parsimonious approach, which may 
shed light on the nature of sex differences at the level of common factors (Dolan et al., 
2006; Van der Sluis et al., 2006). 
 
6.5 MGCFA 

 
 In the studies in Chapters 2, 3, and 4, we employed multi-group confirmatory 
factor analysis, but we did not consider item level data. Therefore, in the approach used in 
these studies, the effects of X on Level IV and Level III were confounded. Variable X 
represented ethnic groups and cohorts in Chapters 2 and 4, respectively. In Chapter 3, X 
represented ethnic groups/sex groups and experimental conditions. In these applications of 
MGCFA, we were mainly interested in the degree to which group differences in subtest 
scores could be attributed to group differences at the level of the common factors (i.e., 
Levels I and II). This also requires that measurement parameters are invariant with respect 
to X.  
 When we came across mean effects that could not be accounted for by the 
common factors in the model, measurement invariance with respect to X was said to be 
violated in an uniform manner (Mellenbergh, 1982). Because of the confounding of Levels 
III and IV, the uniform measurement bias we came across in these studies may have been 
due either to DIF or to group differences in ability unique to subtests. Level I and II effects 
were also not always distinguishable in the data sets we analyzed in this thesis, for the 
simple reason that the number of subtests and factors did not always suffice to estimate the 
higher order factor structure. Nevertheless, in the first study of Chapter 4, the second order 
factor was modeled in the comparison of two cohorts of test-takers. That particular study 
showed, like other studies (Dolan, 2000; Dolan et al., 2006; Dolan & Hamaker, 2001; Van 
der Sluis et al., 2006) that the disentanglement of Level I and Level II effects is not always 
straightforward empirically. This is due to insufficient power, i.e., the difficulty to detect 
differences in mean structures at Level I and II. On the other hand, the results of our 
applications of MGCFA suggested that effects on Level III/IV effects can be readily 
distinguished from effects on Levels I and II. That is, we came across Level III and IV 
effects in most of the data sets in this thesis. These effects are called intercept differences.  
 
6.6 Intercept Differences 

 
 Chapter 2 focused on the disentanglement of Level I/II from Level III/IV effects 
when X represents group membership. In our overview of MGCFA studies published in 
2005, we found that it is quite common that between-group difference in test scores are not 
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solely related to the level of the (first order) common factors. This is a requirement for 
group comparisons at Levels I and II, because the model is a bottom-up model, at least in 
an empirical sense (i.e., in terms of estimation). In Chapter 2, we argued that within 
MGCFA, the absence of intercept differences is a necessary condition for measurement 
invariance. Measurement invariance is central to the understanding of group differences in 
test scores. Therefore, it is rather surprising that in many studies with MGCFA, the 
possibility of intercept differences is simply ignored, even in cases where the mean 
structure was modeled explicitly (e.g., Chirkov et al., 2005; Corwyn & Bradley, 2005; 
Hagger et al., 2005; McInerney et al., 2005).  
 As we saw in the illustrative re-analysis of a published study of the suitability of an 
IQ test for ethnic minority children in The Netherlands (Te Nijenhuis, Tolboom et al., 
2004), ignoring Level III/IV effects may have serious practical consequences. It is 
noteworthy that Te Nijenhuis and colleagues also studied DIF of several subtests of this IQ 
test (i.e., they did study Level IV effects). Interestingly, the subtest that showed the largest 
intercept difference in our factor analyses (cf. Figure 2.5), did not show item level bias in 
their DIF analyses. This indicates that Level III effects may indeed be present in the 
absence of Level IV effects. The effect of ethnicity on this subtest, which measured 
knowledge of Dutch vocabulary, is a clear example of a Level III effect. One of the two 
other subtests (i.e., Learning Names) that showed an intercept difference did display DIF 
(the third biased subtest was not suitable for DIF analyses), which suggests that the 
intercept difference on this subtest was probably due to a Level IV effect. DIF in this 
subtest may have been due to the fact that it contained Dutch names from various fairy 
tales, with which the ethnic minority children may have been less familiar. Yet another 
subtest of this IQ test showed considerable DIF with respect to ethnicity, but did not 
display an intercept difference. Combined, these results indicate that Level IV and Level III 
effects are distinct, and that Level IV effects may or may not show up as intercept 
differences at the subtest level. Therefore, both analyses at the item level and analyses on 
the level of subtests are required to fully establish measurement invariance across groups.  
 The RAKIT test appears to be biased with respect to ethnic minority children in 
The Netherlands. Other research has shown that the GAT-B in the Netherlands was also 
biased with respect to minorities at Levels III/IV (Dolan et al., 2004), and the WAIS-III in 
Spain and The Netherlands was biased with respect to females at this level (Dolan et al., 
2006; Van der Sluis et al., 2006). In IQ test development, the use of MGCFA (if applied at 
all; see, e.g., Wechsler, 2000) is mostly restricted to testing group differences in factor 
loadings, but these tests do not provide reassurance whether tests are measurement 
invariant across groups. Considering the apparent omnipresence of intercept differences, 
and the likelihood of DIF, there is a strong need for more research on measurement 
invariance of IQ tests across demographic groups. The claim that “the issue of test bias is 
scientifically dead” (Hunter & Schmidt, 2000, p. 151) seems to be divorced from reality.  
 Ideally, studies of group differences should include data on a large battery of tests 
with a clear theoretically based underlying factorial structure (e.g., WJ-III test battery; 
Woodcock, McGrew, & Mather, 2001), item level data, and covariates that could help 
explain the possible group differences on different levels. Several important unresolved 
issues in the study of intercept difference are (1) the disentanglement of Level III and Level 
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IV effects, (2) power to detect intercept differences when more than one indicator of a 
factor are affected by a biasing variable, and (3) effects of nonlinearity. 
 
