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Introduction

11 The Different Types of Psychometrics

During his PhD project the author of this thesis learned that there exist at least
three different types of psychometrics. To avoid any confusion, I will introduce these three
types of psychometrics, highlight their differences and similarities, and discuss the role the
current thesis may play in bridging the gap between two of these types.

The first and oldest type of psychometrics, also known as psychometry (or
psychometrie in Dutch), is defined as “the psychic ability in which the user is able to relate
details about the past condition of an object, usually by being in close contact with it”
(Wikipedia, 20006). I shall denote this first type of psychometrics by ¢-psychometrics. The
primary method of {-psychometrics is placing objects to one’s forehead, with the eyes
closed. This method provides vague statements concerning the history of an object or of its
(former) owner. This information is often, albeit not always successfully, used to find
missing persons or to solve crimes (Roll, 2003). An American physiologist by the name of
J.R. Buchanan has studied and taught {-psychometrics for a while at one American
university (Buchanan, 1889), but academic interest in the topic has mostly waned.
Nonetheless, the merits and nature of {-psychometrics remain to be heatedly debated
within and beyond the field of {-psychometrics (e.g., Randi, 1982; Roll, 2003).

The second type of psychometrics, which I shall denote it by a-psychometrics, is the
most well-known of the three types of psychometrics. It is taught at most universities and is
the topic of hundreds of books (e.g., Jensen, 1998). The primary methods of «-
psychometrics are the administration of IQ tests, the computation of correlation
coefficients, and the occasional use of Principal Components Analysis. The goal of «-
psychometrics is to gain understanding in the hypothetical construct of general intelligence
or g! and to study the degree to which g can explain a host of psychological and societal
phenomena. a-Psychometrics produces global verbal assessments on the nature and
potency of g which are often published in a journal called Infelligence. a-Psychometrics is
heatedly debated within the field of a-psychometrics and beyond. In fact, virtually anyone
has some opinion on a-psychometrics, particularly when group differences are involved.

The third type of psychometrics is only taught at good universities (one of which
happens to be the University of Amsterdam). It is perhaps the least known of the three
types of psychometrics, although it has its own journal called Psychometrika, and is well-
organized in the Psychometric Society. I shall denote this third type of psychometrics by g-

1 Note that g does not stand for “god”, but for the adjective “general”. Nonetheless, in some circles of a-
psychometrics, g appears to have an almost religious status. For instance, the concept of g is the driving force behind
all sorts of phenomena all over the world (e.g., Lynn & Vanhanen, 2002), but the nature of g itself need not be
explained further.
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psychometrics. This type of psychometrics is concerned with understanding the relation
between test or item scores and the latent variable(s) supposed to undetlie those scores.
The field of B-psychometrics employs statistical models to understand more fully this
complex relation. B-Psychometrics is mainly debated within the field of B-psychometrics (cf.
Borsboom, 2006a). Outside this field, however, 3-psychometrics is often considered too
difficult and is mostly ignored.

The gap between {-psychometrics and the two other types of psychometrics is
irreconcilably large, and we do not consider {-psychometrics further. However, [-
psychometrics and a-psychometrics are more strongly related, for the simple reason that
they have a common ancestry (e.g., Spearman, 1904). The aim of the current thesis is to
bridge the gap between B-psychometrics and a-psychometrics. In the studies of this thesis,
tools developed in B-psychometrics are applied to address problems in the field of a-
psychometrics. In other words, this thesis is aimed to further our understanding of the
relation between intelligence test scores and the undetlying dimensions of cognitive ability,
in order to gain insight in several phenomena in intelligence testing. Specifically, the studies
in this thesis are concerned with group differences in intelligence test scores that have made
a-psychometrics both famous and controversial. Next, I will shortly discuss the gap that
has emerged between B-psychometrics and a-psychometrics. After that, I will provide an
overview of this thesis.

1.2 The Gap Between a-Psychometrics and B-Psychometrics

There was a time when B-psychometrics and a-psychometrics were one and the
same. Psychologists like Thorndike, Thurstone, and Spearman were all founding members
of the Psychometric Society, and lay the foundations for both «- and B-psychometrics.
They were interested in the substantive aspects of intelligence, as well as in the statistical
characteristics of intelligence test scores. As these psychometricians were succeeded by later
generations of researchers, and as the field of intelligence research expanded considerably,
the field slowly evolved into a- and B-psychometrics. This development is indicated by
changes in the editorial board of the journal Intelligence. In the early 1980s, three past- or
later presidents of the Psychometric Society were members of the 18-headed editorial
board. Anno 2000, of the 24 members of the editorial board of Intelligence, only one (4%)
has once made an appearance in Psychometrika. Likewise, of the 26 current members of
the editorial board of Psychometrika, only one (4%) has published in Intelligence. This is a
striking development given the interrelated history and the large overlap between those two
fields. After all, both these types of psychometrics are concerned with understanding latent
traits by measuring them. B-Psychometrics and a-psychometrics appear to be two old
friends who somehow have lost contact over the years.

The ensuing gap between a- and B-psychometrics was already evident in Jensen’s
(1980) impressive book (i.e., 799 pages) Bias in Mental Testing. This book is an o-
psychometric work with many B-psychometric components. Nonetheless, Jensen chose not
to focus on modern test theory, but on classical test theory instead (cf. Lord & Novick,
1968). For instance, Jensen’s conclusion that measurement bias at the item level was not
present in the comparison of cognitive ability test scores of Black and White Americans
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was primarily based on classical test theory methods that were criticized in B-psychometrics
as early as the 1970s (Ironson & Subkoviak, 1979; Lord, 1977). Since then, the field of -
psychometrics has developed more advanced tools to detect item bias or Differential Item
Functioning (Holland & Wainer, 1993; Millsap & Everson, 1993). However, these
contemporary methods are applied rarely in the field of a-psychometrics. Jensen’s overview
of bias research also drew heavily on the comparison of predictive regression lines across
groups as a method to detect measurement bias of tests (Cleary, 1968). In the field of -
psychometrics, it is well established that differential prediction is not informative for the
issue of measurement bias (Millsap, 1995, 1997a, 1998; cf. Reilly, 1973). However, as of
2005, the field of a-psychometrics still uses this method to claim that measurement bias
with respect to ethnic groups does not exist (e.g., Rushton & Jensen, 2005a).

In his 1980 book Jensen devoted one sentence to factorial invariance within the
common factor model, despite several studies in B-psychometrics that showed the
suitability of this approach in studying group differences in factorial structure (Joreskog,
1971; Meredith, 1964; S6rbom, 1974). Jensen devised his own method to study the nature
of group differences in multivariate test scores, viz. the method of correlated vectors
(Jensen, 1998). This method remains to be used in the field of a-psychometrics (e.g.,
Hartmann, Kruuse, & Nyborg, 2007; Te Nijenhuis, Tolboom, Resing, & Bleichrodt, 2004),
despite extensive work by B-psychometricians that has shown that this method is all but
flawless (Dolan, 2000; Dolan & Lubke, 2001; Lubke, Dolan, & Kelderman, 2001; Lubke,
Dolan, Kelderman, & Mellenbergh, 2003a).

OIld friends have a lot in common and generally enjoy being reunited, although
reunions may be a bit awkward in the beginning.2 The best way to reunite o- and B-
psychometrics is to focus on the strengths of both approaches. This thesis shows that the
application of methods from B-psychometrics can contribute to understanding several
phenomena in a-psychometrics. It also illustrates that the use of B-psychometric models
can be greatly improved when substantive theories are translated to measurement models.

1.3 Overview of This Thesis

Group differences in intelligence test scores are among the most controversial
topics of psychology. Essential to the understanding of the nature of these group
differences is whether or not groups can be reasonably compared in terms of the latent
traits that the tests at hand are supposed to measure. Such a comparison of latent traits
requires that the relation between test scores and latent cognitive variables is identical
across groups. Whenever groups differ in this relation, we speak of measurement bias.
Clearly, measurement bias complicates the comparison across groups of test scores. On the
other hand, when test scores are characterized by the same measurement properties over

2 To illustrate this, consider the following incident that took place at an a-psychometrics conference in December
2004. The presentation of a study in which rigorous B-psychometric methods showed that g was not the source of
sex differences in intelligence test scores (Dolan et al, 2000) was reacted upon by Richard Lynn, an o-
psychometrician and a strong proponent of the view that there are sex differences in g Lynn asserted that the use of
advanced psychometrics may lead to confusingly inconsistent results, and that we should just focus on IQ scores to
study sex differences in intelligence. Unfortunately, reunions cannot be successful when attendees decide to ignore
each other (see, e.g., Hartmann et al., 2007).
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groups, we speak of measurement invariance. Measurement invariance is an interesting
ideal, but it does not always arise in real data. Measurement invariance is not only
interesting from a [-psychometrics perspective, but also highly relevant for many
substantive issues in the field of a-psychometrics.

This thesis mainly draws on the work of Mellenbergh (1989) on measurement
invariance and the work of Meredith (1993) on how to study measurement invariance by
means of Multi-Group Confirmatory Factor Analysis or MGCFA (Lubke et al.,, 2003a;
Lubke, Dolan, Kelderman, & Mellenbergh, 2003b). MGCFA is a model-based approach
with which group differences in multivariate test scores can be studied (Dolan, 2000). As
such, this approach is well-suited to study group differences in intelligence test scores.

The focus of Chapter 2 (Wicherts, Dolan, & Hessen, submitted) is on so-called
intercept differences. This chapter provides an introduction of measurement invariance as
defined within the common or confirmatory factor model. It shows that the suboptimal use
of MGCFA is very common. Moreover, the study in this chapter illustrates how the use of
suboptimal methods to study group differences in multivariate test scores can result in
incorrect assessment of the appropriateness of tests for particular groups. The application
of measurement invariance testing in this chapter is of the traditional type, viz. a
comparison test scores of different ethnic groups in order to study the “fairness” of tests
for ethnic minorities. The results of the re-analysis in Chapter 2 show that a commonly
used Dutch IQ test underestimates I1Q of ethnic minority children by about 7 1Q points.
Such results signal a strong need for more research on measurement bias in the common
factor model, particularly for tests that are used in applied settings.

A little known frustration of B-psychometricians is that they often encounter
measurement bias, but are not able to understand the reasons for measurement bias. That
is, they do not know “the biasing variables” (Mellenbergh & Kok, 1991). Chapter 3
(published as Wicherts, 2005b; Wicherts, Dolan, & Hessen, 2005) is focused on one of
these biasing variables, namely the effects of stereotype threat on test performance.
Stereotype threat (e.g., Steele & Aronson, 1995) is the pressure on a test taker arising from
stereotypes related to the academic proficiency of one's social group. Numerous studies in
experimental social psychology have shown that this effect may lower test performance of
members of stigmatized groups (Steele, Spencer, & Aronson, 2002). With the notable
exception of Jensen (1998), few a-psychometricians have discussed the relevance of
stereotype threat to the issue of group differences in intelligence test scores (cf. Stricker &
Bejar, 2004). An interesting aspect of Chapter 3 is that it combines the individual
differences approach with the experimental approach (Cronbach, 1957). Like most
experimental psychologists, social psychologists who studied stereotype threat were mainly
interested in mean differences between groups, and employed Analyses of Variance
(ANOVA) to analyze these. ANOVA has its drawbacks when used to study phenomena
that are related to individual differences, but the use of MGCFA circumvents such
problems. The results of the studies in Chapter 3 show that stereotype threat indeed results
in measurement bias. This suggests that the use of MGCFA or other bias detection
methods can shed light on the generalizability of stereotype threat effects to real-life test
settings.
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Chapter 4 (published as Wicherts et al, 2004) focuses on the fascinating
phenomenon of secular increases in average 1Q) test scores of populations over time. For
instance, in The Netherlands a version of a well respected 1Q test (i.e., Raven's Progressive
Matrices; J. C. Raven, 1960) was administered to basically all male 18-year-old military
draftees from 1952 to 1982. The 1982 cohort scored approximately 20 1Q points higher
than the 1952 cohort (Flynn, 1987). Political philosopher James Flynn (1984; 1987; 1998c;
20006) established the gain in IQ) test scores as a robust phenomenon all over the developed
wortld, and the effect is now commonly known as the Flynn Effect3 The Flynn Effect
baffled many in the field of a-psychometrics, particulatly those who subscribed to the view
that intelligence was strongly heritable. Moreover, the Flynn Effect led several authors to
doubt the validity of 1Q tests (Flynn, 1987). In Chapter 4, measurement invariance across
cohorts is tested in order to better understand the nature of the Flynn Effect. The results
show that the Flynn Effect is not accompanied by measurement invariance, which has
important implications for our understanding of this effect. That is, these results imply that
the gains in IQ) test scores cannot be solely due to increases in latent cognitive ability.

Chapter 5 is the only empirical chapter without the results of factor analysis,
although Principal Components Analysis is employed in this study. This chapter is
concerned with the controversial topic of IQ in Africa. Richard Lynn (2006) maintained
that average 1Q in this part of the world lies below 70. Unlike others (e.g., Herrnstein &
Murray, 1994), the author of this thesis was rather skeptical of this low estimate and set out
to critically evaluate the research on which this claim of low average 1QQ was based. This
resulted in a meta-analysis, the results of which indicate that Lynn’s estimate of average 1Q
in Africa is too low.

In addition, the published studies of 1Q in Africa illustrate how strongly (-
psychometrics and a-psychometrics have lost contact over the years. A comparison of 1Q
test scores between western samples and African samples is probably the greatest challenge
to the merits of an intelligence test. IQ scores in Africa have been claimed to be both valid
(Rushton & Jensen, 2005a) and invalid (Greenfield, 1997; Nell, 2000). Such a dispute can
be resolved by studying measurement invariance across cultural groups. As we will see in
Chapter 5, rigorous B-psychometric techniques have rarely been applied to address the
meaning of IQ test scores in Africa. The methods used by several a-psychometricians do
not meet the standards of B-psychometrics. Therefore, it is entirely unclear what IQ test
scores in Africa mean, and whether these can be compared to IQ scores in western samples
in terms of differences in latent cognitive ability. Regardless of the unclear B-psychometric
status of African IQ), the results of the meta-analysis do not sit well with theories that

3 Some authors (e.g., Rushton, 1999; Te Nijenhuis, Voskuijl, & Schijve, 2001) suggested that the effect be renamed
the Lynn-Flynn Effect, because Lynn (1982) also contributed to establishing the phenomenon. There are several
reasons not to rename the effect as such. First, Flynn (1984; 1987) did far more than Lynn to put the effect on the
map. Second, Ms. Lynn Flynn is a real estate agent from Truckee, California, who has no involvement whatsoever in
1Q research. Third, if one were to name the effect after those who noticed it before Flynn did, Tuddenham (1948)
and Cattell (1950) should also be honoured. However, then all articles concerning the secular increase should use the
term Tuddenham-Cattell-Lynn-Flynn Effect, which would be a waste of precious journal space. Fourth, there is no
need to add to the term Lynn’s name, for the simple reason that his name is already included in the term “FLynn
Effect”.
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assign a substantial role to genes in race differences in intelligence (e.g., Lynn, 20006;
Rushton, 2000b).

In Chapter 6 it is argued that the use of B-psychometric modeling can contribute
greatly to the understanding of cognitive abilities. In addition, this chapter discusses the
results of the studies in Chapter 2-5, and concludes with the scientific cliché that more
research is needed. This research should more fully integrate the merits of B-psychometrics
and a-psychometrics, because these two old friends can contribute greatly to each others’
work. Finally, Chapter 7 (published as Wicherts & Dolan, 2004) is an appendix concerned
with the use of fit measures in applications of MGCFA with mean structure.

The author sincerely hopes that B-psychometricians, a-psychometricians, and
others will read this thesis with much interest. The author doubts whether any -
psychometricians will actually read this thesis. But then again, they will probably already
know its contents after holding the book shortly against their foreheads with their eyes
shut.
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Measurement invariance and group differences
in intercepts in confirmatory factor analysis

Measurement invariance with respect to groups is an essential aspect of the fair use of
scores of intelligence tests and other psychological measurements. In this chapter, it is
shown why establishing measurement invariance with confirmatory factor analysis
requires a statistical test of the equality over groups of measurement intercepts. Without
this essential test, latent mean differences are ambiguons and measurement bias may be
overlooked. The implications and meaning of group differences in measurement intercepts
are discussed. A re-analysis of a study by |. Te Nijenbuis, E. Tolboom, W. Resing, and
N. Bleichrodt (2004) illustrates that ignoring intercept differences may lead to the
conclusion that bias of 1Q tests with respect to minorities is small, while in reality bias is
quite severe.