6.7 Stereotype Threat 

  
 The effects of stereotype threat on test performance are generally seen as 
measurement artifacts (Steele, 1997). Stereotype threat theory (Steele et al., 2002) states that 
the performance lowering effects of stereotype threat are mainly restricted to items and 
subtests that are sufficiently difficult to be stereotype threatening. That is, on an easy task 
one does not run the risk to conform to the stereotype of low performance. Furthermore, 
the performance on easy tasks is not likely to be strongly affected by decreases in working 
memory capacity, which is considered an important mediator of stereotype threat effects 
(Schmader & Johns, 2003).58 Within the model in Figure 6.1, the effects of stereotype 
threat may be seen as Level III and Level IV effects on the most cognitively demanding 
subtests and items, respectively. 
 In the studies into the effect of stereotype threat on test performance in Chapter 3, 
we employed basic one-factor models with subtest scores as indicators. The theory of 
stereotype threat allowed for quite specific predictions of the effect of stereotype threat 
(i.e., Variable X in Figure 6.1) on test performance. We predicted and found that the 
experimentally induced effects of stereotype threat were most pronounced on the most 
cognitively demanding subtests. Most, but not all, effects of stereotype threat we found 
were linear and resulted in intercept differences. 
 In the first study of Chapter 3, stereotype threat had a non-linear effect on test 
performance. In many (albeit not all; Lubke et al., 2003b) circumstances, such non-linear 
effects can also be detected readily by means of MGCFA. Note, that the factor models 
employed in Chapter 3 were quite small. In such models it is not always possible to 
pinpoint exactly the subtests that display uniform or non-uniform bias. Suppose that in a 
one factor model with three indicators, the first subtest shows misfit after a particular 
between-group restriction is implemented. This effect could be due either to bias in this 
first subtest, or to biasing effects on the other two subtests. Ultimately, theoretical 
arguments guide the identification of biased subtests, not solely indicators of model misfit. 
Ideally, one would incorporate in the model covariates that could explain the bias. 
 The modeling approach in Chapter 3 showed the usefulness of MGCFA in 
experimental settings. The experimental paradigm in psychology focuses strongly on mean 
effects, while covariance effects are often ignored (but see Baron & Kenny, 1986). In 
addition, in experimental psychology manifest test scores are generally viewed as latent 
variables, and individual differences are usually not modeled (i.e., they act as error terms in 
ANOVA; Cronbach, 1957). As we showed in Appendix C of Chapter 3, the use of analysis 
of covariance (ANCOVA) to accommodate individual differences in experiments does not 
always sit well with predictions derived from theories that relate to individual differences 
(e.g., stereotype threat theory). The use of MGCFA in experiments allows for the use of a 

                                                 
58 It would be interesting to study the effects of stereotype threat on working memory capacity from a modelling 
perspective. Note that when the effect of stereotype threat is related to a common factor representing working 
memory, this effect represents a Level II effect. 
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measurement model of both the mean and covariance structure. With this approach 
measurement artifacts on Level III/IV can be disentangled from effects on the level of 
common factors (i.e., Levels I and II). In addition, the use of MGCFA allows for a test of 
measurement invariance across design cells. Therefore, the use of measurement models in 
experimental settings could greatly enhance the construct validity of experiments (Shadish, 
Cook, & Campbell, 2002). Not only would the use of such measurement models allow for 
the detection and correction of many methodological artifacts (e.g., demand characteristics 
in self-report questionnaires), it would also shed more light on the exact nature of the latent 
dependent variables and of the nature of causal effects on these variables. 
 The studies in Chapter 3 illustrated the usefulness of rigorous modeling in 
experimental settings and in our understanding of stereotype threat. Future work on 
stereotype threat could look at item level effects (e.g., Stricker & Bejar, 2004). Also, it 
would be interesting to employ more elaborate factor models, and to include covariates that 
can shed light on mediating and moderating variables. Stereotype threat theory states that 
not all test-takers are equally susceptible to the effects of stereotype threat, but this theory 
(like many psychological theories) is not very explicit in whether stereotype threat 
susceptibility is a latent class or a latent trait. If stereotype threat susceptibility turns out to 
be a latent class, an analytical approach to study stereotype threat effects on test 
performance would be to use factor mixture analyses (Lubke & Muthen, 2005), which 
could be used in both experimental and non-experimental settings.  
 
6.8 The Flynn Effect 

  
 Chapter 4 was concerned with the Flynn Effect. The large gain in IQ test scores is 
quite remarkable given its size and consistency over time and over populations. However, 
the apparent consistency of the effect over the developed world is mostly a function of the 
use of IQ to document the effect. The fact that the summed scores of a battery of tests 
(i.e., IQ) increase over the years can be due to different causes raising scores on different 
levels of the idealized model. It is quite conceivable that a large portion of the gain is 
caused by Level III effects on different narrow abilities. Only with rigorous modeling, can 
we hope to understand the nature of this phenomenon. 
 The continued use of IQ in the study of the Flynn Effect is remarkable, because 
early on it was noted that the gains were dependent on the type of subtest (Flynn, 1987). 
Differential increases have raised the question whether the gains can be related to an 
increase in g (Colom & García-López, 2003; Colom et al., 2001; Flynn, 1999a, 1999b, 
2000a; Jensen, 1998; Must et al., 2003; Rushton, 1999, 2000a). This discussion revolved 
mainly around the method of correlated vectors, which does a poor job in disentangling the 
effects on the different levels of the idealized model.  
 The results from the studies in Chapter 4 shed some light on the level at which the 
Flynn Effect appears to be operating. It became clear that Level III/IV effects (both 
positive and negative) were present in the comparison across cohorts, although the gain 
was also related to Levels I and II. 
 Proposed causes for the Flynn Effect differ in the level of effects within the 
idealized model. Gains in test sophistication (Brand, 1987) and improvements in test 
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specific skills (Greenfield, 1998) may be seen as Level III and Level IV effects. Such causes 
are consistent with the results of Studies 1, 2, and 4 in Chapter 4. Urbanization (Barber, 
2005), greater environmental complexity (Schooler, 1998), improvements in health care (W. 
M. Williams, 1998), a trend towards smaller families (Zajonc & Mullally, 1997) are most 
likely Level I and Level II effects. Increases in educational attainment (Husén & Tuijnman, 
1991; Tuddenham, 1948), betterment of educational practice (Blair et al., 2005), are likely to 
be effects on Level II (e.g., crystallized ability) and Level III (e.g., math ability). The 
working of gene by environment correlation in the increasing presence of more intelligent 
others (Dickens & Flynn, 2001), the genetic effect of heterosis (Mingroni, 2004), and 
improvements in nutrition (Lynn, 1989, 1990), are Level I effects. If the absence of 
measurement invariance across cohorts proves to be robust, it follows that variables related 
to Levels I and II cannot be the sole causes of the Flynn Effect. 
 Measurement invariance in the studies in Chapter 4 was rejected mostly due to the 
presence of intercept differences across groups. If we consider the arguments put forth in 
Chapter 2 and in Appendix B of Chapter 3, these intercept differences would imply that at 
least part of the Flynn Effect is related to uniform effects on Levels III and IV. The 
uniformity means that whichever variable has caused the gain at this level, it does not 
interact (strongly) with latent ability and it does not correlate strongly with latent ability. 
What kind of variable could this be? Likely variables are variables that large portions of the 
population encounter, such as the introduction of the television, computer games, and toys 
(Greenfield, 1998). 
 Figure 6.3 displays two examples of children’s toys, which strongly resemble, and 
might even have been copied from, particular subtests in the Wechsler Adult Intelligence 
Scale (WAIS) and the Wechsler Intelligence Scale for Children (WISC). The toy on the left 
resembles the Block Design test, the toy on the right is almost identical to the Object 
Assembly test. Note that such toys are disseminated widely since the 1960s. In fact, most 
primary schools in the Netherlands have toys like these. Such “educational” toys may have 
provided excellent test coaching that may have contributed to the Flynn Effect on the 
WAIS and WISC. Note that in the US both these subtests have shown consistent and 
relatively strong gains from 1947 to 2002 (Flynn, 2006).59 
 
 
 
 
 
 
 
 
 
 
 

                                                 
59 Note that these two subtests showed only moderate gains in the Dutch data we analyzed in Chapter 4. In addition, 
these subtests did not show intercept differences in these analyses. 

Figure 6.3  Two smart types of toys. 
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 The Flynn Effect may in large part be due to increases in the specific ability tapped 
by such subtests, which would constitute a Level III effect. Level IV effects are equally 
likely. For instance, the Vocabulary subtest of the US WAIS contained an item asking for 
the meaning of the word “terminate”. It is quite conceivable that since Schwarzenegger’s 
1984 film The Terminator, this item has become considerably easier.60 A study of DIF could 
shed light on this issue. Note that the changes over time in item parameters is well-known 
in educational measurement, where the effect is known as item parameter drift (Chan, 
Drasgow, & Sawin, 1999). With one notable exception (Flieller, 1988), DIF analyses have 
not been used to study the nature of the Flynn Effect. The results of Flieller’s study clearly 
showed DIF over time. 
 Future work on the Flynn Effect should focus on data at both the scale and item 
level. In addition, modeling of covariates that could explain the gain, may shed light on the 
causes of the Flynn Effect. Unfortunately, existing raw data sets, particularly those 
including item scores, are often difficult to acquire (Wicherts, Borsboom, Kats, & 
Molenaar, 2006). Nevertheless, measurement models are the key to our understanding of 
this fascinating phenomenon. Although there is an indication that the Flynn Effect appears 
to have stopped in some western countries (Teasdale & Owen, 2005; Wicherts, 2005a), the 
Flynn Effect will in all likelihood continue in the developing world, such as in Africa.  
 
6.9 IQ in Africa 

  
 In Chapter 5, we were guilty of the use of IQ scores for the simple reason that item 
level data and multivariate test scores were not available. In light of the lack of results from 
rigorous psychometric modeling, it is unclear what IQ scores in African samples mean 
psychometrically. The mean IQ difference between western samples and African samples in 
scores on an intelligence test such as Raven’s Progressive Matrices may be on Level I, II, 
III, and/or IV. Given the likelihood of measurement bias (see, e.g., Dolan et al., 2004), 
caution needs to be entertained in the interpretation of IQ scores in Africa. Rushton and 
Lynn (Lynn, 2006; Rushton et al., 2004) maintain that the difference in IQ scores between 
western samples and African samples lie on g (i.e., Level I). However, this is mere 
speculation. The analyses employed by Rushton and coworkers (Rushton, 2002; Rushton & 
Skuy, 2000; Rushton et al., 2004; Rushton et al., 2002, 2003) do not establish the level at 
which these groups differ. A rigorous study of DIF with well-established methods would 
be a good starting point in the study of the psychometric meaning of IQ test scores in 
Africa. To gain insight into the factorial nature of these test scores, analyses using MGCFA 
or MGEFA are also needed. 
 There exist a host of variables that could account for the relatively low 
performance of Africans on the Raven’s tests. Considering the many cultural differences 
between Africans and westerners, several of these variables are likely to be on Levels II, III, 
and IV. For instance, relatively low test sophistication (Irvine, 1966) and misunderstanding 

                                                 
60Popular film titles could also have a negative effect on WAIS performance. The WAIS-III Information subtest 
contains an item asking for information on The Kremlin. In a sample of 416 Psychology freshmen from the 
University of Amsterdam, no less than 15 students indicated that this is a small, cute, furry creature that turns into a 
vicious monster at midnight. This error is clearly caused by Spielberg’s 1984 film The Gremlins. 
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of test directions (MacArthur et al., 1964) among African test takers could both result in 
performance lowering effects on Level III.61 Individual items could display DIF (i.e., a 
Level IV effect) because these items contain figures that are less familiar to Africans 
(Bakare, 1972). It is also conceivable that the Raven’s test measure spatial abilities in 
addition to g (Irvine, 1969b), and that spatial abilities among Africans are less well 
developed by televisions and computer games (Greenfield, 1998).  
 The genetic or evolutionary theories of race differences in intelligence test scores 
invariably relate to Level I effects. However, group differences in g are not likely to fully 
explain the relatively low IQ scores of Africans. Besides, as we saw, there are many 
variables related to the Flynn Effect that have not shown gains in Africa comparable to 
those that occurred in the developed world. A large part of these environmental variables 
are related to Level I, and could also help explain the reasons for lower IQ among Africans. 
 In conclusion, the genetic or evolutionary explanations of low average IQ in Africa 
have a weak empirical basis, because these theories relate to a group difference in g which 
has not been established, and because they are based on correlational evidence in the 
presence of many highly relevant confounding variables. 
 