2.1 Introduction

The valid and fair use of psychological tests in clinical psychology, education, and
other settings requires that tests measure what they are supposed to measure, and that test
scores are not affected by irrelevant characteristics associated with membership of
demographic groups (e.g., ethnicity, gender). In the Standards for Educational and Psychological
Testing (AERA, APA, & NCME, 1999, henceforth the Standards), test fairness is defined as
a situation in which "examinees of equal standing with respect to the construct the test is
intended to measure should on average earn the same test score, irrespective of group
membership" (p.74). For instance, suppose members of an ethnic minority group
underperform on an IQ test, because of their unfamiliarity with certain words in the
instruction texts. If, as a consequence, this test underestimates 1Q of a group by, say, one
third of a standard deviation (i.e., 5 IQ points), this test would generally be considered
unsuitable for use in high-stakes decisions in education. Moreover, individual test scores
based on such a test should be interpreted very cautiously, if at all. Fortunately, various
statistical methods have been developed that can be used to detect measurement bias at
both the scale and the item level (e.g., Millsap & Everson, 1993; Raju, Laffitte, & Byrne,
2002). However, the suboptimal or incomplete use of these methods may still result in the
conclusion that measurement bias is absent when in fact measurement bias is present. The
aim of this chapter is to show that establishing measurement invariance (i.e., #zbiasedness)
by means of multi-group confirmatory factor analysis (MGCFA) requires a model that
incorporates between-group mean structure (Meredith, 1993). Despite the ubiquitous use
of the MGCFA framework in testing measurement invariance or equivalence across groups

13
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of psychological tests in many settings, the mean structure is often not modeled statistically
(Vandenberg & Lance, 2000). Our aim is to show that ignoring (or not testing for)
between-group differences in measurement parameters related to the mean structure (i.e.,
measurement intercepts) may lead to incorrect conclusions regarding the appropriateness
of tests for certain groups. The reason for this is that a group difference in a measurement
intercept is indicative of a trait-irrelevant depression (or elevation) of test scores within a
particular group. Such an effect on test scores violates measurement invariance. Therefore,
the failure to identify group differences in measurement intercepts may have serious social
and individual consequences, particularly in test settings in which test scores are used for
psychological assessment and/or selection purposes.

Although the development of tests for measurement invariance was motivated by
the ideal of fairness in intelligence and achievement testing for various demographic
groups, tests of measurement invariance are applied widely in studies of comparability of
many kinds of psychological measurements in areas such as education, cross-cultural
psychology, applied psychology, intelligence research, and clinical psychology. Throughout
this chapter, we use latent cognitive ability as an example. However, our argument applies
to any kind of latent variable (e.g., depression, mood, personality, etc.). Moreover, we use
terms like bias and fairness, whereas in many applications in which intercept differences
may play a role (e.g., cross-cultural research), one would normally not denote these
differences as unfair because fairness is simply not an issue. The technical term bias refers
to any group difference on test scores, which cannot be accounted for by group differences
on the construct that the test purports to measure. These additional group differences often
show up as group differences in measurement intercepts. As we aim to show, these
intercept differences may provide valuable information on the causes of group differences
in test scores in many kinds of group comparisons.

In what follows, we first show that it is quite common that groups are compared
on multivariate test scores without a rigorous modeling of the mean structure. After that,
we provide an explicit definition of measurement invariance, which underlies the definition
of fairness cited above, and explain how group differences in measurement intercepts
violate measurement invariance under this definition. Next, we discuss conceptually how
intercept differences may be detected by means of MGCFA, and how such differences may
arise. Finally, we illustrate the importance of studying intercept differences in a re-analysis
of data from a study into the appropriateness of an intelligence test for ethnic minority
children in the Netherlands.

2.2 Disregard of Intercept Differences

Various tutorials have been written on how to investigate measurement invariance
(or equivalence) using confirmatory factor analysis (Little, 1997; Lubke et al., 2003a;
Ployhart & Oswald, 2004; Widaman & Reise, 1997). Most tutorials, although not all (e.g.,
Van de Vijver & Leung, 1997) stress the importance of modeling the mean structure when
assessing measurement invariance across groups. However, in their exhaustive overview of
the literature on empirical tests for measurement invariance with MGCFA from 1981 up to
1999, Vandenberg and Lance (2000) found that only in a small proportion (i.e., 12%) of
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measurement invariance studies, intercept differences were actually studied. To gain insight
in the current practice in the study of measurement invariance within MGCFA, we tried to
locate all measurement invariance studies in psychology and related fields published in
2005.4 We thus obtained a total of 110 studies in which MGCFA was employed to study
group differences. However, only in 27 of these studies (24.5%) intercept differences across
groups were tested. In a total of 69 studies it was concluded (in the abstract) that
measurement invariance across groups was established. However, of these studies, only in
25% (i.e., 16 studies) intercept differences could be ruled out as a potential source of
measurement bias. In the remaining 75% of these MGCFA studies, measurement
invariance was claimed without a test of intercept differences.

Unfortunately, the investigation of mean differences in MGCFA is not part of
many structural equation modeling courses (Stapleton & Leite, 2005). This may have
contributed to the fact that the literature contains many examples of studies purporting to
show that mean test score differences between groups are attributable to mean differences
on latent factors, without the essential test of equality of measurement intercepts (e.g.,
Crockett, Randall, Shen, Russell, & Driscoll, 2005; Liu, Borg, & Spector, 2004; Te
Nijenhuis, Tolboom et al., 2004). Moreover, it appears to be a commonly held view that the
equality of factor loadings is sufficient for establishing measurement invariance (see, e.g.,
Coatsworth et al., 2005; de Frias & Dixon, 2005; Du & Tang, 2005; Ghorpade, Hattrup, &
Lackritz, 1999; Woehrt, Sheehan, & Bennett, 2005; Yao & Wu, 2005). For instance, de Frias
and Dixon (2005) recently studied measurement invariance of the Memory Compensation
Questionnaire (MCQ) across gender and age groups. Based on their finding that factor
loadings were invariant across these groups, they claimed to have established measurement
invariance, which according to them "provides assurance that the observation of group
differences [...] is attributable to the process of memory compensation" (p.175). Although
the equality over groups of the factor loading estimates is a necessary condition for
measurement invariance, it is zzsufficient for attributing test score differences over groups to
latent differences in constructs. Ipso facto, equality of factor loadings over groups does not
allow the conclusion that a test is free of bias. For mean comparisons across groups to be
valid, and for a test to be fair towards members of particular groups, group differences in
(factor loadings and) intercepts need to be studied first.>

non non non

4To this end, we used the following search strings in PsychInfo: "invariance", "equivalence", "invariant", "equivalent
and factor", "multiple and factor", "multi group and factor", "multi sample and factor", "factor analysis and
differences”, "factor analysis and comparison", "simultaneous and factor analysis”", "MACS", and "mean and
covariance structure”. In addition, in Web of Science, we searched for all published papers referring to several
seminal papers on measurement invariance. We restricted our interest to studies in which invariance was tested
across existing groups (e.g., ethnic groups, gender). An overview of all studies is available upon request from the first
author.

SNote that whenever the mean structure is modeled, the interpretation of latent (factor) mean differences across
groups also requires a test of the equality of intercepts. Nonetheless, we came across several papers that included a
latent mean comparison across groups without providing the results of the statistical test that the intercepts are
indeed group invariant (Chirkov, Ryan, & Willness, 2005; Corwyn & Bradley, 2005; Hagger, Chatzisarantis,
Barkoukis, Wang, & Baranowski, 2005; Mclnerney, Dowson, & Yeung, 2005). However, in the absence of these test
results, it remains uncertain whether (or to what extent) the observed group differences are actually due to mean
differences at the latent level.
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Dutch Minority 1Q Test Performance

Many studies of measurement invariance have direct practical consequences,
especially when the tests involved are used for standardized assessment (with norms for the
general population). In the Netherlands, several studies of invariance have been concerned
with the suitability of Dutch intelligence tests for ethnic minorities who on average score
lower than Dutch majorities (e.g., Helms Lorenz, Van de Vijver, & Poortinga, 2003; Te
Nijenhuis, Evers, & Mur, 2000; Te Nijenhuis, Tolboom et al., 2004; Te Nijenhuis & van
der Flier, 1997). These minority groups are mostly composed of first- or second-
generation immigrants who are not necessarily as proficient in Dutch as native speakers (a
situation comparable to that of many recent immigrants to the US). This may have a
negative effect on their scores on cognitive ability tests. Unfortunately, however, in none of
these invariance studies intercept differences have been tested statistically (but see Dolan,
Roorda, & Wicherts, 2004). Nonetheless, conclusions are drawn concerning the
appropriateness of tests for Dutch minority groups. For instance, Te Nijenhuis and
colleagues (2004) studied measurement bias on a Dutch intelligence test (i.e., RAKIT) with
respect to several groups of minority children. The results of their analyses, which ignored
intercept differences, suggested "only little bias" (Te Nijenhuis, Tolboom et al., 2004, p. 24)
with respect to minorities. However, our re-analysis by means of MGCFA with mean
structure shows that, due to rather strong intercept differences, the underestimation of
intelligence in a group of ethnic minorities amounts to at least 7 IQ points. This implies
that the RAKIT should be used with caution in the assessment of intelligence in minority
children in the Netherlands.

Intercept differences across groups are highly important to the issue of
measurement invariance. Besides, such differences are rather common. Based on our
review of MGCFA studies published in 2005, in two-thirds of the studies (18 of 27) that
did model the mean structure, some intercept differences were detected. Nonetheless, our
review of MGCFA studies indicates that these differences are often overlooked or simply
ignored. This may be due to the fact that the importance of intercept differences is not fully
appreciated. Moreover, some authors have expressed the need for more discussion on the
meaning and nature of group differences in intercepts (Ployhart & Oswald, 2004; Raju et
al., 2002; Vandenberg & Lance, 2000). Therefore, our aim is to elucidate why the equality
of measurement intercepts over groups is important in understanding between-group
differences, and in establishing that a certain test is fair or free from measurement bias for
members of particular groups. To this end, we first discuss the definition of measurement
invariance.

2.3 Measurement Invariance

The idea behind measurement invariance or unbiasedness is quite simple and
intuitive. An important requirement of measurement invariance is that the expected
(manifest) test scores of a person who has a certain level of latent ability (or abilities), are
independent of group membership (e.g., Drasgow & Kanfer, 1985). Suppose, for instance,
that a male and a female are equally proficient in mathematics. A systematic difference in
their observed scores on a mathematics test would suggest the test is biased with respect to
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gender. This is because measurement invariance (i.e., unbiasedness) requires that the
expected test score given a certain latent ability, should not be influenced by, or depend on
characteristics, other than the latent ability. To formalize this, let Y denote the manifest test
scores, and let 7 denote a given fixed level on the latent trait that underlies the scores on Y.
The expected test scores (denoted E(Y)), should depend on latent ability, but not on
gender. So, when measurement invariance holds, and we condition on the level of the
latent trait score, the expected scores should be equal for males and females:

E(Y |17, male) = E(Y |7, female) = E(Y | ). 1)
Note that this does not imply that females and males do not differ with respect to latent
ability. Equation 1 concerns the conditional expectation given a fixed level of 7 and gender,
it does not say anything about the conditional expectation given gender (i.e., E(Y | male)
does not necessarily equal E(Y" | ferale)).

This requirement of measurement invariance can be expressed more generally if we
denote group membership by a grouping variable, which gives rise to group membership
(e.g., gender, ethnicity, cultural group). Let » denote this grouping variable. Measurement
invariance with respect to » requires that (Mellenbergh, 1989):

E(v 17,2)=E(v|7) ©

Equation 2 states that the expected values of Y given 7 and » should be equal to the
expected values of Y given only 7. Measurement invariance can be investigated empirically
by formulating a measurement model, that relates the observed scores Y to the latent
score(s) 7 (Millsap & Everson, 1993). As we demonstrate below, measurement invariance
requires that the relationship between the test score(s) (i.e., measurement of ability) and the
latent trait(s) (i.e., latent ability) of a person should not depend on group membership
(Mellenbergh, 1989; Millsap & Everson, 1993).

In the case of a dichotomous (e.g., right/wrong) item measuring one latent trait
(e.g., mathematical ability), the definition of invariance in Equation 2 requires that the
probability of answering that item correctly (i.e., the expected value) given a particular
latent trait score is identical for members of different groups. Within (parametric) item
response theory, an item is considered to be unbiased if the parameter that links this
probability to the latent trait is invariant over groups. For instance, the difficulty parameter
of an item in a one-parameter logistic model should be identical across groups (e.g.,
Holland & Wainer, 1993). This aspect of item fairness is well known, it is explicitly
mentioned in the Standards (i.e., Standard 7.3), and most studies of test fairness or test
equivalence nowadays involve a test of Differential Item Functioning (DIF). However,
measurement invariance also applies to the level of subtests in, for example, an intelligence
test battery. That is, in most uses of such multivariate tests, the measurement aim exceeds
the specific abilities tapped by particular subtests. Instead, the aim is to measure the ability
that is common to several subtests. For instance, in general intelligence batteries such as the
Wechsler scales (i.e., WAIS-IIT or WISC-1V; Wechsler, 1997, 2004), the measurement aim
is either to get an indication of general intelligence, and/or of one of the four index scores
(e.g., Verbal Comprehension, Perceptual Organization). Moreover, norm tables are usually
not related to specific subtest scores, but to these broad factors. With such a measurement
aim, measurement invariance requires that the expected subtest score conditional on latent
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ability (e.g., Verbal Comprehension) be identical across groups. In that case, the intercept
of the subtest needs to be group invariant, as we explain more fully below.

It is not generally recognized that a subtest from an intelligence test battery may
display measurement bias. The Standards do not refer to this possibility, although they do
stress the importance of studying group differences both in the internal structure of test
responses (i.e., Standard 7.1), and in the effects of construct-irrelevant variance (i.e.,
Standard 7.2). These standards refer to the covariance structure, which is also an essential
aspect of measurement invariance. For instance, the (error) variance around the expected
test scores represents variance unaccounted for by the target trait(s). This variance may be
due to some additional construct-irrelevant variable. Moreover, a test would normally be
regarded unfair if its measurement precision in one group is considerably lower than the
measurement precision in another group. Therefore, it is important to also consider group
differences in the covariance structure.

In fact, the general definition of measurement invariance provided by Mellenbergh
(1989) also relates to the covariance structure, because it is expressed in terms of the
complete (conditional) distribution of Y, denoted by AY |.). This definition states that
measurement invariance with respect to » holds, if:

frinv)=£(r1n), (for all Y, 7, 1). 3)
Note that this definition does not depend on the exact nature of the distribution (i.e.,
continuous, discrete). If manifest data are (approximately) multivariate normally distributed,
Equation 3 requires that, conditional on the latent trait scores, the expected values (i.e.,
Equation 2), the covariances between test scores (i.e., internal structure; cf. Standard 7.1),
and the amount of variance unrelated to the latent trait(s) (cf. Standard 7.2) are equal across
groups.® By adopting the linear confirmatory factor model as a measurement model
(Mellenbergh, 1994), all these requirements of measurement invariance can be tested
readily.

2.4 Multi Group Confirmatory Factor Analysis (MGCFA)

In this section we show how measurement invariance of continuously distributed
test scores can be tested using MGCFA. Moreover, we show that group differences in
measurement intercepts constitute a direct violation of the requirement in Equation 2. To
ease presentation, we focus on the single common factor model in two samples. The
elaboration to multiple-factor analysis in more than two samples is straightforward (cf.
Bollen, 1989; Dolan, 2000; Lubke et al., 2003a).

The confirmatory factor model may be viewed as a measurement model in which
the observed test or indicator scores (e.g., subtest scores) are regressed upon the scores on
the latent, unobserved, construct 7 (Mellenbergh, 1994). As in ordinary linear regression,
the model includes the following measurement parameters for each indicator: a regression
weight or factor loading A, a residual term &, and an intercept z. The test score yi of person j

®Multivariate normal distributions are characterized only by expected values and covariances. Therefore, full
measurement invariance under normality requires that Equation 2 holds and that the (conditional) covatriance

structure, denoted by (Y |.), should follow: Z(Y |I7,V) = Z(Y |/7)
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in group i is predicted by the score on the latent variable or factor 7 (e.g., intelligence):

Yig = Uy +A1i’7ij+£1ij . “4)
Note that the expected value of the residual ¢ is assumed to equal zero, and that the
residual is assumed to be uncorrelated with the factor score (as well as with the residuals of
other indicators). The residual term of an indicator contains both random measurement
error and specific factors tapped by that particular indicator (i.e., all uncommon sources of
variance; DeShon, 2004; Meredith & Horn, 2001). The intercept is the value of y
corresponding with the point where 7 = 0. In many applications (e.g., single-group studies)
the mean structure is not of interest. However, in establishing measurement invariance over
groups, the mean structure has to be incorporated in the analyses (Meredith, 1993).
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Figure 2.1 Regression lines for the prediction of test scores Y7 on a latent variable

in two groups when intercepts are unequal.

With this measurement model in place, we can consider the implications of
measurement invariance graphically. Figure 2.1 displays the regression lines relating the
scores on a (sub)test to factor scores in two groups. In this figure factor loadings are
identical in both groups, but intercepts are different. As can be seen, the intercept in Group
2 is lower than the intercept in Group 1. The consequences of this group difference in
intercept are evident. Regardless of ability level, members of Group 2 with a certain ability,
score lower than members of Group 1 with the same latent ability. Cleatly, an intercept
difference violates measurement invariance. Because the underestimation of ability in
Group 2 is equal for all ability levels, this situation is denoted by wniform bias (Mellenbergh,
1982).