6.10 The Nature of Latent Traits 

 
 In basically all theories on cognitive ability, cognitive abilities, including g, are 
conceptualized as normally distributed latent variables. Although latent cognitive variables 
are interesting and valuable in their own right, more research is required to shed light on 
the exact psychological nature of these variables. The presence of latent dimensions of 
inter-individual differences in cognitive ability may or may not be a reflection of latent 
cognitive processes (Borsboom, Mellenbergh, & van Heerden, 2003). For instance, van der 
Maas and colleagues (2006), recently proposed a dynamic model of cognitive abilities that 
could account for the positive manifold (i.e., the phenomenon that cognitive ability test 
scores universally intercorrelate positively) in the absence of a single cognitive quantitative 
biological process or capacity. Their model provides an interesting view on the nature of 
cognitive abilities, and could explain many phenomena such as the Flynn Effect. Dynamic 
models like that presented by van der Maas et al. illustrate the usefulness of formal models 
in the study of cognitive abilities. 
 The cognitive processes underlying inter-individual differences in intelligence test 
performance can also be studied from an experimental perspective. Unfortunately, 
experimental cognitive psychology and the study of individual differences in cognitive 
ability appear to be as mutually isolated as they were fifty years ago (Cronbach, 1957). 
Nonetheless, work on individual differences in working memory capacity (e.g., Engle, 2002; 
Engle, Tuholski, Laughlin, & Conway, 1999) does appear to show some promise. The 
continued use of ANOVAs by experimental psychologists, and the continued use of basic 
correlational techniques by differential psychologists will not help in bringing the two 
disciplines of psychology together. Bridging the gap between the experimental approach 

                                                 
61 The effect of such misunderstanding on item performance could also depend on the nature of particular items. In 
that case, misunderstanding may result in a Level IV effect. 
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and the individual differences approach to study human cognition rests ultimately on the 
use of rigorous statistical models (Embretson & Schmidt McCollam, 2000; Lohman, 2000), 
which should be well grounded in psychological theory.  
 
6.11 Conclusion 

 
  Measuring latent variables by means of IQ tests is not an easy task, but the field of 
psychometrics has provided many tools to study the relation between test scores and the 
latent traits that are supposed to underlie those test scores. The aim of this thesis was to 
use one such psychometric tool (i.e., MGCFA) to gain a better understanding of group 
differences in intelligence test scores. Measurement models should be an integral part of 
theorizing in all psychological theories that are related to latent traits. However, theories are 
not always explicit concerning the level at which the effect of exploratory variables lie. If 
our ultimate aim is to understand human cognitive abilities, and their determinants, the 
approaches based on IQ do not take us very far. The more approaches are based on 
explicit statistical and psychometric models, the closer we get in understanding cognitive 
abilities, their antecedents, and group differences in intelligence test performance. Cognitive 
abilities are complex phenomena that we will never fully understand by using approaches 
based on IQ, or by using simple heuristics such as the g-or-non-g conceptualization 
underlying the method of correlated vectors. In the study of cognitive abilities, simplistic 
analytical approaches are best abandoned. 
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Appendix: 
A cautionary note on the use of information fit 
indices in covariance structure modeling with 
means 
 
 

Information fit indices such as AIC, CAIC, BIC and ECVI can be valuable in 
assessing the relative fit of structural equation models that differ with respect to 
restrictiveness. In cases where models without mean restrictions (i.e., saturated mean 
structure) are compared to models with restricted (i.e., modeled) means, one should take 
account of the presence of means, even if the model is saturated with respect to the means. 
The failure to do this can result in an incorrect rank order of models in terms of the 
information indices. We demonstrate this point by an analysis of measurement invariance 
in a multi-group confirmatory factor model. 

 
  

7.1 Introduction 

 
 Often in structural equation modeling, a sequence of increasingly restrictive models 
is fitted. When both means and covariances are modeled, the situation may arise in which 
one first fits a series of models to the observed covariance matrix, and one subsequently 
adds the model for the means. Such a stepwise approach has the advantage that it provides 
information concerning the drop in fit when structured means are added. This is especially 
important when the means and the covariance structure are modeled with a common 
subset of parameters, i.e., when strong hypotheses are tested concerning the common 
causation of individual and mean differences (e.g., Mandys, Dolan, & Molenaar, 1994; 
Meredith, 1993). The aim of the present note is to point out that in the calculation of 
information criteria and the expected cross validation index (ECVI) in this context one 
should take account of the presence of means, even if the model is saturated with respect to 
the means. The failure to do this can result in an incorrect rank order of models by AIC 
(Akaike, 1974), BIC (Schwarz, 1978), CAIC (Bozdogan, 1987), and ECVI (Browne & 
Cudeck, 1989, 1993). Specifically the rank order is incorrect when going from a model in 
which the model for the means is saturated to a model in which the means are constrained. 
We identify this problem below and demonstrate it in an illustrative analysis. 
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7.2 Assessment of Relative Fit Using AIC, BIC, CAIC, and ECVI 

 
 In assessing the fit of structural equation models, it is advisable to consider several 
fit measures, in addition to the χ2 index (Bollen & Long, 1993). Information criteria such as 
AIC, CAIC, and BIC form a useful class of indices, as they penalize for the number of 
parameters, and thus take into consideration the parsimony of models. Although the 
information statistics have rather different origins, varying from the concept of entropy 
(AIC) to Bayesian statistics (BIC), they all have a similar structure (see Table 7.1), in that 
they involve the same information. Lower information index values indicate better fit. We 
note that the ECVI (Browne & Cudeck, 1989, 1993) is linearly related to the AIC, and thus 
yields the same rank order of competing models as the AIC. 
 Information statistics are valuable in analyses, where models without restrictions on 
the mean62 are compared to models with such restrictions. However when means are 
unrestricted, one may be inclined to discard the means. Clearly means need not actually be 
included in a model, in which the means are not structured. Moreover in certain cases 
(exploratory factor analyses), it is difficult to actually include the means. However, 
comparing models that do restrict means to models that do not, these implicit mean 
parameters have to be considered in the computation of the information indices. If these 
parameters are overlooked, the information indices are underestimated. This in turn may 
result in the unjustified rejection of restrictions on the means. The underestimation caused 
by ignoring the parameters for the means differs for each information criterion, and 
depends on the number of manifest variables and the number of cases. Table 7.1 contains 
expression for this underestimation for each information criterion. We illustrate our point 
by testing for factorial invariance in two groups of children. 
 
Table 7.1 
Fit indices and underestimation due to ignoring saturated means 
Fit Index Formula Underestimation due to 

ignoring saturated means 

AIC = χ2 + 2t  2*p 

CAIC = χ2 + (1 + ln N)t (1 + ln N)*p 
BIC = χ2 + (ln N)t (ln N)p 
ECVI = (χ2/n) + 2(t/n)  2*(p/n) 

Note: t=number of parameters; p=number of manifest means; N=number of cases; n=N-number of groups. 
 
7.3 Illustration: Factorial Invariance 

 
 The psychometric theory concerning the definition and meaning of measurement 
invariance within the context of the common factor model (i.e., factorial invariance) is well 
developed (Meredith, 1993). This theory gives rise to multi-group confirmatory factor 
models, in which covariance and mean structures are restricted over groups. Here we 

                                                 
62 I.e., a saturated mean structure in which a parameter is estimated for each observed mean. 
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compare two groups. Let µi and Σi denote the implied mean vector and covariance matrix in 
group i. These are modeled as follows: 
  µi = τi + Λi αi,        (1) 
  Σi = Λi Ψi Λit + Θi,       (2) 
where the (p x q) matrix Λi contains factor loadings, and the p-dimensional vector τi 
contains measurement intercepts. The (p x p)-diagonal matrix Θi contains unique/error-
variances, and Ψi is the (q x q)-covariance-matrix of the q common factors. Finally, αi is a 
q-dimensional vector of factor means. For reasons of identification (see Sörbom, 1974) this 
vector is fixed to zero in an arbitrary group, so that latent differences in means are 
modeled. Factorial invariance can be tested by fitting a series of increasingly restricted 
models. These are presented in Table 7.2.  
 
Table 7.2  
Summary of models in case of two Groups 1 and 2 
No. Description Σ1= Σ2= µ1= µ2= 
0 Exploratory Λ*

1Λ*
1
t+Θ1 Λ*

2Λ*
2
t+Θ2 τ1 τ2 

1 Configural invariance Λ1Ψ1Λ1
t+Θ1 Λ2Ψ2Λ2

t+Θ2 τ1 τ2 
2 Metric invariance ΛΨ1Λt+Θ1 ΛΨ2Λt+Θ2 τ1 τ2 
3 Equal error/unique variances ΛΨ1Λt+Θ ΛΨ2Λt+Θ τ1 τ2 
4a Strict factorial invariance ΛΨ1Λt+Θ ΛΨ2Λt+Θ τ  τ+Λα2 
4b Strong factorial invariance ΛΨ1Λt+Θ1 ΛΨ2Λt+Θ2 τ  τ+Λα2 

Note: Λ*1 denotes that all elements are estimated. Except for Step 4b (nested under 2) each model is nested under 
the previous one. 

 
 In addition to an exploratory factor analysis, we fit three models without mean 
restrictions, namely configural invariance (equal pattern of factor loadings), metric 
invariance (equal factor loadings; Horn, McArdle, & Mason, 1983), and a model with 
group-invariant error/unique variances. Furthermore, we fit two models with structured 
means, denoted strong factorial invariance and strict factorial invariance (Meredith, 1993). 
Meredith (1993) has shown that, within the factor model, strict factorial invariance is 
required to demonstrate measurement invariance (i.e., unbiasedness) with respect to 
groups. To illustrate our point we fit these models and calculate the indices with and 
without taking the means into account. 

The models are fitted on a subset of data published in Naglieri and Jensen (1987), 
which comprise the K-ABC and WISC-R scores of 86 Black and 86 White children. We 
first carried out an exploratory factor analysis (EFA) on selected 16 subscales (see Dolan & 
Hamaker, 2001, for similar analyses of the complete dataset). This resulted in a simple 
structure with three common factors relating to verbal abilities (V), spatial abilities (S) and 
memory (M). The scales are: Information (loading on the factor V), Similarities (V), 
Vocabulary (V), Comprehension (V), Picture Completion (S), Picture Arrangement (S), 
Block Design (S), Object Assembly (S), and Digit Span (M) from the WISC-R, and Faces 
and Places (V), Riddles (V), Reading/Understanding (V), Triangles (S), Hand Movement 
(M), Number Recall (M), and Word Order (M) from the K-ABC. In subsequent 
confirmatory analyses, we use this simple structure. We fix one factor loading per factor at 
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1 for scaling purposes. Furthermore, we assume multivariate normality and estimate 
parameters by Maximum Likelihood (ML). 
 
Table 7.3 
Fit indices of models with or without means 
       
     means excluded in 0-3 means included in 0-3 

model DF χ2  p RMSEA ECVI AIC CAIC BIC ECVI AIC CAIC BIC 

0 150 177.5 .062 0.032 2.39 407 913 791 2.77 471 1110 956 

1 202 233.4 .064 0.020 2.05 349 639 569 2.43 413  836 734 

2 215 250.5 .049 0.028 2.02 344 580 523 2.40 408  777 688 

3 231 294.1 .003 0.044 2.06 350 520 479 2.44 414  717 644 

4a 244 311.3 .002 0.041 2.35 399 648 588 2.35 399  648 588 

4b 228 267.4 .038 0.026 2.31 393 708 632 2.31 393  708 632 

Note: The χ2 reported here is the minimum fit χ2, whereas the slightly different Normal Theory Weighted Least 
Squares χ2 is used here (like it is in LISREL) for computation of the information indices. 

 
The fit indices of the models are presented in Table 7.3. For comparison we also 

report the χ2's and RMSEA fit indices, which are unaffected by the presence or absence of 
means in saturated mean models (i.e., models 0-3). We first consider the χ2 indices. Given 
the nesting of the models, we employ χ2 differences as a significance test for each 
restriction (Jöreskog, 1971). This would lead us to conclude that the equality of 
unique/error variances over groups is not tenable, but that the other between-group 
restrictions do not lead to a significant increase (p< .05) in χ2. Based on the χ2, we 
therefore conclude that strong factorial invariance holds. Note that the RMSEA does not 
really help in selecting models. Given the rule of thumb that RMSEA< 0.05 represents a 
reasonable approximation (Browne & Cudeck, 1993), all models are judged to be 
acceptable. In view of the equivocality of RMSEA, and given the recommendation to 
consider a variety of indices (Bollen & Long, 1993), we now turn to the information 
criteria.  