From the linear factor model of Equation 4, one can derive the expected test score
given the factor score 7 and group membership, as the sum of the intercept and the factor
score weighed by the group-invariant factor loading (cf. Bollen, 1989). Suppose a person
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from Group 1 and a person from Group 2 have the same latent ability, say: 7 = 1. Then,
the expected test score for the person from Group 1 and for the person from Group 2
equal:

E(y, 17, =1i=1)=1, + A, x1, (52)
and

Ely, 17, =Li=2)=1,, + A xI, (5b)
respectively. In terms of Equation 2, it is clear that measurement invariance does not hold,
because for any given value of 7 , the expected test score for a person from Group 1 (i.e.,
Equation 5a) will be higher than the expected test score for a person from Group 2 (ie.,
Equation 5b). The underestimation in Group 2 in this case is equal to the group difference
in measurement intercepts (i.e., 711 - 712). Depending on their direction, intercept differences
may lead to an overestimation or an underestimation of group differences in latent ability.

YlT ..... Group 1
under- 4____________{
estimation Rt
for =2 e :
under- DU _} _____ I Group 2
estimation| |  _.* a
for =1 e , I Ay > A,
oy > I I
T, " : | Iy >1,
! |
1 2 ’
7
Figure 2.2 Regression lines for the prediction of test scores Y7 on a latent variable 7 in two groups

when intercepts and factor loadings are unequal.

Figure 2.2 displays a situation in which both the factor loading and the
measurement intercept differ over groups. That is, for all members of Group 2, the ability
is underestimated in y due to an intercept difference. Moreover, in this scenario the
underestimation of ability depends on the particular ability level. Specifically, the
underestimation of ability increases with increasing ability. In other words, besides a main
effect for group, there appears to be an interaction effect such that higher ability levels
suffer more from underestimation of ability. Note that this situation is denoted as non-
uniform bias (Mellenbergh, 1982). The underestimation of latent ability in Group 2 now
equals: l(l'1 =1,)+ (A, —/112)><I7ij]. Clearly, Equation 2 cannot hold in the presence of
group differences in the factor loading 4 and in the intercept 7. From Figures 2.1 and 2.2, it

is apparent that both factor loadings and intercepts need to be invariant across groups for
the fulfilment of Equation 2. Only when factor loadings and intercepts are group-invariant,
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can we conclude that between-group mean differences on the indicators are a function of a
latent group difference on the mean of the latent factor.

A further requirement of the general definition of measurement invariance (i.e.,
Equation 3) is that the variance around the expected values is group-invariant. Thus, the
variance of Y conditional on the latent factor scores should be equal across groups:

Var(ﬁ/w |’79v,l' =)= Var(]lg‘ |’79‘>Z. =2)= Var(ﬁ/w |,7y) (©)
Equation 6 implies that the variance of the residual term (i.e., residual variance) should also

be equal across groups for measurement invariance to hold (DeShon, 2004; Lubke &
Dolan, 2003; Meredith, 1993).

Detection of Intercept Differences

The detection of group differences in intercepts starts with the expansion of the
model to several indicators (in fact, factor analysis is only feasible with several indicators of
the common factor). Suppose we have four subtests measuring the same latent ability.
Then, the linear models for each of the four subtests are equivalent to Equation 4.
Although the intercepts and factor loadings may differ for each subtest, the latent ability
score 75 of person j is the same for all subtests, so we can conveniently arrange the four
expressions of this factor model using vector notation:

y 1ij T, Ali glij
J T.. A &,y
Vaij | o | | M X[/7.4]+ 2 | ™
y T.. A.. Y &
y3lj 3i 3i 3ij
Yag ] [Ta] [As Eai
This, in turn, is more parsimoniously expressed by the following matrix notation:
Vi :Ti+/\i,7ij+£ij‘ ®)

Except for the difference in notation Equation 7 and Equation 8 are identical. For example,
in Equation 8, /1; is a 4 x 1 matrix containing the factor loadings of group i. Equation 8
presents a model for the observations. To obtain estimates of the parameters in this model,
we fit the observed covariance matrices and mean vectors to the covariance matrices and
mean vectors that are implied by the model in Equation 8 (cf. Bollen, 1989). For instance,
the covariance matrices that are observed within each group, can be used by a program
such as LISREL (Jéreskog & Soérbom, 2003) or EQS (Bentler, 1995) to estimate model
parameters and assess the fit of the model. The measurement parameters of interest are the
factor loadings (/1;), the vector of intercepts (z), and the variances of the residuals within
each group, which are incorporated in a matrix denoted @. The distribution of factor
scores (i.e., latent ability) within each group i is modeled by the factor means and factor
variances, denoted by @ and ¥, respectively.’

Under measurement invariance, groups do not differ with respect to the relation
between manifest test scores and the latent trait(s), and any group differences in manifest

7 Given these assumptions, the observed variables are normally distributed N ( u, z,), whete the implied mean
P i*<i

Yi ~
vector equals . =7, +\,a, . and the implied covatiance matrix equals T, =N\ WA, +0O, (superscript t denotes

transpose). Note that one factor loading per factor is used for scaling purposes.
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test scores are due to group differences at the latent level (i.e., ¢ and $#). Therefore, under
measurement invariance all measurement parameters should be invariant over groups (i.e.,
A=A, 5= 7, @ = 0,8 which constitutes a situation denoted by s#ict factorial invariance
(Meredith, 1993). The invariance of measurement parameters implies that the same
constructs are being measured across groups. The tenability of measurement invariance can
be studied by comparing the fit of models with and without the restriction that parameters
are equal across groups. The preferred method is fitting a series of increasingly restrictive
models, which are presented in Table 2.1 (cf. Lubke et al., 2003a2; Vandenberg & Lance,
2000; Widaman & Reise, 1997). Because of the nesting of these increasingly restrictive
models, equality over groups of each of the measurement parameters may be tested
statistically by means of a likelihood ratio test or by using other indices of fit. The question
arises how it is possible to disentangle group differences in measurement intercepts from
group differences in latent ability.

Table 2.1

Eguality constraints imposed across groups in steps towards strict factorial invariance
No.  Description fact(?r res1.dual intercepts factor means

loadings variances

1 Configural invariance N free O free T free o fixed at 0
2 Metric/weak invariance N invariant O free T free o fixed at 0
3 Equal residual variances N invariant O invariant T free o fixed at 0
4 Strict factorial invariance N invariant © invariant T invariant o freel

Note: Each step is nested under the previous one; Underlined restrictions are tested in each step; free: freely
estimated within each group; invariant: parameters estimated equally across groups; Factor (co)variances W are freely
estimated throughout. IModeled as between-group differences in factor means by restricting factor means in one
arbitrary group to equal zero.

One important aspect is that within confirmatory factor analysis with mean
structure, mean structure and covariance structure are modeled simultaneously (Meredith,
1993). Factor loadings play an essential role in the connection between these two
structures. The crux of the method to detect group differences in intercepts lies in the
relation between factor loadings and between-group differences on the indicators. Namely,
if between-group differences in the means of the indicators are due to between-group
differences in the latent variable, one would expect that the relative size of between group
differences on the indicators is collinear with the factor loadings. That is, the higher a
subtest's factor loading, the better the scores on this subtest are predicted by the common
factor, and the better this test is able to show (any) between-group difference at the latent
level. Figure 2.3 displays the regression lines for two subtests loading on the same factor
and the distribution of factor scores (7) in two groups. As can be seen, the two groups have
a different mean on this factor (i.e., @ > a1). In addition, the factor loading of subtest Y
(left-hand side) is smaller than the factor loading of subtest Y2 (right-hand side). If factor
loadings and intercepts are invariant over groups, the expected group difference is a

8 That is, under measurement invariance the implied covariance equals 3 =AY A +@, and the implied mean
I3 I3

vector equals M =T+ /\a’i. All group differences in X and p; are due to group differences in the covariances ¥;

and means g; of the factors.
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function of the latent between-group mean difference (ie., a2 - a1) weighed by the
corresponding factor loading.” This means that on subtest Y2, the expected mean group
difference is larger than on subtest Y1 due to the higher factor loading of the former
subtest as opposed to the latter.
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Figure 2.3 Effect of larger (right) or smaller (lef?) factor loading on the expected between group

difference on indicators.

Thus, if mean group differences on the subtests are due to mean differences on the
factor, this means that whatever mean score differences we might find, these should be
expressed in a way that is compatible with the relative size of factor loadings. On the other
hand, if the between-group difference on a subtest is not in line with the relative size of its
factor loading, this implies that the between-group difference on this subtest could not be
solely due to a between-group difference on the common factor. If such occurs, there is a
group difference in the intercept on this subtest. Thus, different intercepts capture any
between-group mean difference, which cannot be explained by between-group mean
differences on the factor. If intercepts differ across groups, they should be estimated freely
across groups. If there remain sufficient invariant indicators of a factor, this enables an
unbiased estimation of factor mean difference, as well as an estimation of the degree of
uniform bias on the biased indicator.

The statistical test of equality of intercepts is simply conducted by testing a model
with group-invariant intercepts, while allowing for between-group differences in factor
means (cf. Table 2.1, Step 4). It is crucial to assess the fit of equality of intercepts while
allowing for differences in factor means (Meredith, 1993). The reason for this is simply that
if there is any between-group difference in factor mean, and we would not allow for this

Formally, the expected values in Groups 1 and 2 equal E(yll): T, + /1101 and E(y . 2) =7+ Alaz , respectively. If
both 41 and 71 are group invariant, the expected mean group difference equals: E(y12 -y, ) = /]1 (a’z -q, )
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possibility, this (latent) source of mean difference would be forced into differences in
intercepts. This is equivalent to the requirement that a test of factor loadings must allow for
between group differences in factor (co)variances (Meredith, 1993). Whether or not groups
differ with respect to factor means (a) or factor (co)vatiances (¥), is not a matter of
measurement invariance. Measurement invariance should be established before group
differences at the latent level (e.g., 2 order structure, latent means) are studied. In
conclusion, between-group differences in intercepts are detectable with MGCFA because
of the relation implicit in this model between covariance structure (within-group structure)
and mean structure (between-group structure).

Meaning of Intercept Differences

According to the Standards "bias in tests [..] refers to construct-itrelevant
components that result in systematically lower or higher scores for identifiable groups of
examinees." (p.76). A difference in intercepts suggests that the mean difference between
groups on that particular indicator cannot be accounted for by mean differences on the
factor(s) that a test is supposed to measure. One may look at intercept differences as
occurring because of a group-difference in the specific ability tapped by the corresponding
indicator (Meredith & Horn, 2001). Another way to look at such a scenario is to imagine an
additional factor "out there" that necessarily differs across groups, which results in a mean
effect on that indicator (Lubke et al., 2003b).

An intercept difference may be due to bias in the traditional sense that certain
words in the items of the corresponding subtest may be less familiar to members of one of
the groups. If one expects such measurement artifacts, a further look at DIF may shed light
on the source of the intercept difference. Mostly, however, one would not expect this to be
the case because usually all indicators also tap specific abilities, which may simply differ
over groups. For instance, in two studies of gender differences on the WAIS-III in Spain
and in The Netherlands, it was found that the intercept of the Information subtest (which
loads on Verbal Comprehension) was higher for males than for females (Dolan et al., 2006;
Van der Sluis et al., 2006). This is in line with a reported gender difference in general
knowledge (e.g., Lynn & Irwing, 2002), which suggests that males outperform females on
Information. Such a subtest specific gender difference is not in line with the (non-
significant) gender difference on the factor (i.e., Verbal Comprehension), resulting in an
intercept difference. This effect results in an underestimation of female IQ as opposed to
male 1Q. On the Dutch WAIS-III this effect is small for Total IQ (about 1 point), but
substantial for female Verbal Comprehension index scores (about 4 points or 0.258D). In
many applications of MGCFA there will be substantive reasons to expect intercept
differences. For instance, older test takers may give slower responses than younger test
takers on a timed test for abstract reasoning. This might be due lower processing speed in
older test takers (e.g., Salthouse, 1996). In such a scenario, a measure of processing speed
may be used to explain this intercept difference (Lubke et al., 2003a), thereby enabling a
disentanglement of different aspects of aging on cognitive test performance.

It is important to stress that a common factor is defined within a particular factor
model. It is quite possible that a subtest shows an intercept difference when it loads on one
factor, but not when it loads on another factor in another model. Of course, the character
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of a factor depends on its indicators. Reasons for intercept differences are not a
characteristic of subtests per se, but of a characteristic of subtest scores as they relate to the
common factor(s). Many test artifacts can give rise to intercept differences. For instance,
the effects of stereotype threat on test performance may be seen as such an artifact.
Stereotype threat (e.g., Steele & Aronson, 1995) is the pressure on a test taker arising from
stereotypes related to the academic proficiency of one's social group. For example, it has
been shown that (implicitly) reminding female test takers of the stereotype that women
have lower math ability than men, may result in a lowering of female math performance,
particularly when tests are difficult (O'Brien & Crandall, 2003; Spencer, Steele, & Quinn,
1999). Because such effects are often subtest specific, stereotype threat may also result in a
lowering of measurement intercepts in stigmatized groups (Wicherts et al., 2005; Chapter
3). Therefore, a rigorous test of measurement invariance enables the detection of test
artifacts that depress test scores of members of particular groups.

In conclusion, a between-group difference in intercept implies a uniform group-
specific suppression (or elevation) of test scores, which may provide important information
on the nature of group differences in test scores. We now turn to an illustration by means
of a re-analysis of a study in which minority children and majority children are compared
on intelligence test performance.

2.5 INlustration: IQ and Minority Children

Ignoring intercept differences between groups may have serious consequences,
because such intercept differences may be indicative of an underestimation of ability in a
particular group. We illustrate this by means of a re-analysis of a study by Te Nijenhuis and
colleagues, who investigated whether a Dutch children's intelligence test (RAKIT) was
suitable for children of immigrants from Turkey, Morocco, and the former Dutch colonies.
In what appears to be a textbook example of a measurement invariance study, Te Nijenhuis
et al. (2004) went to great length in studying invariance of the RAKIT across the different
ethnic groups. They used DIF analyses, an analysis of differential prediction using school
grades as a criterion, and MGCFA. Although they investigated the equality of factor
loadings in the latter analyses by using a likelihood ratio test and a congruence measure, Te
Nijenhuis et al. did not investigate whether measurement intercepts were equal across
groups. Based on the findings of small DIF effects, only slight differential prediction, and
group-invariant factor loadings, these authors concluded that the RAKIT "is highly, though
not perfectly, valid for the assessment of immigrant children" (p.22). Our aim is to test for
intercept differences in order to verify this claim of measurement invariance. Note that we
restrict our attention to the test scores of a group of children of Moroccan and Turkish
descent, aged 7, who were compared to a representative sample of Dutch majority children
of the same age.

Method
Participants. The test scores of a representative sample of 196 majority children were
used as comparison to the test scores of 131 children from Moroccan (N=60) and Turkish
(N=71) descent. In view of power concerns we pooled these two minority groups for the
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factor analyses (analyses per group gave similar results). Overall, the mean subtest
performance did not differ significantly between the two immigrant groups: a MANOVA
on the subtest scores resulted in a non-significant multivariate effect for group: F (12, 118)
= 1.685, p > 0.05. In addition, a Box test showed that covariance matrices did not differ
between Turkish and Moroccan children: I (78, 49603) = 1.08, p > 0.05. All minority
children have followed education in Dutch. The minority sample is not explicitly sampled
to be representative, but the children are from various schools in both rural and urban
areas. The samples do not differ in age and in gender composition. Average age in both
samples is 7 years and 8 months.

Intelligence Test. The RAKIT (Bleichrodt, Drenth, Zaal, & Resing, 1984) is an
individually administered Dutch intelligence test for children (aged 4 to 11 years) composed
of 12 subtests. RAKIT full scale IQ has been shown to correlate .86 with WISC-R full scale
IQ (Bleichrodt et al.,, 1984). The subtests are Closure, Exclusion, Memory Span, Verbal
Meaning, Mazes, Analogies, Quantity, Discs, Learning Names, Hidden Figures, Idea
Production, and Storytelling. All instruction texts are in Dutch. Subtests with the largest
language component are Verbal Meaning, Analogies, and Storytelling. Although subtest
scores are standardized, and may be interpreted separately, the broad measurement aim of
the RAKIT is to provide an indication general mental ability (i.e., IQ), and/or one of four
factors, which are composed of the scores on 2 to 6 subtests.

Abpnalyses. Based on Carroll's (1993) taxonomy, Te Nijenhuis et al. posited a factor
structure with 4 factors: Hybrid (Gy), Visual (Gy), Memory (Gm), and Retrieval (Gy). This
factor model is displayed in Figure 2.4.10 Our focus is on the mean group differences on
the subtest level, and we investigate whether these are attributable to group differences in
the means of the four factors. As most of the RAKIT subtests have a rather strong
language component, measurement bias with respect to minority children is a real
possibility. In addition, item analyses by Te Nijenhuis et al. indicated that some subtests
showed DIF. Despite this, Te Nijenhuis and colleagues concluded that only one of the
subtests (i.e., Verbal Meaning) showed bias that was of any practical concern.

The tenability of strict factorial invariance with respect to groups is investigated by
fitting a series of increasingly restrictive models, as presented in Table 2.1. In the first step,
no between-group restrictions are imposed, although the configuration of factor loadings is
invariant. The next steps involve restricting all factor loadings (Step 2) and all residual
variances (Step 3) to be invariant over groups. In Step 4, the invariance of the mean
structure is investigated by restricting the measurement intercepts to be equal across all
groups. In the same step, factor mean differences with respect to an arbitrary baseline
group are estimated.

10This factor model differs from the model which corresponds to the four factors in the manual (Bleichrodt et al.,
1984). Using this alternative factor model to assess measurement invariance gave quite similar results.
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Figure 2.4 Factor model for RAKIT subtests.

The tenability of each restriction is judged by differences in fit between the
restricted model and the less-restricted model. For instance, Step 2 vs. Step 1 involves the
tenability of equality of factor loadings. As the successive models are nested (Bollen, 1989),
a likelihood ratio test can be used to test each restriction. To assess model fit, and to assess
the tenability of across-group restrictions on measurement parameters, we look at exact fit
in terms of y2 and Degrees of Freedom (DF). We also consider the Comparative Fit
Index!! (CFIL; Bentler, 1990) and Root Mean Square Error of Approximation (RMSEA;
Browne & Cudeck, 1993). Based on their simulation study, Hu and Bentler (1999)
suggested that CFI values above 0.95 and RMSEA values below 0.06 are indicative of good
model fit. Besides these fit measures, we use the AIC for comparing the relative fit of
models (cf. Wicherts & Dolan, 2004; Chapter 7). The AIC is a fit measure that takes into
account the parsimony of models, with lower AIC values indicating better fit. In case a step
is accompanied by a clear deterioration in model fit, the particular restriction is rejected. In
such cases, modification indices can highlight the particular parameter(s) causing the misfit.
A modification index (MI) is a measure of how much chi-square is expected to decrease if a
constraint on a given parameter is relaxed, and the model is re-fitted (Jéreskog & Sérbom,
1993). A closer look at the magnitude of Mls of intercepts in Step 4 provides important
information about intercept differences between groups. MI values larger than 3.84 indicate
that model fit can be improved significantly (p<.05).

11 Widaman and Thompson (2003) have argued that because of the nesting of models it is inappropriate to employ
the standard null model within the MGCFA context with mean structure. Therefore, we use a model without any
factor structure, in which intercepts and residual variances are restricted to be group invariant (i.e., model 0A in
Widaman & Thompson, 2003) as the null model in computing the CFI values.
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Results

The means and standard deviations of both groups of all subtests are displayed in
Table 2.2. As can be seen, the mean differences between both groups are large. Figure 2.5
displays the effect sizes of the difference between the majority and minority group per
subtest. For each subtest, Figure 2.5 also contains the estimates of factor loadings, as
estimated in the majority group without across group-restrictions (i.e., Step 1). To ensure
comparability of factor loadings and effect sizes, we restricted the highest factor loading for
each factor to be identical to the effect size of the corresponding subtest.!2 This enables a
comparison for each factor of the effect sizes per subtest in relation to the relative
estimates of factor loadings. Recall that measurement invariance requires that mean group
differences on the subtests should be collinear with the corresponding factor loading. That
is, the higher a factor loading, the larger the mean difference should be. If effect sizes and
factor loadings per factor are not collinear, this suggests intercept differences (a statistical
test of which follows below).

Table 2.2
Means, standard deviations of RAKIT subtests for majority and minority group
Factor Majority Minority
Subtest M SD M SD
Hybrid
Analogies 15.03 4.94 10.66 4.73
Verbal Meaning 15.03 5.14 3.86 4.04
Quantity 15.21 5.10 9.51 5.53
Visual
Discs 15.01 5.05 10.82 4.81
Exclusion 14.96 5.07 11.29 4.66
Mazes 15.02 5.03 11.60 4.88
Hidden Figures 14.94 4.93 10.95 4.81
Closure 14.85 5.06 10.37 5.89
Memory
Memory Span 15.05 4.94 14.40 6.01
Learning Names 15.05 5.05 9.18 5.05
Retrieval
Idea Production 15.06 5.18 11.05 5.42
Storytelling 14.99 5.05 10.19 5.22

12 Usually, scaling of the common factor is achieved by restricting one factor loading per factor to equal 1. Because
this value need not be necessarily 1, we used the effect size values here for illustrative purposes. Note that, because
of this choice, the comparability of factor loading estimates across different factors is lost. Note also that the subtest
scores reported are standardized norm scores. Hence, standard deviations are equal across subtests.
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Figure 2.5 Factor loadings and effect sizes per subtest.

Consider the three subtests loading on the Hybrid factor. Of these subtests
Quantity has the highest factor loading and Verbal Meaning the lowest, with the factor
loading of Analogies assuming an intermediate value. As is strikingly apparent, the effect
size of Verbal Meaning is far too large (d = 2.26) to be the result of a between group
differences in the mean of the Hybrid factor. If this large mean difference were due to a
latent mean difference, the (standardized) factor loading of the Verbal Meaning subtest
would have been twice as large as the factor loading of the two other indicators of Hybrid
ability. This is clearly not the case because we already know from the analysis of covariance
structure in the majority group that this subtest has a factor loading smaller than the other
two subtests. There may be several reasons for this result. It is conceivable, yet unlikely,
that both the Analogies subtest and the Quantity subtest underestimate the ethnic
difference on this factor. This would mean that both subtests are positively biased towards
minority children. This explanation appears rather farfetched, because Verbal Meaning is a
test measuring vocabulary knowledge and the minority group contains mainly non-native
speakers of Dutch. Therefore, by inspecting the mean difference and the factor loadings,
we would expect that the mean of the minority group on Verbal Meaning is too low. This
suggests that the intercept of this subtest is considerably lower for minority children, and
that this test is biased towards minorities.

Now consider very large difference between the effects sizes for the two indicators
of the Memory factor, despite the fact that the factor loadings of both these subtests are
very similar. Again, the subtest with the largest cultural component (Learning Names)
shows the largest between-group difference. That is, the Learning Names subtest contains
several Dutch names from various fairy tales, which may be unfamiliar to children from
Moroccan and Turkish descent. The difference between the effect sizes of Learning Names
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and Memory Span are so large, that is simply impossible for a single Memory factor to
account for this effect. Finally, for the two indicators of the Retrieval factor, the subtest
with the lowest factor loading is the Storytelling subtest. However, this subtest shows a
larger between-group difference than the less-culturally loaded Idea Production subtest.
Again we have to assume that the subtest with the smallest language or cultural component
is biased in favor of minorities to circumvent the most obvious explanation, which is that
the subtest with the largest between group difference is biased against minorities.

Thus, if we view the pattern of mean differences in light of the pattern of factor
loadings based on the covariance structure in the majority group, we clearly see that these
patterns are incompatible. This incompatibility is due to between-group differences in
intercepts that are indicative of measurement bias. Of course, measurement invariance is
investigated statistically by testing the fit of various models that differ with respect to
between group constraints on factor loadings, residual variances and intercepts. The fit
indices of the different models are reported in Table 2.3. First, we investigate the
comparability of covariance structure (i.e., Steps 1-3). In Step 1, no between-group
restrictions are imposed, although the configuration of factor loadings is equal across
groups. As can be seen, the baseline model fits well in terms of RMSEA and CFI (cf. Hu
& Bentler, 1999). In addition, the values of the Standardized Root Mean Square Residual
(SRMR) indicate that the baseline model fits well in both the majority (0.054) and the
minority group (0.062).

In Step 2, the factor loadings are restricted to be equal across both groups. As can
be seen, this restriction is accompanied by a non-significant increase in chi-square.
Moreover, all fit indices improve given this restriction. Therefore, factor loadings appear to
be invariant across groups.

Table 2.3

Fit measures of steps towards strict factorial invariance
Step  Restrictions DF x> ADF  Ay? p RMSEA  CFI AIC
1 - 96 152.52%* 059 962 318
2 A 104 157.13%* 8 4.61 798 .055 964 306
3 AN(C)] 116 179.96** 12 22.83%* 029 .059 957 310
3a A, OL 115 170.93%* -1 7.03%* 008 .054 962 299
4 N, O 1 123 240.80%* 8 69.87** .000  .077 920 356
4a N, O1 12 122 196.91** -1 43.89%* .000  .061 949 311
4b N, O1 23 121 178.51% -1 18.40%* .000  .053 961 294
4c N\, O, 1234 120 174.37** -1 4.14% 042 .052 963 292

Note: Underlined restrictions are tested by likelihood ratio test Ay2 *p < 0.05; **p < 0.01; (-1): Parameter freely
estimated; 1: Memory Span; 2: Verbal Meaning; 3: Learning Names; 4: Storytelling

In Step 3, the residual variances are restricted to be group-invariant. This step is
accompanied by a slight deterioration in fit in terms of RMSEA, CFI, and AIC. In addition,
the likelihood ratio test shows that this restriction appears untenable. A closer look at the
modification indices shows that this misfit is mainly due to the residual variance of Memory
Span (MI = 9). Indeed, freeing this parameter (Step 3a), leads to an improvement in model
fit as can be seen by the significant decrease in chi-square, and improvements in RMSEA,
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CFI, and AIC. In the majority group this residual variance is smaller (18.41, SE = 2.32)
than in the minority group (31.48, SE = 4.19).

In Step 4, the intercepts are restricted to be equal across groups, while at the same
time allowing a difference in the four factor means. As can be seen in Table 2.3, this
restriction is accompanied by a clear drop in model fit. The increase in chi-square is highly
significant, the RMSEA increases well above the cut-off for good fit, the CFI drops below
0.95, and the AIC is relatively large. As we already expected by visual inspection of Figure
2.5, mean subtest differences between the minority and majority group cannot be explained
solely in terms of group differences in the means of the factors. Clearly, there are intercept
differences between the groups.

A further look at the modification indices indicates that the intercepts of the
following subtests differ across groups: Verbal Meaning (MI = 40), Learning Names (MI =
15), and Storytelling (MI = 5). Indeed, if we allow between group differences in these
parameters, the model fit (in Models 4a through 4c) improves considerably. In all cases, the
intercepts in the minority group are lower, indicating measurement bias with respect to this
group.

One might ask whether these intercept differences are serious. Under the
assumption that the remaining subtests are not biased, we can estimate the factor mean
difference across groups. The multiplication of the factor loading with this factor mean
difference provides the expected mean difference of the subtest (cf. Table 2.4) (see also
Scholderer, Grunert, & Brunso, 2005). By comparing this expected mean to the mean
difference actually obtained, we get the following underestimations per subtest: Verbal
Meaning: 6.89, Learning Names: 5.12, and Storytelling: 1.79. For the total score, this means
an underestimation of 13.8 points, which according to the transformation table in the test
manual (Bleichrodt et al., 1984, p.128) represents an underestimation of the total IQ of 7
IQ points, or a little less than half a standard deviation.

Table 2.4
Estimation of bias due to intercept differences per subtest

factor mean factor expected actual mean under-

Subtest difference loading difference difference estimation
Expressions: A B C=A4*B D =D-C
Verbal Meaning ~ 5.827 0.735 4.283 11.176 0.893
Learning Names  0.626 1.2061 0.755 5.870 5.115
Storytelling 4.003 0.754 3.018 4.804 1.786
Conclusion

By not testing for intercept differences, Te Nijenhuis and colleagues overlooked
the fact that at least three of the twelve subtests in the RAKIT are biased for 7-year olds
from Moroccan and Turkish descent.! These rather large intercept differences suggest that
the RAKIT is not suitable for the assessment of minority 7-year-olds. A further analysis

13 Te Nijenhuis et al. did notice the problems with Verbal Meaning, but missed the bias on Learning Names and
Storytelling. The combined bias on the latter two subtests constitutes an underestimation of 3.5 IQ points or about
0.25 SD units.
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(available upon request) of the data of Surinamese and Antillean children of the same age
(at least 4.5 1Q) points underestimation), and of children aged 5 and 9, gave similar results.
Although the biasing effects for the other minority groups were less serious, the
underestimation of ability was still large enough to render the RAKIT unsuitable for the
use in these minorities. Even an underestimation of a few IQ points may have serious
consequences. For instance, the Dutch Ministry of Education uses explicit cut-off I1Q
values (e.g., 70 or 85) for the selection of children for special education. An
underestimation of the size we found for the children of Moroccan and Turkish may result
in incorrect selection decisions. Although we would advice against use of the RAKIT in
these immigrant groups for such purposes, a practical solution would be to discount the
biased subtests. Alternatively, the intercept differences we found across groups may be
used to correct upwards the subtests scores for these immigrant groups.

2.6 General Discussion

It is unfortunate that in many applications measurement invariance is assumed to
hold without testing for the equality over groups of measurement intercepts. Our present
aims were to show why a test of the equality of measurement intercepts across groups is
essential for measurement invariance, what group differences in intercepts may mean, and
how these differences can be detected. If the intercept of a particular subtest is different
across groups, this implies that between-group differences on this subtest cannot be solely
due to between-group differences in the construct(s) that the subtest is supposed to
measure. In other words, an intercept difference indicates measurement bias in the sense
there are one or more construct-irrelevant variables causing group differences in test
scores. The importance of studying intercept differences was illustrated by a re-analysis of a
study into the appropriateness of a Dutch intelligence test for minority children. The results
indicated the presence of rather strong measurement bias, which was not fully appreciated
in the original study, despite the fact that the analyses in that study appeared quite
thorough.

It may be argued that the requirement of identical measurement intercepts over
groups is too stringent, and will prove to be too restrictive in most data analyses. However,
intercept differences do not render test scores completely incomparable across groups.
Quite to the contrary, intercept differences may be taken into account, their size may be
estimated (provided that there remain sufficient invariant indicators), and they may provide
valuable information on the precise nature of between-group differences in test scores in
many applications.

The seriousness of intercept differences depends on the measurement aim. If we
allow for intercept differences, we also allow for group differences in the mean of the
specific ability tapped by an indicator. Note that such an effect may or may not be due to
DIF at the item level, which should be studied separately. A further issue refers to the size
of intercept differences one is willing to accept (Borsboom, 2006b). Again, it depends on
the use of the test. Fortunately, as we showed in our empirical example, the effect size of
such bias is easily computed provided that the remaining indicators of a factor are
unbiased. In our example, the effects of bias could be directly related to its effect on IQ
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scores, which enabled the expression of bias in terms of IQ points. In most applications,
effect size estimates can be readily computed and related to the effects on norm scores.
Millsap and Kwok (2004) provide an alternative approach to the question of whether or
not bias is acceptable in the context of correct or incorrect selection decisions.

Uniform Bias and Non-Uniform Bias

Most of the MGCFA studies we reviewed (98 out of 110), have involved a test of
the invariance of factor loadings (cf. Vandenberg & Lance, 2000). Of course, this is an
essential test for any meaningful between group comparison of test scores. However, in
many invariance studies thoroughly developed and well-validated tests are compared across
(demographic) groups. The question arises how likely it is that in such comparisons factor
loadings would differ across groups. Specifically, for a biasing variable to have an effect on
the covariance structure, that variable needs to vary across persons within a group. One
may ask how likely it is for a biasing variable to have a significant amount of variance (in
relation to the variance of the target construct) to have such an effect. If a biasing variable
has an effect that is specific to one indicator, it is more likely that such an effect shows up
in group differences in residual variances (DeShon, 2004; Lubke & Dolan, 2003), than that
the biasing variable has an effect on the factor loading of the affected indicator. There are
roughly three scenarios in which factor loadings may differ across groups, resulting in non-
uniform bias: (1) If the biasing variable affects more than one indicator of a factor. (2) If
the biasing variable covaries strongly with the latent variable. (3) If the biasing variable
interacts with the latent variable, such that, for instance, with increasing ability levels the
effect of the biasing variable on the indicator increases.

It depends on the test at hand and the groups under study, whether one would
expect non-uniform bias. In about one-third of the 27 measurement invariance studies we
reviewed, some group differences in factor loadings were found. On the other hand, in
two-thirds of these studies researchers encountered intercept differences. Therefore,
uniform bias (i.e., intercept differences) appears to occur more often than non-uniform
bias. Furthermore, the effects of uniform bias are by their very nature (i.e., depression of
scores for an entire group) more serious in settings where test fairness is a concern.
Moreover, in many settings where test fairness is not an issue, group differences in
intercepts may provide valuable information on the constructs tapped by (sub)tests and the
nature of group differences.

Implications for Practice
Psychological tests of various kinds are used in countless applied settings. Many of
these tests are either developed with a particular factor structure in mind (e.g., WISC-IV,
WAIS-III), or are amendable to investigation by CFA.1* There is general agreement that
test scores should not be affected by irrelevant characteristics attached to the membership
of demographic groups. We have argued that the requirement of fairness also relates to the
subtest level, which implies that in multivariate tests (e.g., intelligence battery), the

14 Note that measurement invariance can also be studied using exploratory factor analysis (Hessen, Dolan, &
Wicherts, 20006).
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invariance of subtests' intercepts should also be studied. This chapter was motivated by the
fact that tests of measurement invariance in CFA are often not conducted to their full
potential. As we saw from our re-analysis of the data of a Dutch intelligence test for
minority children, this may have serious consequences. Unfortunately, tests of the equality
of intercepts within this area are quite rare. For instance, we know of only one rigorous test
of intercept differences in studying minority test performance on Dutch intelligence tests
(Dolan et al., 2004). The results of that study indicated strong intercept differences, which
indicated a construct irrelevant lowering of test performance of minorities on the GAT-B.
The result of the current re-analysis also suggests that intercepts in several intelligence
subtests of the RAKIT are lower for Dutch minorities. It is disconcerting that in the
Netherlands both the RAKIT and the GAT-B are used widely for minorities in education,
personnel selection, and in clinical settings.