Here we first look at the case in which means are not incorporated in the model, i.e., 
models 0-3. Based on both the ECVI and the AIC, we would conclude the equality over 
groups of error/unique variances is not tenable and, more importantly, that intercepts 
cannot be equated across groups. The latter also applies to BIC and CAIC, although these 
two indices indicate that error/unique variances are invariant across groups. Thus, when 
the saturated mean structure is ignored, ECVI, AIC, CAIC and BIC lead to the incorrect 
conclusion that both strong and strict factorial invariance should be rejected. Only when 
the parameters for the means are taken into account (even though they are unconstrained), 
do we draw the correct conclusion. Here strong factorial invariance does hold, whereas 
strict factorial invariance would be rejected (e.g., compare the ECVI and AIC in Model 4a 
and Model 4b).63  
 

                                                 
63 However, note that the BIC and CAIC suggest that strict factorial invariance is tenable. 
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7.4 Conclusion 

 
The use of information criteria such as AIC, BIC, and CAIC, and the ECVI is 

valuable in the comparison of structural equation models that differ with respect to 
restrictiveness. However, when mean structure is analyzed in addition to the covariance 
structure this mean structure should be incorporated in the models at all stages of model 
fitting, even when the mean structure is saturated (unrestricted). Failure to do so may result 
in an incorrect rank order of models, and incorrect conclusions. Happily the correct value 
of the criteria can be obtained by including the means in the input and model 
specification.64 In situations where this may not be possible (e.g. exploratory factor analysis) 
the correct value can be calculated readily by hand (see Table 7.1). Although we have 
focused on factorial invariance in our illustration, this conclusion applies to other models 
including structured means such as the latent growth curve model or (quasi-)simplex 
models with structured means (e.g., Mandys et al., 1994). Finally we note other fit indices 
(e.g., the various comparative fit indices, such as the non-normed fit index) and related 
information (standardized residuals, modification indices) are invariant whether saturated 
means are or are not included in the model.   

                                                 
64 In Lisrel, the ty vector can be used to this end. 
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Samenvatting 
 

Groepsverschillen in prestaties op intelligentie tests 

 
 Groepsverschillen in de scores op intelligentie tests behoren tot de meest 
controversiële onderwerpen van de psychologie. Dit proefschrift gaat over dergelijke 
groepsverschillen en benadert deze vooral vanuit de context van het lineaire confirmatieve 
factor model. Dit psychometrische model is uitermate goed geschikt om groepsverschillen 
in multivariate intelligentie test scores mee te onderzoeken, omdat ermee kan worden 
nagegaan of met tests in verschillende groepen dezelfde latente variabelen (of factoren) 
worden gemeten. Meer specifiek kan ermee worden onderzocht of groepsverschillen in 
waargenomen test scores kunnen worden toegewezen aan groepsverschillen op de 
onderliggende latente variabelen die dergelijke tests beogen te meten (Meredith, 1993). Een 
dergelijke situatie wordt ook wel meetinvariantie ten opzichte van groepen genoemd 
(Mellenbergh, 1989). 
 

Verschillende Soorten Psychometrie 
 In het eerste hoofdstuk wordt opgemerkt dat er in de loop der tijd een schisma lijkt 
te zijn ontstaan tussen de meer technische psychometrie die gericht is op het modelleren 
van test scores aan de ene kant, en een psychometrie die gericht is op het begrijpen van 
cognitieve capaciteiten (of intelligentie) aan de andere kant. Daar waar vroeger veel 
onderzoekers een interesse aan de dag legden voor beide deelaspecten van intelligentie test 
scores, lijken de technische psychometrische ontwikkelingen en de inhoudelijke 
ontwikkelingen op het gebied van intelligentieonderzoek tegenwoordig steeds meer uit 
elkaar te zijn gelopen. Zo worden moderne analytische technieken niet ten volle benut om 
licht te werpen op de variabelen die gemeten worden aan de hand van cognitieve tests. Het 
doel van dit proefschrift is om relatief moderne psychometrische technieken toe te passen 
op groepsverschillen in intelligentie test prestaties, zoals die gevonden worden tussen 
bijvoorbeeld etnische groepen (Hoofdstuk 2), groepen waarover wel of geen negatieve 
stereotypen bestaan m.b.t. test prestaties (Hoofdstuk 3) en verschillende cohorten 
(Hoofdstuk 4). Hoofdstuk 5 is gewijd aan de interpretatie van IQ test scores van personen 
uit Afrika. In Hoofdstuk 6 wordt betoogd dat gezien de structuur van individuele 
verschillen in intelligentie, het gebruik van eenvoudige analysetechnieken nauwelijks 
bijdraagt aan het begrip van effecten van bepaalde variabelen op, of groepsverschillen in, 
intelligentie test scores. 
 

Meetinvariantie en Groepsverschillen in Meetintercepten 
 Hoofdstuk 2 heeft betrekking op meetinvariantie van tests en in het bijzonder op 
eerlijkheid van IQ tests ten opzichte van bestaande groepen. Mellenbergh (1989) stelde een 
eenvoudige en algemeen geldende definitie op van meetinvariantie ten opzichte van 
groepen. Volgens zijn definitie zijn testscores meetinvariant ten opzichte van groepen 
wanneer geldt dat, gegeven een bepaalde waarde op de latente trek, de verwachte waarde op 
de test onafhankelijk is van groepslidmaatschap. Een schending van meetinvariantie (ook 
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wel meetonzuiverheid genoemd) betekent dat groepsverschillen in test scores niet 
eenvoudigweg kunnen worden geïnterpreteerd als groepsverschillen in de latente trek(ken) 
die de test beoogt te meten.  
 In Hoofdstuk 2 wordt binnen het kader van het lineaire factormodel inzichtelijk 
gemaakt dat er geen sprake kan zijn van meetinvariantie ten opzichte van groepen als er 
bepaalde toetsen op de gemiddeldestructuur van test scores niet zijn uitgevoerd. Binnen dit 
model wordt dit aspect gemodelleerd aan de hand van meetintercepten. Voor een zinvolle 
groepsvergelijking dienen deze meetintercepten gelijk te zijn over groepen. Uit een 
overzicht van de recente literatuur blijkt dat in veel onderzoek naar meetinvariantie aan de 
hand van het confirmatieve factor model dit centrale aspect van meetinvariantie niet 
nadrukkelijk is getoetst. In Hoofdstuk 2 wordt beargumenteerd dat zonder deze toets niet 
geconcludeerd kan worden dat een test meetinvariant is ten opzichte van groepen. 
 De consequenties van het negeren van meetintercepten in de vergelijking van 
groepen wordt geïllustreerd aan de hand van een heranalyse van een gepubliceerde studie 
naar de bruikbaarheid bij allochtone kinderen van een veel gebruikte Nederlandse 
intelligentietest, te weten de Revisie Amsterdamse Kinder Intelligentie Test (RAKIT). 
Hoewel er in de oorspronkelijke studie door Te Nijenhuis, Tolboom, Resing en Bleichrodt 
(2004) gebruik gemaakt is van verschillende methoden om meetinvariantie te toetsen, is er 
door deze auteurs geen toets uitgevoerd op de gelijkheid van meetintercepten in het 
factormodel. Daar waar deze auteurs op grond van hun eigen analyses concluderen dat de 
RAKIT in sterke mate meetinvariant is voor allochtone kinderen, laat de heranalyse in 
Hoofdstuk 2 zien dat de RAKIT niet meetinvariant is ten opzichte van etnische groepen en 
dat de RAKIT de latente vaardigheden bij van oorsprong Marokkaanse en Turkse kinderen 
met ten minste 7 IQ punten onderschat. Dit impliceert dat de RAKIT alleen met grote 
voorzichtigheid kan worden gebruikt bij het meten van intelligentie bij allochtone kinderen. 
Dit resultaat laat tevens zien dat er meer behoefte is naar het bepalen van eerlijkheid van 
veel gebruikte intelligentietests.  
 