Detecting intercept differences between groups should be an essential part of the
validation of tests. Yet, to our knowledge, in the development of test batteries such as the
WAIS-IIT or the WISC-IV, intercept differences across demographic groups are generally
not studied. This implies that we cannot be certain that such tests are actually measurement
invariant across groups. Unfortunately, the same applies to the majority of measurement
invariance studies published in 2005, because in most of these the possibility of intercept
differences was ignored. There are many advantages attached to the use of MGCFA with
mean structure in testing measurement invariance. First, the approach is very flexible. For
instance, variables that may account for measurement bias are easily incorporated in a
factor model (Lubke et al., 2003a; Oort, 1992), which enables the understanding of the
sources of bias and the eventual reduction of unfairness. Establishing why measurement
bias occurs may contribute to more efficient test development. Second, uniform bias is
perhaps the most obvious form of bias and it is easy to detect. The power to detect
uniform bias in the common factor model is relatively large (Lubke et al., 2001).

Concluding Remarks

The use of DIF analyses in test development and test validation has become
standard practice. Unfortunately, this still could not be said about tests for intercept
differences in MGCFA, despite the fact that the CFA is commonly used. Intercept
differences can have strong effects on test scores. Fortunately, however, intercept
differences are easily detectable by means of MGCFA. Our hope is that a better
understanding of the meaning of intercept differences and of ways to detect them, may
contribute to the understanding of group differences in test scores, thereby increasing the
fair use of tests.
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Stereotype threat and group differences in test
performance: A question of measurement
invariance

Studies into the effects of stereotype threat (ST) on test performance have shed new light
on race and sex differences in achievement and intelligence test scores. This chapter relates
ST theory to the psychometric concept of measurement invariance, and shows that ST
effects may be viewed as a source of measurement bias. As such, ST effects are detectable
by means of mmulti-group confirmatory factor analysis. This enables research into the
generalizability of ST effects to real-life or high-stakes testing. The modeling approach is
described in detail, and applied to three experiments in which the amount of ST for
minorities and women was manipulated. Results indicated that ST results in
measurement bias of intelligence and mathematics tests.

3.1 Introduction

"The greatest social benefit will come from applied psychology if we can find for each individual the treatment
to which be can most easily adapt. This calls for the joint application of experimental and correlational
methods.” (Cronbach, 1957, p. 679)

Recent developments in experimental social psychology concerning the effects of
stereotypes on test performance have contributed to the understanding of the nature of
race and sex differences in achievement and intelligence test scores. Specifically, the theory
of stereotype threat (Steele, 1997) states that stereotypes concerning the ability of groups
(e.g., women are bad at mathematics) can have an adverse impact on test performance of
members of such groups, particularly in those who identify strongly with the domain of
interest (e.g., female math students). Considering the widespread use of achievement and
intelligence tests in college admission and job selection, and the high stakes involved in
their use, stereotype threat effects on test performance may have serious personal and
social consequences. There is general agreement on the importance of fair, unbiased,
assessment in the sense that individual latent abilities should be measured validly and
accurately. This means that measurements of ability should not depend on group membership
based on, for instance, ethnicity or sex. Therefore, the absence of measurement bias with
respect to groups (i.e., measurement invariance) is an essential aspect of valid measurement
(e.g., Millsap & Everson, 1993). Both research into stereotype threat and research into
measurement invariance are aimed at disentangling measurement artifacts related to group
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membership from individual differences in the construct that a particular test is supposed
to measure (e.g., latent mathematics ability). The aim of the current chapter is to explicitly
relate stereotype threat to the concept of measurement invariance, and to show that
stereotype threat effects on test performance may be viewed as a source of measurement
bias.

This conceptualization of stereotype threat effects has statistical as well as practical
advantages. It gives rise to an analytical framework in which individual and group
differences in latent abilities and (experimental) stereotype threat effects on test
performance can be modeled simultaneously. Of more practical importance is the fact that
tests for measurement invariance with respect to groups can shed light on the degree to
which stereotype threat plays a role in real-life and high-stakes settings. This provides a
means to study the effects of stereotype threat in settings in which it is ethically and
pragmatically difficult to manipulate the debilitating effects of stereotype threat on test
performance (Cullen, Hardison, & Sackett, 2004; Sackett, 2003; Steele & Davies, 2003;
Steele et al., 2002).

Below, we first discuss some methodological and statistical issues concerning
experimental tests of stereotype threat effects on test performance. Next, we relate the
effects of stereotype threat to measurement invariance, and discuss how such effects can be
detected by means of multi-group confirmatory factor analysis. Finally, we illustrate this
approach by analyzing the results of three experiments in which the effects of stereotype
threat on the test performance of stigmatized groups were investigated.

3.2 Investigating Stereotype Threat Effects

The experimental paradigm, which is used to study the effect of stereotype threat
on test performance, usually involves the comparison of existing groups (e.g., Blacks and
Whites) and the manipulation of stereotype threat. The latter is accomplished, for instance,
by labeling a test as either diagnostic or non-diagnostic for the stereotyped ability (e.g.,
Steele & Aronson, 1995, Study 2), or by asking for biographical information either prior to,
or after completion of the test (e.g., Steele & Aronson, 1995, Study 4). Stereotype threat is
expected to negatively affect test performance of stigmatized groups, but to have no (or a
small positive; see Walton & Cohen, 2003) effect on test performance of non-stigmatized
groups. Stereotype threat theory thus predicts an interaction between group and threat
manipulation.

Generalizability of Stereotype Threat

Within laboratory experiments stereotype threat has been found to depress scores
on various achievement and intelligence tests, in diverse stigmatized groups (Steele et al.,
2002). The extent to which stereotype threat generalizes to test settings outside the
laboratory is an important issue. Only few experimental studies have looked into the
debilitating effects of stereotype threat on test performance in test settings high in
ecological validity, and/or settings with consequential test outcomes. Stricker and Ward
(2004) conducted two field studies within an actual high-stakes test situation, but were
unable to replicate the strong negative effects of asking for biographical information prior
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to taking a test (i.e., group prime) on minority and female test performance (cf. Steele &
Aronson, 1995). In addition, three recent laboratory experiments addressed the effects of
stereotype threat on Blacks' test performance in a job selection context (McFarland, Lev
Arey, & Ziegert, 2003; Nguyen, O'Neal, & Ryan, 2003; Ployhart, Ziegert, & McFatland,
2003). In these studies, test-taking motivation was enhanced by the promise of financial
rewards for high test scores. Despite the use of manipulations with well-established effects
(.e., race prime and test-diagnosticity), the debilitating effects of stereotype threat on
minority test performance were generally absent. Sackett (2003) suggests that these results
imply that the generality of stereotype threat effects to (motivational) job selection contexts
is limited. Along similar lines, Stricker and Ward (2004) suggest that their studies indicate
that high test stakes appear to be capable of overriding the negative effects of stereotype
threat on test performance.

From a theoretical point of view, however, the internal validity of these real-life or
contextualized experiments appears questionable. Steele and colleagues argue that
stereotype threat probably always occurs within such settings, because of features that have
been shown to elicit stereotype threat in the laboratory (Steele & Davies, 2003; Steele et al.,
2002). For instance, promising incentives or placing a test in a selection context makes a
test diagnostic for the stereotyped ability, thereby triggering stereotype threat even within
control conditions. Heightening stereotype threat by means of explicit test diagnosticity or
group prime then fails to depress test performance of stigmatized groups much further,
resulting in ineffective stereotype threat manipulations (Steele & Davies, 2003; Steele et al.,
2002). In that respect, stereotype threat theory predicts that stereotype threat studies, which
are high in ecological validity, are low in internal validity, and vice versa. More importantly,
whereas inductive reasoning leads one to expect that most real-life test settings do evoke
stereotype threat, empirically the question of generalizability appears hard to answer (Steele
et al., 2002).

3.3 Analyzing Stereotype Threat Effects

Given the pragmatic and ethical problems of experimentation within real-life
settings, correlational methodology (e.g., regression analysis) may be used to investigate the
presence of stereotype threat on actual achievement tests. Osborne (2001) reasoned that
stereotype threat effects may be mediated by anxiety (cf. Blascovich, Spencer, Quinn, &
Steele, 2001). He found that the racial gap, and to a lesser extent, the gender gap on several
achievement tests in the High School and Beyond Study were partly mediated by self-
reported anxiety, which supports the notion that stereotype threat affected test
performance. Cullen et al. (2004) proposed that the strong identification of high-ability
persons with the domain of interest (cf. Steele, 1997), renders them more sensitive to
stereotype threat (Aronson et al., 1999). They reasoned that if stereotype threat affects test
performance of stigmatized groups on a predictor (e.g., SAT), this differential sensitivity to
stereotype threat would lead to group-specific and non-linear relations between the affected
predictor and criteria that are supposedly unaffected by stereotype threat, such as job
performance or grade points of classes unrelated to stereotypes. However, Cullen et al.
(2004) found neither prediction bias, nor any non-linear effects, and concluded that



38 CHAPTER 3

stereotype threat effects on the predictors (SAT and Armed Services Vocational Aptitude
Battery) were small or non-existent.

These seemingly inconsistent results may be due to the strong assumptions
underlying the use of such regression approaches. For instance, Cullen et al. (2004) had to
assume the absence of group differences on academic criteria (cf. the underperformance
phenomenon; Steele, 1997), whereas Osborne (2001) rightly expressed some concern about
the causal link involved. Moreover, these cottelational studies address the effects of
stereotype threat on test performance in an zndirect manner. It is well established that group
differences in prediction (i.e., prediction bias) do not necessarily imply that measurements
are biased with respect to groups, and vice versa (Millsap, 1997a).

Measurement Models

The indirectness of these regression approaches can be avoided by adopting
measurement models that explicitly relate test scores to the latent constructs that are
supposed to underlie those test scores. Instead of the latent abilities, stereotype threat
affects the test scores in a group-specific manner. As we shall see below, a comparison of
stigmatized and non-stigmatized groups with respect to the test scores-construct
relationship (i.e., test for measurement invariance) allows for a direct study of the presence
of stereotype threat effects within a particular test situation.

An additional advantage of using measurement models is that they can be used to
analyze experimental data (cf. Donaldson, 2003), thereby overcoming some difficulties
associated with traditional use of analysis of variance within stereotype threat experiments.
The groups under investigation in such studies are expected to differ considerably with
respect to the latent ability that is supposed to underlie the dependent variable(s) (i.e., test
scores). This may give rise to analytical problems because of pre-existing group differences
in the average or variability of latent ability (e.g., gender differences in math variability;
Hedges & Nowell, 1995). In numerous stereotype threat studies, prior test scores (e.g.,
SAT) and analysis of covariance or ANCOVA are used to equate groups for mean
differences in ability. However, as we argue in Appendix C, several expectations derived
from stereotype threat theory do not sit well with the assumptions underlying the
traditional use of ANCOVA (see also Yzerbyt, Muller, & Judd, 2004). For instance,
stereotype threat may lower the regression weight of the dependent variable on the
covariate in the stereotype threat condition, which violates regression weight homogeneity
over all experimental cells (cf. Appendix C). The use of statistical methods that differentiate
between the construct (i.e., latent ability) and the measurement of that construct
circumvents such problems. More importantly, measurement models equip us with ways to
test for measurement invariance.

34 Measurement Invariance

Measurement invariance revolves around the issue of how groups differ in the way
the measurement of a psychological construct (e.g., mathematics test score) is related to

that construct (e.g., mathematical ability). Measurement invariance means that measurement
bias with respect to groups is absent (Lubke et al., 2003a, 2003b; Meredith, 1993). Below,



STEREOTYPE THREAT AND MEASUREMENT INVARIANCE 39

we explain measurement invariance conceptually in relation to stereotype threat. Let us first
look at the formal definition of measurement invariance (Mellenbergh, 1989), which is
expressed in terms of the conditional distribution of manifest test scores Y (denoted by
fY'].). Measurement invariance with respect to » holds if:

AY 1) =AY | 1) (forall Y, 1, 1), M)
where 1 denotes the scores on the latent variable (i.e., latent ability) underlying the manifest
random variable Y (i.e., the measured variable), and » is a grouping variable, which defines
the nature of groups (e.g., ethnicity, sex). Note that » may also represent groups in
experimental cells such as those that differ with respect to the pressures of stereotype
threat. Equality (1) holds if, and only if, Y and » are conditionally independent given the
scores on the latent construct 7 (Lubke et al., 2003b; Meredith, 1993).

One important implication of this definition is that the expected value of Y given 7
and » should equal the expected value of Y given only 7. In other words, if measurement
invariance holds, the expected test score of a person with a certain latent ability (i.e., 7) is
independent of group membership. Thus, if two persons of a different group have exactly the
same latent ability, they must have the same (expected) score on the test. Suppose » denotes
sex and Y represents the scores on a test measuring mathematics ability. If measurement
invariance holds, then test scores of male and female test takers depend so/e/y on their latent
mathematics ability (i.e., 7)!> and not on their sex. Then, one can conclude that
measurement bias with respect to sex is absent, and that manifest test score differences in
Y correctly reflect differences in latent ability between the sexes.

However, the situation changes when stereotype threat impacts test performance.
Suppose » represents two groups (e.g., Blacks and Whites) that differ with respect to
stereotypes that concern Y (e.g., intelligence tests). If stereotype threat directly affects (i.e.,
lowers) the observed scores (i.e., Y) in the Black group (or in a sub-sample of this group),
then measurement invariance is violated. The reason for this is that conditioning on the
latent construct (i.e., latent ability) does not remove all group differences in Y, because of
the debilitating effects of stereotype threat on Y, which are limited to the Black group. This
becomes particularly clear if one images a Black test taker with a particular latent ability,
who, because of stereotype threat, underperforms in comparison to a White test taker with
the same latent ability. Cleatly, the relationship between test score and latent ability now
depends on group membership and the requirements for measurement invariance no
longer hold. Therefore, stereotype threat effects are by definition a source of measurement
bias. Conversely, if measurement invariance holds in a particular group comparison,
stereotype threat does not play a differential role in test score differences between those
groups, because then test score differences rightly reflect group differences in the latent
construct.

The definition of measurement invariance is quite general (Mellenbergh, 1989). It
does not depend on the kind of test, selection variable, or the size of group differences in
latent ability. Although measurement invariance may be investigated by many methods
(Millsap & Everson, 1993; Raju et al., 2002) using different types of measurement models

15> However, measurement invariance with respect to one selection vatiable does not necessarily imply measurement
invariance with respect to another selection variable (but see Lubke et al., 2003b).
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(e.g., item response models), we restrict our attention to the confirmatory factor model. We
now present this model, relate it to measurement invariance, and show how stereotype
threat may result in measurement bias. After that, we investigate in three studies whether
experimental stereotype threat effects indeed lead to measurement bias.

3.5 Multi Group Confirmatory Factor Analysis (MGCFA)

Here we describe the measurement model (i.e., MGCFA) in a non-technical
fashion, restricting our attention to the one factor case, and assuming multivariate
normality throughout. Appendix A contains a more technical and more general
presentation of the model (see also Bollen, 1989; Dolan, 2000; Dolan et al., 2004; Lubke et
al., 2003a). The confirmatory factor model is essentially a linear regression model in which
scores on several indicators (i.e., subtest scores) are regressed upon scores on the latent
(i.e., unobserved) construct 7. Like in ordinary regression, the model includes for each
indicator the following measurement parameters: a regression weight or factor loading
(expressed by the symbol 1), a residual term, and an intercept. The residual term of an
indicator is expressed by the symbol ¢, and contains both random measurement error and
specific factors tapped by that particular indicator (i.e., all uncommon sources of variance;
Meredith & Horn, 2001). In most applications of confirmatory factor analysis (e.g., one-
group studies), the regression intercept is uninformative and is not modeled. However, we
are also interested in studying between-group differences in means. Therefore, we add the
mean structure to the analysis, which is accomplished by incorporating an intercept term
for each indicator, expressed by 7z (S6rbom, 1974). The extension to multiple groups
enables tests of specific hypotheses concerning between-group differences in measurement
parameters (i.e., measurement bias) and between-group differences in the parameters that
describe the distribution of the common factor within each group (i.e., group differences in
mean latent ability). The simultaneous analysis of covariance!® and mean structure provides
a test of measurement invariance, or s#ict factorial invariance, as it is denoted in this context
(Meredith, 1993).

The model for subtest score Y7 of a person j in group (or condition) i is as follows:

Vi = it Ayt e )
Suppose we have four subtests. Of course, the latent ability score 7; of person j is the same
for all subtests, so we can conveniently arrange the expressions using vector notation (e.g.,
Bollen, 1989):

Diij 7y /11/71' ‘91,','
Vi | | il Ao x [/7] o 5 ©)
Vi Iy /13171‘ ! &
Yayj Lil| (A 4
This, in turn, is more parsimoniously expressed by the following matrix notation:
Yy =1, +/\[/7[j te;. )

16 We are also interested in and should allow for possible differences in variances between the groups. For that
reason, in MGCFA covariance matrices are analyzed instead of correlation matrices.
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Except for the difference in notation Equations 3 and 4 are identical. For example, in
Equation 4, 7 is a 4 dimensional vector containing the measurement intercepts and .1 is a 4
x 1 matrix containing the factor loadings of group i. Equation 4 presents a model for the
observations. To obtain estimates of the parameters in this model, we fit the observed
covariance matrices and mean vectors to the implied (by Equation 4) covariance matrices
and mean vectors (cf. Appendix A). The parameters of interest are the factor loadings (1),
the vector of intercepts (7), the variances of the residuals, incorporated in a matrix denoted
O, and the means and variances of the common factor scores in group i, denoted by @; and
W, respectively. In fitting the model, we introduce two types of constraints: identifying
constraints, which are required in all confirmatory factor analyses (e.g., scaling; Bollen,
1989), and substantive constraints, which relate specifically to the issue of measurement
invariance (Meredith, 1993). As we explain next in a two-group context, the latter concern
the factor loadings, intercepts, and residual variances.

A

. Group 1

Group 2 /]1,71 = /]1,72
Tll > TlZ

in1 1n2
Z-1 1 > TlZ
0 n -
(ability)
Figure 3.1 Regression lines of test scores on latent variable in two groups with different intercepts (top)

and different intercepts as well as different factor loadings bottom).
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Consider the top half of Figure 3.1. Here we see the regression lines for subtest Y]
in two groups. The factor loading gives the slope of this line (for each increment A of latent
ability 7, the expected test score changes by Az times 1) and the intercept 7 gives the point
of Y1 associated with the point 7 = 0. Also depicted are the normally distributed residuals in
each group. Note that the residual variances appear equal in both groups. As can be seen,
the regression slopes (i.e., factor loadings) are also equal in both groups. However, the
intercepts differ over groups. This has serious consequences. Namely, for each possible
latent factor score, the expected value on the test Y7 is higher for members of Group 1 than
for members of Group 2.17 Clearly, this violates measurement invariance with respect to
both groups. Hence, the equality of measurement intercepts (i.e., 711 = 712) is an essential
requirement for measurement invariance (cf. Meredith, 1993). The reader may have already
guessed a possible source for such an intercept difference between groups: the uniform
(i.e., irrespective of latent ability) depression of test scores due to stereotype threat in
Group 2.

The bottom half of Figure 3.1 displays another two-group scenario. Here, the
regression lines for both groups again show different intercepts. In addition, the slope of
the regression line in Group 2 now differs from the slope in Group 1. Specifically, the
factor loading in Group 2 is lower (i.e., A1 < A7;2). This means that in Group 2 the test
scores do not measure latent ability as well as in Group 1. Again, given a particular latent
factor score, the expected test score depends on group membership. Even worse, the
negative effect of "being" a Group 2 member now depends on the particular latent ability
level. Higher ability scores result in more bias than lower ability scores. As is graphically
depicted by the dashed arrows, it is even conceivable that a member of Group 2 with a
fairly high ability score has an expected test score below that of someone in Group 1, who
has a considerably lower ability. Clearly, for measurement invariance to hold between
groups, factor loadings should be equal across groups (i.e., A1,y = Az2). Note that a
depressed factor loading could be due to stereotype threat affecting test performance in
Group 2 in a non-uniform manner. Again, the lowering of the intercept may be viewed as a
"main effect" for stereotype threat. Moreover, the lowering of a factor loading in Group 2
can be interpreted as an "interaction effect”" between stereotype threat and latent ability on
test performance. The latter may occur because domain identification is known to heighten
stereotype threat effects, and domain identification may be strongly related to latent ability
(Cullen et al., 2004; Steele, 1997). In such a scenario higher ability persons suffer more
under stereotype threat, resulting in a depressive effect on the factor loading.

We have presented a graphic exposition of why factor loadings and measurement
intercepts need to be invariant for measurement invariance to hold. In fact, under
measurement invariance, the regression lines of each group coincide. If so, the expected
value of the test scores depends solely on latent ability, regardless of group membership.
An additional requirement for strict factorial invariance is that residual variances need to be
invariant. This is because residual variances contain all uncommon sources of variance.

17 Note the resemblance of this picture to what Steele (1997, p.6206) called the parallel lines phenomenon when he
referred to the academic underperformance of Black college students in comparison to White college students with
equal standardized test scores. The differences lie in that Steele's predictor was a standardized test score and his
criterion was first-year GPA, whereas our predictor is the latent ability score and the criterion is the test score.



STEREOTYPE THREAT AND MEASUREMENT INVARIANCE 43

Larger residual variance in one group means less reliable measurement. Moreover, added
residual variance may also be due to stereotype threat variance. Meredith (1993) provides a
rigorous statistical discussion of why group-invariant factor loadings (1), residual variances
(6O, and intercepts (7) are essential requirements for strict factorial invariance. Indeed, if
measurement invariance holds, as defined above (Equation 1), these equality constraints
should hold to reasonable approximation (Meredith, 1993; Millsap, 1997b).

The Stereotype Threat "Factor”

In order to better understand the specific effects of stereotype threat on
measurement parameters, it is convenient to imagine the presence an additional common
factor (denoted by o), which incorporates all the mediating effects of stereotype threat on
test performance. Such an additional stereotype threat "factor" is neither measured nor
modeled, but it still affects test performance in a manner that is restricted to the stigmatized
group, resulting in group-specific changes of measurement parameters. Hence, constraining
measurement parameters of a group under stereotype threat to group(s) without such
effects (i.e., non-stigmatized group and/or control condition) would demonstrate a
violation of strict factorial invariance. It is well-established that stereotype threat specifically
affects performance on the more difficult tasks (Blascovich et al., 2001; O'Brien & Crandall,
2003; Quinn & Spencer, 2001; Spencer et al., 1999; Steele et al., 2002). Therefore, we
expect the effects to be subtest-specific and mostly related to the most difficult subtests in
a test battery.

Non-Stereotype threat
effects ——»

Stereotype threat
effects = — — »

Biased parameters|

7 latent ability
o stereotype threat

Figure 3.2 Effects of stereotype threat on parameter estimates of affected Subtest Y.
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Figure 3.3 Effects of stereotype threat on parameter estimates of affected Subtests Y's and Y.

Figure 3.2 displays the common factor model within a group (in a particular
setting), where stereotype threat affects the scores on subtest Y4 (conceivably a particularly
difficult subtest). As we show in Appendix B, such a stereotype threat effect results in a
lowering of the measurement intercept of the affected subtest (cf. Figure 3.1 top half). In
addition, if stereotype threat effects vary over persons within this group, perhaps because
of individual differences in domain identification or group identification, the variance due
to the unmeasured stereotype threat factor results in an increase of the residual variance of
subtest Y4. However, it is also conceivable that two of the four subtests are affected by
stereotype threat. This situation is displayed in Figure 3.3. Again, this would result in
negative effects on the measurement intercepts of these subtests (cf. Appendix B). In
addition, if stereotype threat effects vary over persons, this would lead to increased residual
variances of both affected subtests. Furthermore, the two affected subtests now covary
more strongly than would be expected from their corresponding factor loadings on the 7
factor. This additional covariance due to stereotype threat constitutes a violation of the
dimensionality of the factor model within this group (i.e., residual covariance), resulting in
model misfit. This scenario of stereotype threat affecting the performance on two subtests
can be extended to cases in which more than two (or even all) subtests are affected. Of
course, in such cases, stereotype threat also violates strict factorial invariance.!8

18 However, if a (relatively) large number of subtests are affected by stereotype threat, model misfit due to such
stereotype threat effects disperses over the model. This makes it difficult to interpret measurement bias in terms of
sole parameters.
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Figure 3.4 Non-untform effect of stereotype threat on parameter estimates of affected subtest Y.

As a final scenario, consider Figure 3.4 in which a nonlinear effect on subtest Y} is
expressed as an interaction between latent ability and stereotype threat. As is shown in
Appendix B, such an effect results in a lowering of the factor loading of subtest Yy (cf.
Figure 3.1 bottom half). Additionally, one would expect an increase of the residual variance
of the affected subtest and a downward bias of the intercept.

In conclusion, the effects of stereotype threat are detectable by tests for
measurement invariance using MGCFA. Possible stereotype threat effects would show up
particularly in group differences in the measurement parameters of difficult subtests. We
now turn to three experiments in which the amount of stereotype threat for stigmatized
groups was manipulated. We thus use tests of strict factorial invariance with respect to
groups and conditions to identify the effects, if any, of stereotype threat on the test scores.

3.6 Study 1: Dutch Minorities and the Differential Aptitude Test

On average, Dutch minority students attain lower educational levels and have a
higher drop-out rate than Dutch majority students (Dagevos, Gijsberts, & van Praag, 2003).
Several studies have indicated that Dutch high school students often view minority
students as less smart (Verkuyten & Kinket, 1999), and minority groups as less well
educated (Kleinpenning & Hagendoorn, 1991). Recently, Verkuyten and Thijs (2004) found
that academic disidentification among Dutch minority students was moderated by the
perception of being discriminated in scholastic domains. The first aim of Study 1 was to
study the effects of stereotype threat on intelligence test performance in a sample of
minority high school students in the Netherlands. To this end, we administered a short



46 CHAPTER 3

intelligence test containing three subtests, and varied the amount of stereotype threat
related to ethnic minorities by changing the presentation of the test and by altering the
timing of an ethnicity questionnaire. The second aim of this study is to find out whether
tests for measurement invariance using MGCFA can successfully highlight the effects of
stereotype threat. Furthermore, we compare the results of confirmatory factor analysis to
the results of analysis of variance, in order to find out whether both analyses lead to the
same conclusions.

Method
Participants

Two hundred and ninety five students from nine high schools in large cities in the
Netherlands participated during obligatory classes, which were aimed at counseling the
students in choosing a major ("profile") in the second phase ("tweede fase") of their high
school education. The students were aged between 13 and 16 (M = 14.86, SD = 0.64), and
attended the third year of the HAVO education. Given that the HAVO level is the second-
highest level in the Dutch high school system, the sample is expected to be heterogeneous
in terms of identification with the academic domain, which is considered an important
moderator of stereotype effects (cf. Aronson et al., 1999).

All 157 students in the majority group were born in the Netherlands, as were all
their parents and grandparents. Of the 138 minority students, most were born in The
Netherlands (76%), but all of them had one (10%) or two (90%) parents born outside The
Netherlands. The (grand)parents of the minority students were immigrants from (former)
Dutch colonies (Surinam/Antilles; N = 47), Turkey (N = 36), or Morocco (N = 55).19
Because of the absence of large test score differences between these minority groups, and
to increase the sample sizes, these minority groups are pooled.2’ When asked to indicate the
cultural group they identified with, most (N = 93; 67%) of the minority students indicated
their own minority group. Twenty-three minority students (17%) indicated the Dutch
majority group, and 22 minority students (16%) indicated both the Dutch group, and their
minority group as the group they identified with. The total sample consisted of 119 boys
and 176 girls. Both ethnic groups did not differ in sex and age composition.?!

Procedure and Design

Three shortened subtests of the Differential Aptitude Test or DAT (Evers &
Lucassen, 1992) were administered during classes, which were attended by 17 to 27
students. Upon arrival in the classroom, students found a test booklet on their desks, and a
female tester of Dutch origin told them that they would be taking a counseling test. The

19 These data stem from a larger study containing 430 students (Wicherts et al., 2003). We selected only students that
could be categotized unambiguously in the majority group (student, his/her parents, and grandparents ate all born in
The Netherlands) or in one of these three minority groups.

20 Although there may be differences between these minority groups in terms of general stereotypes, in terms of
academic stereotypes differences between these groups are quite small (see, e.g., Kleinpenning & Hagendoorn, 1991).
21 'To ensure the existence of stereotypes concerning the intellectual ability of minority groups, we conducted a pilot
study in which we asked a group of 41 students in comparable schools and classes whether they believed that there
existed prejudices concerning the intellectual ability of their cultural group (direction unspecified). On a scale from 1
(no prejudice) to 5 (strong prejudice), the 20 majority students (M = 2.00, SD = 1.12) scored significantly lower
(t(39) = 4.53, p < 0.001) than the 21 minority students (M = 3.62, SD = 1.16), indicating that the minority students
reported a strong awareness of the stereotypes concerning the intellectual abilities of their group.
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tester said that the test booklet contained questions about their personal interests and
abilities, and that their answers would be used for guidance in their choice of specialty. No
explicit mention of intelligence was made. The tester told the students that the test booklet
consisted of several sections, and that they would be told when to start and stop with a
particular section. This enabled the timing of each of the following sections of the test
booklet: An ethnicity questionnaire, the DAT tests, an interest inventory, an additional
language test (used for exploratory purposes), and the actual profile-counseling test
(administered last). After the test session, students were debriefed extensively on the
purpose of the experiment. After a week, all students received written counseling on their
specialty choice, which was based solely on the profile-counseling test (cf. Zand Scholten,
2003). Special care was taken to ensure that the answers on this test were not affected by
the stereotype threat manipulation, or by ethnicity (Wicherts et al., 2003).

Participants were assigned to two conditions that differed in the features that elicit
stereotype threat for the minority students. Assignment to conditions was achieved by
randomly distributing two versions of a test booklet, which were indistinguishable by the
cover. In the stereotype threat condition, this test booklet presented each DAT subtest as
an "intelligence test". The test booklet of participants in the control condition made no
mention of intelligence, and the tests were simply presented as a section of the test booklet.
In addition, in the stereotype threat condition, an ethnicity questionnaire was administered
prior to the DAT. This questionnaire consisted of 14 questions concerning ethnic and
cultural background (religion, language use), and questions about place of birth of the
students, their parents, and grandparents. In the control condition, the ethnicity
questionnaire was administered after the DAT. While participants in the stereotype threat
condition filled in the ethnicity questionnaire, participants in the control condition filled in
an interest inventory containing 15 items without any connection to ethnicity. This interest
inventory was administered to students in the stereotype threat condition after the
intelligence tests. Thus, two stereotype threat manipulations were employed in concert to
increase stereotype threat for ethnic minorities: an ethnicity prime and a manipulation of
the diagnosticity of the intelligence test (cf. Steele & Aronson, 1995).

Intelligence Test

Three subtests of the Dutch DAT (Evers & Lucassen, 1992) were used as a
measure of general intelligence. The subtests were shortened by selecting items with the
highest item-rest correlations in the Dutch standardization sample (N = 2100). The
Numerical Ability test (NA; originally 40 items, 25 min) contains 14 complicated
mathematic problems. Abstract Reasoning (AR; originally 45 items, 25 min) contains 18
items with a logical sequence of diagrams, which had to be completed. Verbal Reasoning
(VR; originally 50 items, 20 min) contains 16 verbal analogy items. All subtests were
administered with a time limit of six minutes. All items have a 5-option multiple-choice
answer format. Based on the standardization data, Numerical Ability is the most difficult
subtest in terms of proportion correct of the items retained in the short version (average p-
value 0.43), followed by Verbal Reasoning (average p-value 0.49) and Abstract Reasoning
(average p-value 0.59). Thus, one would expect the strongest stereotype threat effects on
the Numerical Ability test. The instruction pages of the subtests were slightly adapted with
regard to the time limit, number of items, and the presentation of the tests as either a
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section (control condition), or as an intelligence test (stereotype threat condition). To
correct for possible order effects, and to avoid cheating (e.g., copying answers), two order
versions of the test booklet were employed (bringing the total number of versions to 4).
The order in these two versions was NA-AR-VR, and VR-NA-AR, respectively. Because
none of the main or interaction effects for order reached significance (ANOVA; all Ps >
0.10), these order versions are pooled for the subsequent analyses.

Apnalyses

Considering previous factor analyses on the complete DAT (Evers & Lucassen,
1992; Te Nijenhuis et al., 2000; Wicherts et al., 2004), the use of a one-factor model for
these three subtests is sensible. Although our primary interest lies in testing for strict
factorial invariance with respect to groups, we also conduct a 2-by-2 MANOVA, with
stereotype threat and ethnicity as factors, and the three subtests as dependent variables.
MANOVA provides a means to interpret the experimental mean effects. We predicted a
significant main effect for ethnicity, with majority students outscoring the minority students
(see, e.g., Te Nijenhuis et al., 2000). In addition, we expected a significant ethnicity by
condition interaction, because stereotype threat would primarily depress scores of minority
students. Given the heterogeneous sample used, we also expected heterogeneity in
covariances and variances over design cells. Therefore, as is common in the (M) ANOVA
framework, we also conduct tests for variance and covariance heterogeneity by means of
Box’s M test and the univariate Levene’s test.