Stereotype Bedreiging en Groepsverschillen in Test Scores 
 Hoofdstuk 3 gaat over de effecten van stereotype bedreiging op test prestaties. 
Stereotype bedreiging is de angst om onbedoeld te voldoen aan een negatieve stereotype 
die betrekking heeft op de prestaties van de eigen groep (Steele & Aronson, 1995). Zo 
kunnen vrouwen angst hebben om laag te scoren op een wiskundetest, omdat er een 
stereotype bestaat dat vrouwen minder goed zijn in wiskunde. Uit veel experimenteel 
laboratoriumonderzoek is gebleken dat wanneer personen uit gestigmatiseerde groepen op 
meer of minder subtiele wijze worden herinnerd aan hun lidmaatschap van die groep, dit 
een negatief effect kan hebben op hun test prestaties. Omdat een dergelijk effect sterke 
maatschappelijke gevolgen hebben voor leden van die groepen, is het van belang om na te 
gaan in hoeverre dit effect optreedt in echte testsituaties. In dergelijke testsituaties is het 
echter vaak onethisch of onmogelijk om de effecten van stereotype bedreiging te 
onderzoeken. 
 In Hoofdstuk 3 wordt beargumenteerd dat het effect van stereotype bedreiging op 
test prestaties kan worden gezien als een meetartefact dat leidt tot een schending van 
meetinvariantie ten opzichte van groepen die wel of geen last hebben van het relevante 
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negatieve stereotype. In drie experimenten is met behulp van multigroep confirmatieve 
factor analyse nagegaan of de effecten van stereotype bedreiging op test scores inderdaad 
dit psychometrische effect hebben. In het eerste experiment is gekeken naar de prestaties 
van allochtone en autochtone middelbare scholieren op een kleine intelligentietest. Hierbij 
werden scholieren aselect verdeeld over testsituaties die verschilden in de mate waarin deze 
stereotype bedreiging opwekken voor allochtone leerlingen. Hoewel het gemiddeldeneffect 
in dit experiment afwezig was, wees een toets op meetinvariantie uit dat deze manipulatie 
een duidelijke schending van meetinvariantie teweeg heeft gebracht. In het tweede en derde 
experiment werd gekeken naar de effecten van experimenteel opgewekte stereotype 
bedreiging op de prestaties van vrouwelijke studenten op wiskundetests. Ook hier werd 
gevonden dat wanneer stereotype bedreiging een (verlagend) effect heeft op test prestaties, 
dit leidt tot een schending van meetinvariantie. Deze resultaten wijzen erop dat de effecten 
van stereotype bedreiging in principe, en ongeacht de testsituatie, detecteerbaar zijn aan de 
hand van toetsen op meetinvariantie. Dit maakt het mogelijk om deze effecten ook in 
“echte” testsituaties te onderzoeken. De modelmatige aanpak in de analyse van 
experimentele resultaten in dit hoofdstuk illustreert bovendien het grote voordeel van 
dergelijke analyses boven analyses van enkel en alleen gemiddeldeneffecten zoals die in de 
experimentele psychologie gebruikelijk zijn. 
 

Aard van het Flynn Effect 
 Het Flynn Effect is de term voor de stijging van gemiddelde intelligentie test scores 
over de jaren heen. Zo liet Flynn (1987) zien dat Nederlandse mannen bij de dienstkeuring 
in de tweede helft van de twintigste eeuw steeds hoger zijn gaan scoren op een als 
cultuurvrij bekend staande niet-verbale intelligentietest. Van 1952 tot 1982 stegen de 
gemiddelde scores van de rekruten met maar liefst 20 IQ punten. Dergelijke forse trends in 
populatiegemiddelde IQ test scores zijn inmiddels in veel westerse landen en in enkele niet-
westerse landen gedocumenteerd. Dit heeft de vraag opgeworpen wat de aard is van deze 
toename in intelligentie test scores. Wordt deze veroorzaakt door een toename in de latente 
trek algemene intelligentie of is er sprake van meetartefacten, bijvoorbeeld omdat personen 
steeds handiger zijn geworden in het maken van IQ tests? 
 In Hoofdstuk 4 is onderzocht hoe deze stijging binnen het confirmatieve factor 
model moet worden geïnterpreteerd. Hiertoe is een vijftal vergelijkingen uitgevoerd van 
cohorten die dezelfde IQ test batterij in verschillende periodes hebben gemaakt. Zo werden 
de intelligentietest scores van een steekproef Nederlandse volwassenen uit het eind van de 
jaren zestig vergeleken met de scores op dezelfde test van een steekproef Nederlandse 
volwassenen uit het eind van de jaren negentig. Uit multigroep confirmatieve factoranalyses 
blijkt dat bij alle vijf de vergelijkingen van cohorten de gebruikte intelligentietests niet 
meetinvariant zijn over de tijd. Dit impliceert dat de stijging in IQ test scores niet alleen 
maar kan worden toegeschreven aan een stijging van de latente variabelen die ten grondslag 
liggen aan deze test scores. Met andere woorden, het Flynn Effect lijkt deels te kunnen 
worden toegeschreven aan meetartefacten. Toch blijkt een deel van de toename te kunnen 
worden toegeschreven aan toenames in latente trekken. Echter, verklaringen voor het 
Flynn Effect kunnen niet louter betrekking hebben op effecten op het niveau van (brede) 
latente cognitieve vaardigheden. 
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IQ Scores in Afrika 