MGCFA can be used to shed light on the nature of differences in (co)variance and
mean structure between groups. Within this two-by-two experimental design, the tenability
of strict factorial invariance with respect to groups and conditions (i.e., 4 groups) is
investigated by fitting a series of increasingly restrictive models. These models as well as the
restrictions imposed are presented in Table 3.1. In the first step, no between-group
restrictions are imposed. The next steps involve restricting all factor loadings (Step 2) and
all residual variances (Step 3) to be invariant over all four groups. Because of the random
assighment to experimental conditions, one does not expect there to be differences on the
factor level between conditions for both exiszing groups. Step 4 can be used to investigate
whether factor variance of the existing groups are affected by the stereotype threat
manipulation. That is, in this step, the factor variance for majority students in the
stereotype threat condition is restricted to be equal to the factor variance for majority
students in the control condition (and similarly for the minority students). In Step 5, the
invariance of the mean structure is investigated by restricting the measurement intercepts to
be equal across all groups. In the same step, factor mean differences with respect to an
arbitrary baseline group are estimated. Finally, in Step 6, the means of the existing groups
are restricted to be equal over condition (e.g., factor mean of majority group in control
condition equal to factor mean of majority group in stereotype threat condition). This
ensures that the experimental manipulation has no effect on the mean of the common
factor. As can be seen, if the restrictions implemented in these six steps hold, measurement
invariance holds. In that case, the differences between the existing groups are a function of
the differences in the means (@) and variances (¥ of the common factor. However, we
expected the test scores to be affected in a differential manner across groups.
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Table 3.1
Eguality constraints imposed in the steps towards strict factorial invariance
No. Description A o] W T a
factor residual factor intercepts  factor
loadings variances variance mean
1 Configural invariance - - - - -
2 Metric invatiance all groups - - - -
3 Equal residual variances  all groups  all groups - - -
4 Factqr variances : all groups  all groups existing i i
invariant over condition groups
5 Strict factorial all orouns  all oroups existing all orouns
invariance group group groups atgroups
Fact invariant isti isti
5 actor means invarian all groups  all groups existing all groups existing
over condition groups groups

Note: Each step is nested under the previous one. Underlined restrictions are tested in each step.

The tenability of each restriction is judged by differences in fit between the
restricted model and the less-restricted model. For instance, Step 2 vs. Step 1 involves the
tenability of equality of factor loadings. Because of the nesting of models, a likelihood ratio
test is employed to test each restriction. Besides attention for chi-squares, the CFI and the
RMSEA are used in determining the absolute and relative model fit. The Comparative Fit
Index (CFL; Bentler, 1990) ranges from 0 to 1, and is a measure of the relative fit of a
model in relation to a null model of complete independence?2. The Root Mean Square
Error of Approximation (RMSEA; Browne & Cudeck, 1993) is a so-called close fit measure
that is known to be relatively insensitive to sample size. Several rules of thumb have been
proposed for these fit measures. Based on their simulation study, Hu and Bentler (1999)
proposed that RMSEA values smaller than 0.06, and CFI values larger than 0.95 are
indicative of good model fit.

In case a step is accompanied by a clear deterioration in model fit, the particular
restriction is rejected. In such cases, modification indices can highlight the particular
parameter(s) causing the misfit. A modification index (MI) is a measure of how much chi-
square is expected to decrease if a constraint on a given parameter is relaxed, and the model
is re-fitted (Joreskog & Sérbom, 1993). In cases where a restriction is accompanied by a
deterioration in fit, parameters with the highest modification index are freely estimated and
the sequence of models is continued. We expected that stereotype threat effects on test
performance would result in measurement bias expressed by high modification indices in
the minority group in the stereotype threat condition. All factor analyses were carried out
using LISREL 8.5423 (Joreskog & Sérbom, 2003).

22 Widaman and Thompson (2003) have argued that because of the nesting of models it is inappropriate to use such
a null model within a multi-group context with mean structure. Therefore, we use a model without any factor
structure, in which intercepts and residual variances ate restricted to be group invariant (i.e., model 0A in Widaman
& Thompson, 2003) as the null model in computing the CFI values.

23 All input files used here can be downloaded from: http://users.fmg.uva.nl/jwicherts.
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Results
Table 3.2
Means and standard deviations by experimental condition and ethnic group (Study 1)
Condition
Control Stereotype threat
Majority Minority Majority Minority
N= 79 65 78 73

Subtest M SD M SD M SD M SD
Numerical 535 254 488 247 549 231 467 252
Abstract Reasoning 1042 296 680 333 924 334 734 283
Verbal Reasoning 727 3.01 537 2.82 6.65 347 556 270

The values for univariate skewness and kurtosis in the four groups are in an
acceptable range (ie., [-0.89 - 0.88]), suggesting no large deviations from normality.
Therefore, the use of Maximum Likelihood for estimating the factor models is justified.
Table 3.2 contains means and standard deviations of the three subtests for both ethnic
groups in the two conditions. First, we provide the analysis of variance results. Box's M test
suggests some covariance heterogeneity over groups (F(18, 28483) = 1.787, p< .05). The
univariate Levene's test for homogeneity of variance gives a significant value for the Verbal
Reasoning subtest (F(3, 291) = 3.63, p< .05). Because MANOVA is often claimed to be
robust to (co)variance heterogeneity (e.g., Stevens, 1996), we do interpret the results of the
MANOVA. The multivariate main effect for ethnicity is significant (F(3, 289) = 20.36, p<
.001), as well as all univariate effects (Numerical Ability: F(1, 291) = 5.07, p< .05; Abstract
Reasoning: F(1, 291) = 57.47, p< .001; Verbal Reasoning: F(1, 291) = 17.83, p< .001), with
the majority group outscoring the minority group. Neither the multivariate, nor any of the
univariate main effects for condition reach significance (all Ps > .30). The multivariate
interaction effect between condition and ethnicity is significant (F(3, 289) = 2.642, p =
.050). The only significant univariate interaction effect is found on the Abstract Reasoning
subtest (F(1, 291) = 5.56, p< .05). However, this interaction effect is due to the majority
group underperforming in the stereotype threat condition. Namely, the condition simple
effect is significant for majorities (F(1, 155) = 5.45, p< .05), but non-significant for
minorities (F(1, 136) = 1.07, p> .30). All multivariate and univariate simple effects for
condition within the minority group are non-significant (all Ps > .30), which is opposite to
what one would expect from stereotype threat theory. Whereas, the minority group scored
significantly lower than the majority group, these ANOVA results indicate that on average
the minority students in the stereotype threat condition did not score lower than the
minority students in the control condition.

However, it is important to stress that the sample may be expected to be
heterogeneous with respect to domain-identification, considered an important moderator
of stereotype threat effects (e.g., Steele, 1997). For instance, Aronson et al. (1999) found
that test-takers that identified strongly with the domain of interest (i.e., mathematics) were
more susceptible to stereotype threat, whereas test-takers who moderately identified with
the domain performed /leffer under stereotype threat conditions than under control
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conditions. This suggests that within heterogeneous samples that contain both highly
identified and moderately identified test-takers, effects of stereotype threat may differ
substantively over persons. In such samples, positive and negative effects may cancel out,
resulting in no, or only a small effect on the mean. However, the absence of a mean effect
does not necessarily mean the absence of an effect. To investigate the possibility that
covariance structure was affected by the stereotype threat induction, we tested for
measurement invariance with respect to the four groups. The results of the multi-group
confirmatory factor analyses are reported in Table 3.3.

Table 3.3
Fit measures of steps towards strict factorial invariance (Study 1)
Step  Restrictions DF 4?2 p ADF  Ay? p RMSEA CFI
1 - 0 0 1.000 - - - 0.000 1.000
2 A 6 14.73*  0.023 6 14.73* 0.023  0.145 0.942
2a Zl 5 4.74 0.449 (91 9.99% 0.002  0.000 1.000
3 N0 14 23.68 0.050 9 18.94*  0.026  0.097 0.936
3a N & 13 1645 0226 (-1 7.23*% 0.007  0.058 0.977
N, &, Yeon 15 1691 0324 2 0.46 0.795  0.040 0.987
5 AN,@, 7, Weon 20 3178  0.046 5 14.87  0.011  0.089 0.922
52 NG, 7L Weon 19 2743 0.095 (1 4.35%  0.037  0.079 0.944
5b AL &, P2 Weon 18 23.70 0165 (1 3.73 0.053  0.065 0.962
6 N, @, 7, Weon, acon 20 24.44 0224 2 0.74 0.691  0.056 0.971

Note: Undetlined restrictions are tested by likelihood ratio test Ay *p<0.05; **p<0.01; (-): parameter freely
estimated; 1: Factor loading Numerical Ability, minority group, stereotype threat; 2: Residual variance Numerical
Ability, minority group, stereotype threat; 3: Intercept Numerical Ability, minority group, stereotype threat; 4:
Intercept Abstract Reasoning, majority group, control; 5: Intercept Abstract Reasoning, minority group, control

Because a one-factor model with three indicators is saturated (i.e., equal number of
input statistics and parameters), the baseline model without across-group restrictions has a
chi-square of zero with zero degrees of freedom. In the second step the factor loadings are
restricted to be equal over the four groups. This restriction results in a significant increase
in chi-square. In addition, both the RMSEA and the CFI exceed the rule-of-thumb values
for good fit. The misfit in this step is almost solely due to the factor loading of the
Numerical Ability subtest of the minority group in the stereotype threat condition (MI =
11). Freeing this parameter leads to a significant improvement of model fit, as can be seen
in Step 2a. In the minority group, stereotype threat condition, this (unstandardized) factor
loading is not significantly different from zero (4 = -0.04, SE = 0.20, Z = -0.19, p> .05),
whereas in the other groups this factor loading is significantly greater than zero (41 = 0.92,
SE =0.22,Z = 4.19, p< .01). In Step 3, the residual variances are restricted to be invariant
over the four groups. This, again, leads to a significant deterioration in model fit, as can be
seen by the significant increase in chi-square, increase in RMSEA, and lowering of CFIL
Not surprisingly, the misfit in this step is mainly due to the residual variance of the
Numerical Ability subtest of the minority group in the stereotype threat condition (MI =
7). Freeing this parameter leads to a significant improvement in model fit (Step 3a). The
residual variance of Numerical Ability is larger in the minority group, stereotype threat
condition (6.33, SE = 1.06), than in the other groups (3.47, SE = 0.61). In the fourth step,
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we restrict factor variances of both ethnic groups to be invariant over condition. This leads
to a relative improvement in model fit. The factor variance of the minority group is slightly
smaller (¥ = 3.32, SE = 1.08) than the factor variance of the majority group (¥ = 4.12, SE
= 1.23). In the fifth step, mean structure is modeled by restricting the intercepts to be
invariant over the groups, and by freeing the factor means of three groups (cf. Table 3.1).
In light of the different factor loading of the Numerical Ability subtest in the minority
group, stereotype threat condition, it does not make sense to restrict this particular
intercept. Hence, in Step 5, this parameter is freely estimated for this particular group. Step
5 results in a significant increase in chi-square, an increase in RMSEA, and a clear drop in
CFL The restriction on intercepts is cleatly rejected. The highest modification index is
related to the intercept of the Abstract Reasoning test of the majority group in the control
condition. Freeing this parameter results in an improvement in model fit (Step 5a).
However, as judged by RMSEA (> 0.06) and CFI (< 0.95), the model fit of Step 5a is still
not very good. The highest modification index (MI = 4) in this step is related to the
intercept of the Abstract Reasoning subtest of the minority group in the control condition.
Freeing this parameter results in an improvement in model fit in terms of RMSEA and CFI
(Step 5b). Interestingly, the intercept of the Abstract reasoning subtest is higher in the
majority group, control condition (2 = 8.67, SE = 0.47), than in the two ethnic groups in
the stereotype threat condition (z2 = 7.54, SE = 0.31). This is not surprising considering the
mean effect of the stereotype threat manipulation on this subtest in the majority group. In
the minority group, control condition, this intercept is even lower (2 = 6.72, SE = 0.37).
This suggests the presence of bias with respect to ethnicity in the control condition. In the
sixth and final step, we investigated whether the factor means of both groups differed over
experimental condition. This step is accompanied by a relative improvement in model fit.
The factor mean of the majority is significantly higher than that of the minority group (a =
1.62, SE = 0.39, Z = 4.20, p< .001).

Conclusion

Although MANOVA results indicated an absence of mean effects of stereotype
threat on test performance of the minority group, the stereotype threat manipulation clearly
resulted in measurement bias with respect to the minority group. The measurement bias
due to stereotype threat was related to the most difficult Numerical Ability subtest.
Interestingly, because of stereotype threat, the factor loading of this subtest did not deviate
significantly from zero. This change in factor loading suggests a non-uniform effect of
stereotype threat. This is consistent with the third scenario discussed above (cf. Appendix
B), and with the idea that stereotype threat effects are positively associated with latent
ability (cf. Cullen et al., 2004). Such a scenario could occur if latent ability and domain-
identification are positively associated. This differential effect may have led low ability (i.e.,
moderately-identified) minority students to perform slightly besfer under stereotype threat
(cf. Aronson et al., 1999), perhaps because of moderate arousal levels, whereas the more
able (i.e., highly-identified) minority students performed worse under stereotype threat. Such
a differential effect is displayed graphically in Figure 3.5. This pattern could explain the
absence (i.e., canceling out) of mean-effects, the increased residual variance, and the smaller
factor loading in the minority group. Another explanation for this effect may lie in
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individual differences in working memory capacity (WMC). Beilock and Carr (2005)
recently found that students high in WMC underperformed on a difficult arithmetic task
under pressure, whereas students low in WMC showed a slight increase in performance
when put under high pressure.

Yl
No stereotype threat
Stereotype threat
7 (ability) ’
Figure 3.5 Non-uniform effect on factor loading of Subtest Yy in case of an Interaction between

latent ability and stereotype threat.

The biasing effect of stereotype threat would have been completely overlooked,
had we restricted ourselves to the MANOVA, and had we regarded the covariance
heterogeneity as a statistical annoyance, instead of as an important source of information.
The bias due to stereotype threat on test performance of the minority group is quite
serious. The intelligence factor explains approximately 0.1% of the variance in the
Numerical Ability subtest, as opposed to 30% in the other groups. To put it differently, due
to stereotype threat, the Numerical Ability test has become completely worthless as a
measure of intelligence in the minority group. Note, however, that such an effect changes
our interpretation of the factor within the minority group under stereotype threat. It is also
conceivable that the stereotype threat effects were present on the other two subtests.
However, because of the rather small factor model, such an effect is hardly distinguishable
from a non-uniform effect on the Numerical Ability test. Nevertheless, the latter subtest is
the most difficult subtest, and it is apparent that stereotype threat has resulted in severe
measurement bias with respect to the minority group.

In the control condition, there also appears to be measurement bias with respect to
ethnicity, indicating that even in that condition test scores of minority and majority
students are incomparable. It could be argued that because the test setting resembled



54 CHAPTER 3

strongly the common practice of testing in Dutch high school, the test setting could have
elicited stereotype threat even in the control condition (cf. Steele & Davies, 2003).
However, because the bias in this condition was related to the easiest of the three subtests,
it seems unlikely that stereotype threat has caused this bias. Further research could shed
light on the issue of whether stereotype threat is also present in the control condition or if
perhaps the bias is caused by something else (cf. Te Nijenhuis et al., 2000). Based on this
study, we would advise great caution in the use of these DAT scales for Dutch minority
students.

Surprisingly, the manipulation also had a depressing effect on the Abstract
Reasoning subtest in the majority group. Perhaps this is due to a priming effect of the
ethnicity questionnaire (cf. Wheeler & Petty, 2001). Further research could shed light on
why the scores on this relatively easy subtest were depressed in the majority group.
Nevertheless, the depressing effect of stereotype threat on this subtest became apparent in
the analysis of variance, and clearly resulted in measurement bias in the factor analyses.

The presence of covariance effects in the absence of mean effects in this first study,
led us to re-analyze the results of another stereotype threat study, in which a clear mean
effect on test performance was also absent. In an experiment by Nguyen and colleagues
(2003) the effects of stereotype threat on Black students' test performance were studied
within a job-selection context. A timed short version of a cognitive ability test containing
three subtests was used to assess cognitive ability. A total of 86 Blacks and 86 Whites were
randomly assigned to a stereotype threat or control condition. Like in Study 1 above,
stereotype threat was manipulated by both an ethnicity prime and by test diagnosticity
(Nguyen et al., 2003). Using analysis of variance, Nguyen et al. (2003) found that Whites
outscored the Blacks on all subtests (i.e., significant multivariate and univariate main effects
for ethnicity). However, MANOVA indicated no significant interaction between stereotype
threat manipulation and race, as would be expected from stereotype threat theory.
Therefore, Nguyen and colleagues concluded that stereotype threat effects on test
performance were absent. We submitted these data to MGCFA and our re-analysis
suggested that (besides an increased residual variance for Whites in the stereotype threat
condition) strict factorial invariance with respect to conditions and race was mainly tenable.
Although the power may have been low, this result suggests that the race differences in test
performance in either condition appear not to be caused by stereotype threat. Therefore,
the argument that the stereotype threat manipulation in the Nguyen study was unsuccessful
due to the fact that stereotype threat was already present in the control condition (Steele &
Davies, 2003), appears implausible.

From an experimental perspective the results of the first study are unusual in the
sense that experimental mean effects on test performance of the stigmatized group were
absent. Hence, it is desirable to investigate the merits of our modeling approach in the
presence of clear experimental mean effects.

3.7 Study 2: O'Brien and Crandall (2003) Re-Analysis

O'Brien and Crandall (2003) studied the effects of stereotype threat on
performance of females on three mathematics tests, which differed in difficulty level: A
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difficult test, an easy test, and a relatively easy math persistence test. Here we re-analyze
these data with our modeling approach in order to investigate whether a test of strict
factorial invariance can highlight the stereotype threat effects on test performance. We
briefly describe the original study. For more details the reader is referred to O'Brien and
Crandall (2003).