 Op de grond van een aantal uitgebreide literatuuroverzichten heeft Richard Lynn 
(2006) geconcludeerd dat het gemiddelde IQ van zwarte Afrikanen onder de 70 ligt. In 
Hoofdstuk 5 wordt er op kritische wijze gekeken naar de gegevens waarop Lynn deze 
bewering heeft gebaseerd. Er moet worden opgemerkt dat scores van Afrikanen op 
westerse IQ tests niet zomaar kunnen worden geïnterpreteerd in termen van de latente trek 
algemene intelligentie of g, zoals Lynn en anderen hebben gedaan. Voor een dergelijke 
interpretatie van de relatief lage IQ scores van Afrikaanse steekproeven moet aan een groot 
aantal methodologische en psychometrische eisen worden voldaan. Zo moet er zekerheid 
bestaan over dat alle getesten weten wat er van hen verwacht wordt en moeten tests 
worden afgenomen volgens strikte regels zoals geformuleerd in testhandleidingen. Het is 
vrij goed denkbaar dat deze ideale testsituaties niet altijd gelden bij afnamen van westerse 
IQ tests onder Afrikaanse personen en dat daardoor hun latente cognitieve vaardigheden 
door deze IQ tests worden onderschat.  
 Uit de resultaten van de literatuurstudie komt naar voren dat van de meest 
gebruikte IQ tests niet is komen vast te staan of deze in Afrikaanse steekproeven een goede 
en valide weergave geven van de latente trek algemene intelligentie. Ook is vooralsnog 
onduidelijk in hoeverre er bij de vergelijking van test prestaties tussen Afrikanen en 
westerlingen sprake is van meetinvariantie. Niettegenstaande komt uit de literatuurstudie 
naar voren dat de scores op deze IQ tests in Afrika aanzienlijk hoger liggen dan Lynn doet 
voorkomen, vooral omdat Lynn een aanzienlijke portie van de literatuur over het hoofd 
heeft gezien of simpelweg niet in zijn overzicht heeft opgenomen. In vergelijking tot 
Amerikaanse normen scoren Afrikaanse steekproeven op een tweetal abstracte 
intelligentietest gemiddeld rond een IQ van 80. Gezien de reële mogelijkheid van 
psychometrische problemen en de relatief slechte omstandigheden waaronder veel 
Afrikanen opgroeien is dit lage gemiddelde niet verwonderlijk. Gemiddelde scores op 
dergelijke IQ tests hebben in de meeste westerse landen een aanzienlijke stijging laten zien 
die geacht wordt te zijn veroorzaakt door zaken als verbeteringen in gezondheidszorg en 
voeding, verbeteringen in onderwijsniveau, urbanisatie, trend naar kleinere gezinnen en 
technologische ontwikkelingen. Uit de in Hoofdstuk 5 gerapporteerde correlaties op het 
niveau van landen blijkt dat vrijwel alle ontwikkelingen die in de westerse wereld 
verantwoordelijk worden gehouden voor het Flynn Effect, in Afrika nog niet of nauwelijks 
hebben plaatsgevonden. Dit suggereert dat de relatief lage IQ scores van Afrikanen alles 
behalve steun bieden aan genetische theorieën over rassenverschillen in intelligentie test 
scores zoals geformuleerd door Lynn (2006) en Rushton (2000b). 
 

Discussie 
 In Hoofdstuk 6 wordt een geïdealiseerd model gepresenteerd van de structuur van 
individuele verschillen in cognitieve vaardigheden (zie Figuur 6.1). Voorts wordt 
beargumenteerd dat gezien deze structuur, groepsverschillen in cognitieve vaardigheden, of 
effecten van een bepaalde Variabele X op deze vaardigheden (bijv. cognitieve stimulatie 
tijdens de jeugd), op vier verschillende niveaus kunnen plaatsgrijpen. Op Niveau I is er 
sprake van een effect van (groep of variabele) X op de hogere orde factor g. Op Niveau II 
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is er sprake van een effect direct op eerste orde factor(en), zoals of Ruimtelijke Vaardigheid 
of Verwerkingssnelheid. Op Niveau III is er sprake van een effect direct op de subtest in de 
test batterij oftewel op de subtest-specifieke vaardigheid. Op Niveau IV is er sprake van 
een direct effect op itemscores, wat kan worden gezien als een schending van 
meetinvariantie van items. 
 Er wordt in Hoofdstuk 6 betoogd dat het gebruik van gesommeerde IQ scores in 
onderzoek naar groepsverschillen in, of naar effecten van een Variabele X op, cognitieve 
vaardigheden ons niet veel wijzer maakt, omdat aan de hand van gesommeerde IQ scores 
geen onderscheid kan worden gemaakt tussen de effecten op Niveaus I, II, III en IV. 
Daarentegen levert het gebruik van multigroep confirmatieve factor analyse in combinatie 
met item respons modellen deze informatie wel op. De resultaten van de onderzoeken in 
Hoofdstukken 2, 3, 4 en 5 worden geïnterpreteerd vanuit dit geïdealiseerde model. 
Groepsverschillen in meetintercepten die onderwerp waren van Hoofdstuk 2 kunnen 
worden gezien als effecten op Niveau III of IV. Nader onderzoek met de meting van deze 
eventuele additionele variabelen (zoals test-specifieke vaardigheden) of additionele analyses 
aan de hand van Item Respons Theorie (IRT) modellen  kan licht werpen op de precieze 
aard van deze effecten. 
 De effecten van stereotype bedreiging (Hoofdstuk 3) worden in de regel gezien als 
meetartefacten en vallen onder effecten op Niveau III wanneer sprake is van subtest 
gerelateerde effecten en onder Niveau IV wanneer sprake is van effecten die specifiek zijn 
voor bepaalde items. 
 De verschillende variabelen die in de literatuur zijn geopperd ter verklaring van het 
Flynn Effect kunnen eveneens worden gezien in termen van de verschillende niveaus. De 
studies in het vierde hoofdstuk wezen erop dat het Flynn Effect deels kan worden 
toegewezen aan effecten op het derde en vierde niveau. Er is daarom meer onderzoek 
nodig om deze effecten in kaart te brengen. 
 De relatief lage scores van zwarte Afrikanen op westerse IQ tests kunnen door 
effecten op alle niveaus van de hiërarchie zijn veroorzaakt. Omdat er een gebrek is aan 
goede grondige psychometrische analyses in deze context, kan er niet zondermeer 
geconcludeerd worden dat deze lage scores een reflectie zijn van lage gemiddelde g, zoals 
Lynn wel heeft gedaan. Meer onderzoek in deze context is nodig om de aard van lage IQ 
scores van Afrikanen juist te kunnen interpreteren. 
 Gezien de structuur van individuele verschillen in cognitieve capaciteiten moet de 
voorkeur worden gegeven aan het gebruik van grondige psychometrische modellen die een 
weergave zijn van de theorieën die worden onderzocht. 
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