Method

Participants

A total of 164 students enrolled in a psychology class participated in this study in
exchange for course credit. Because of missing data of five participants on the Math
Persistence test, the current analysis is based on a sample of 58 females and 101 males.
Design and Procedure

Participants were randomly assigned to two conditions that differed in the amount
of stereotype threat for women. In the control condition, the gender stereotype was made
irrelevant for the test setting by a text stating that the test at hand had "NOT been shown
to produce gender differences" (O'Brien & Crandall, 2003, p. 785). In the stereotype threat
condition, the text indicated that the test had been shown to produce gender differences.
After reading this text, participants completed a questionnaire regarding their feelings
concerning test taking. After that, the three math tests were administered in a
counterbalanced order.
Materials

The Easy math test had a time limit of 10 minutes, and consisted of 20 relatively
easy multiplication problems. The Difficult test was administered with a time limit of 11
minutes, and consisted of 15 difficult items from the quantitative SAT. Items were in a five
option multiple-choice format. The Math Persistence test contained 24 addition and
subtraction problems, which were to be solved mentally (i.e., without the aid of paper and
pencil) within 8 minutes (O'Brien & Crandall, 2003).
Analyses

Reasoning that the effects of heightened arousal on task performance depend on
task difficulty, O'Brien and Crandall (2003) expected that stereotype threat would heighten
scores of females on the Easy math test, while depressing their scores on the Difficult test.
The Math Persistence test was originally used as a control for effort. However, because of
quite high correlations between all three subtests, and in light of the clear mathematical
nature of the three tests, the use of a one-factor model in describing these data is justified.
In the male groups in both conditions and in the female group, stereotype threat condition,
all inter-subtest correlations are significantly greater than zero (p < .05; range: 0.33 to 0.55).
However, the correlation between the Easy and the Difficult test of the female group in the
control condition is not significant. Furthermore, the correlation between the Easy test and
the Math Persistence test in this group is negative. This appears not to be caused by any
distinguishable bivariate outliers (L. T. O'Brien, personal communication, June 7, 2004).
Moreover, in this group, the Math Persistence test has a platykurtotic distribution (kurtosis:
- 1.3). In combination with the small sample size (N = 30), this makes the data of this
group less suitable for Maximum Likelithood estimation. Therefore, we limited the factor
analyses to three groups: the female group in the stereotype threat condition, and the Male



56 CHAPTER 3

groups in both conditions. For our modeling approach this poses no problem. We
expected measurement bias because of stereotype threat in the female group. We again use
the steps given in Table 3.1 to assess the tenability of restrictions over these three groups.

Results

Except for the Math Persistence test scores of the male group in the stereotype
threat condition?4, the kurtosis and skewness values are in the moderate range, making the
data suitable for Maximum Likelihood estimation. The means and standard deviations of
the four groups are reported in Table 3.4. Using repeated-measures ANOVA on the
standardized scores of the Easy and the Difficult tests, O'Brien and Crandall (2003) found a
significant main effect for gender, with males outscoring the females. More importantly,
this test showed a significant three-way interaction between gender, condition, and test
difficulty, which indicated that stereotype threat lowered scores of women on the Difficult
test, while heightening the scores on the Easy test. In a separate two-way ANOVA on the
Math Persistence scores, O'Brien and Crandall (2003) found a significant main effect for
sex (males outscoring females), although the interaction between sex and condition was not
significant. Thus, these ANOVA results indicate no effects of condition for males. For
females, ANOVAs indicate a clear mean effect of stereotype threat on the Easy and
Difficult tests, but no effect on the Math Persistence test.

Table 3.4
Means and standard deviations of males and females by excperimental condition (Study 2)
Condition
Control Stereotype threat
Males Females Males Females
N= 50 30 51 28

Subtest M SD M SD M SD M SD
Easy 7.50  4.34 6.37 3.91 7.80 3.93 8.18 3.98
Difficult 9.13 236 7.99 2.88 9.19 2.51 0.81 2.55

Persistence 1872 5.79 15.30 6.13 19.53 4.67 16.43 6.30

Note: Descriptive statistics provided by L. T. O'Brien

The results of the factor analyses on the three groups are reported in Table 3.5.
Again, the first step involves a saturated model with perfect model fit. The second step
(equal factor loadings), the third step (equal residual variances), and the fourth step (equal
factor variance in male groups) all result in non-significant increases in chi-square.
Moreover, the CFI and RMSEA clearly indicate that these three restrictions are tenable.
This is not the case for the restriction on measurement intercepts, which is tested in the
fifth step. This restriction clearly results in a worsening in model fit, as is clear in the
significant increase in chi-square and the clear worsening in CFI and RMSEA values. The

24 The high kurtosis value (2.6) in this group was due to a very low scoring male. Excluding this outlier does not

change the results of the factor analyses.
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largest modification indices are related to the intercepts of the Difficult test (MI = 7) and
the Easy test (MI = 6) of the female group in the stereotype threat condition. Freeing both
parameters (Steps 5a and 5b), results in clear improvements in model fit. The intercept of
the Difficult test is lower in the female group under stereotype threat (r» = 7.72, SE =
0.57), than in both male groups (2 = 9.05, SE = 0.30). The intercept of the Easy test is
higher in the female group (73 = 9.65, SE = 0.94) than in both male groups (73 = 7.48, SE =
0.50). In the sixth step the factor mean of the males in both conditions is restricted to be
equal. This does not result in a worsening in model fit. In this last step, the factor mean of
the female group is significantly lower than that of the male group: a = 2.70, SE = 1.28, Z
= 2.11, p< .05. However, because of the two freely estimated intercepts, this factor mean
difference is actually a significance test of the difference between males and females on the
Math Persistence test.

Table 3.5

Fit measures of steps towards strict factorial invariance (Study 2)
Step  Restrictions DF 2 p ADF  Ay? p RMSEA CFI
1 - 0 0 1.000 - - - 0.000 1.000
2 A 4 274 0.602 4 2.74 0.602  0.000 1.000
3 AO 10 5.87 0.826 6 3.13 0.792  0.000 1.000
4 N,O, Wcon 11 6.40 0.846 1 0.53 0.467  0.000 1.000
5 A.O, 1, Pcon 15 2278  0.089 4 16.38*+ 0.003  0.113 0.896
52 A,Q, 1L, Wcon 14 1242 0.572 1 10.36%+  0.001  0.000 1.000
5b A,Q, 12 Pcon 13 6.66 0.919 1 5.76* 0.016  0.000 1.000
6 AO, 2 Weon,acon 14 702 0934 1 036 0549 0000  1.000

Note: Underlined restrictions are tested by likelihood ratio test Ay2 *p<0.05; **p<0.01; (-): Parameter freely
estimated; 1: Intercept Difficult subtest in women, stereotype threat; 2: Intercept Easy subtest, women, stereotype
threat

Conclusion

The re-analysis of O'Brien & Crandall's data demonstrated one drawback of the
current modeling approach. Because of the platykurtotic distribution of test scores, and the
negative correlation between tests in the female group, control condition, this group had to
be excluded from the test for measurement invariance. Nevertheless, the factor analysis
approach remained feasible. Even without the possibility to compare the female group in
the stereotype threat condition to a female group without such threat effects (i.e., in the
control condition), we were able to establish that test scores of males and females were
incomparable. It became apparent that intercepts were not invariant across groups, and that
strict factorial invariance was violated due to stereotype threat. Suppose that these data
would have been non-experimental data, stemming from a real-life, or even a high-stakes,
test setting. Even then, a test for strict factorial invariance would have pointed towards the
measurement bias with respect to sex. The re-analysis of these data illustrates our point that
because of their nature, stereotype threat effects are detectable in principle by means of
tests for measurement invariance.

Of course, O'Brien and Crandall (2003) especially selected their math tests to show
this pattern of effects. However, their study can contribute to future studies into stereotype
threat effects within real-life test settings. A careful selection of easy and more difficult
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tests, together with the current modeling approach, enables one to investigate the existence
of stereotype threat effects on test performance. In sum, the results of the current re-
analysis are clearly in line with the results of analysis of variance by O'Brien and Crandall
(2003). Moreover, the current results support the notion that whenever stereotype threat
affects test performance on a collection of tests, it does so in a way incompatible with the
requirements for measurement invariance within the common factor model.

One drawback of the first two studies is the small number of subtests. In Study 3,
we use a test battery consisting of four subtests measuring arithmetic/mathematic ability.
In addition, we want to investigate strict factorial invariance in three conditions that differ
with respect to stereotype threat related to female test takers: a control condition with no
explicit reference to sex differences, a nullified condition in which gender stereotype was
made irrelevant to the test, and a stereotype threat condition with explicit mention of sex
differences. The latter condition is interesting because it has well-known negative effects on
female test performance, while male test performance is often enhanced (i.e., a stereotype
lift effect; Walton & Cohen, 2003). We expected that both this negative and this positive
effect would result in measurement bias. The comparison with regard to strict factorial of
three conditions that differ in stereotype threat, enables one to find a test setting where
stereotype threat is absent, and where test scores of males and females are comparable.

3.8 Study 3: Sex Differences in Arithmetic Test Performance

The first aim of this third study is to replicate the effects of stereotype threat on
women’s test scores on a collection of arithmetic/mathematic ability tests in a sample of
psychology undergraduates in the Netherlands. The second aim is to investigate whether
tests for measurement invariance using MGCFA can successfully differentiate between
conditions, in which stereotype threat is manipulated. To this end, we administered an
arithmetic test battery to males and females, varied the amount of stereotype threat for
females over conditions, and tested for strict factorial invariance with respect to groups.

Method

Participants

Two hundred and eighty-three undergraduate psychology students of the
University of Amsterdam participated as part of course requirements.?> On average, the 142
females were slightly younger (age: M = 20.40, SD = 3.76) than the 141 males (M = 21.64,
SD = 4.97). The sample is highly educated, but not especially selected for good
arithmetic/mathematic skills. The sample is expected to be heterogeneous with respect to
identification with the arithmetic/mathematical domain.
Design and Procedure

An arithmetic test battery was administered by computer during two large mixed-
sex group sessions. Participants were randomly assigned by the computer to one of three
conditions, in which the introduction texts were used to manipulate the amount of
stereotype threat. All three texts started by mentioning that the test of arithmetic ability

2> Due to computer failure, three additional participants, one male and two females, were excluded from the analyses.
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contained four timed subtests. The three versions differed with respect to the next section
in the instruction text. In the control condition, meant to resemble the usual testing
citcumstances, no mention was made of sex differences. In the nullified condition, on the
other hand, the instruction read (translated from Dutch): “Although on many arithmetic
tests sex differences have been found, previous research has shown that on this arithmetic
test, females achieve as well as males. Mean scores of males and females on the four
subtests are equal.” This nullified condition was created to make the gender-stereotype
irrelevant for the test that participants were making, thereby hopefully reducing the effects
of stereotype threat on females (cf. Brown & Pinel, 2003; O'Brien & Crandall, 2003; Smith
& White, 2002; Spencer et al., 1999). In the stereotype threat condition the text was
changed to (translated from Dutch): “Previous research has shown that females and males
score differently on this arithmetic test. On the average females score lower than males on
all four subtests.” This instruction text was meant to increase stereotype threat for female
test-takers in the stereotype threat condition. (cf. Keller, 2002; O'Brien & Crandall, 2003;
Spencer et al., 1999). After this manipulation, the participants completed the four subtests.
Each subtest consisted of a page with a specific instruction, an example item, and a test
page containing the test items. The computer automatically stopped the subtests when the
allocated test period had passed. Total test time was 21 minutes. After the test session, all
participants were debriefed extensively on the purpose of the experiment.

Materials

We used a selection of subtests that measure arithmetic/mathematical proficiency.
The four subtests differ in form and difficulty level, but are nevertheless expected to
measure one single trait, which we henceforth denote by arithmetic ability. In order of
presentation, these subtests are: Arithmetic, Number Series, Worded Problems, and Sums.

The Arithmetic test is a timed test of three minutes containing 40 items that stem
from an arithmetic ability test by Elshout (1976). The latter test is part of the standard test
program of psychology undergraduates at the University of Amsterdam. The original test
has high internal consistency and validity (Vorst & Zand Scholten, 2000). The items have
an open-ended answer format, for example: “43 x 6 ="".

The Number Series test is a test developed to be parallel to the Number Series Test
by Elshout (1976). The latter test is also part of the standard test program of the
Psychology Department, and has high internal consistency and validity (Elshout, 1976;
Vorst & Zand Scholten, 2000). The test used in the current study contains 20 items in a
five-option multiple-choice format and has a time limit of six minutes. Example item: “-12
-11-8-3 4 .. (options: 71213 15 9)”.

The Worded Problems test has a time limit of four minutes, and contains 23 worded
arithmetic problems. This test is based on the Arithmetic subtest of the WAIS-Dutch
edition (Stinissen, Willems, Coetsier, & Hulsman, 1970), and contains some additional and
comparable items from the CMS test by Elshout (1976). All items have an open-ended
answer format, and were adapted to increase difficulty. Example item: "Someone has a loan
at a 5% interest rate per year. After three years he has paid 225 Euros interest. What is his
debt in Euros?".

The Sums test is the numerical ability test of the Primary Mental Abilities (T. G.
Thurstone, 1958, 1962). It contains 60 items and was administered with a (adapted) time
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limit of 5 minutes. The respondents are required to indicate whether a sum is correct or
incorrect. E.g., “13 + 39 + 99 + 32 = 183”. To correct for guessing on this subtest, the
total score is computed by subtracting half the number of incorrect responses from the
number of correct responses.

Although speediness increases the difficulty of all subtests, the items themselves are
fairly easy to solve. The Number Series subtest is the most difficult in terms of abstractness
and item difficulty. We therefore expected that stereotype threat would particularly affect
scores on this subtest.

Analyses

Again, we also provide to results of a two-way MANOVA with sex and condition
(3 levels) as factors and the four tests as dependent variables. Based on research in previous
cohorts of psychology undergraduates (e.g., Vorst & Zand Scholten, 2000), we anticipated
that males would outscore the females on all subtests. We expected that the instruction
texts would particularly influence female test performance. Specifically, we expected that
females in the nullified condition would outscore the females in the control and stereotype
threat conditions. In addition, we predicted females in the stereotype threat condition to
score lowest of all groups. We expected no negative effects for males, although stereotype
lift effects (Walton & Cohen, 2003), could conceivably provide a pattern of mean
differences for the males opposite to those of females.

As the four subtests were expected to load on a general arithmetic ability factor, we
fitted a single common factor model in the confirmatory factor analyses. We again follow
the stepwise approach given in Table 3.1, this time involving six groups. We expected to
find measurement bias for females in the stereotype threat condition. This should result in
the rejection of strict factorial invariance, particularly due to the induced bias in the
relatively difficult Number Series subtest. Whether strict factorial invariance with respect to
sex is tenable in the control and nullified conditions depends on the degree of stereotype
threat. However, we expected the degree of measurement bias to be greatest in the
stereotype threat condition.

Results

With two exceptions (i.e., Arithmetic subtest for males in control and stereotype
threat conditions), univariate skewness and kurtosis values are moderate ([-1,1]), suggesting
univariate normality of most subtests in most of the cells. Therefore, use of Maximum
Likelihood in estimating the factor models seems appropriate. Means and standard
deviations of the subtests for males and females in the three conditions are given in Table
3.6. The Box test shows that homogeneity of covariance matrices across conditions is
rejected (F(50, 139810) = 1.748, p< .01). Levene’s tests for equal variances across
conditions show significant values for Arithmetic (F(5, 277) = 4.683, p< .001) and Number
Series (F(5, 277) = 4.619, p< .001), but non-significant values for the other two subtests.
Assuming robustness to this violation of (co)variance homogeneity, we continue with the
MANOVA. The multivariate sex main effect is associated with a significant F-value (F(4,
274) = 7.351, p< .001). The univariate analyses of variance show significant sex main
effects on all subtests (Arithmetic: F(1, 277) = 12.89, p< .001; Number Series: F(1, 277) =
25.79, p< .001; Worded Problems: F(1, 277) = 19.58, p< .001; Sums: F(1, 277) = 5.43, p<
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.05), with males outscoring the females on all subtests. Furthermore, compared to the
nullified and control conditions, there is a clear trend for females in the stereotype threat
condition to score lower. For the males, the picture is less clear, with highest scores in
conditions depending on the subtest used. The multivariate main effect of condition does
not reach significance (F(8, 548) = 1.708, p > 0.05). Most importantly, the multivariate
interaction of condition and sex is significant: F(8, 548) = 2.366, p < 0.05. None of the
univariate condition main effects reach significance (All Ps > .10). As expected, the only
significant univariate interaction effect between sex and condition is found on the Number
Series subtest: F(2, 277) = 4.32, p< .05. Within the female group, the simple effect for
condition is significant (F(2, 139) = 7.29, p< .01). Paired comparisons show that females in
the stereotype threat condition scored significantly lower than females in the control
condition (p< .01), and significantly lower than females in the nullified condition (p< .05),
but that female scores did not differ significantly between nullified and control conditions
(p> .50). Although male scores on the Number Series subtest are highest in the stereotype
threat condition, the condition simple effect for males did not reach significance (F(2, 138)
= 0.48, p> .50), nor did any of the paired comparisons for males (all Ps > .50). In other
words, the stereotype lift effect for males did not reach significance using the traditional
analysis of variance approach. To summarize, these ANOVA results indicate a clear
suppression of scores on the Number Series subtest for females in the stereotype threat
condition.

Table 3.6
Means and standard deviations of subtests per sex and condition (Study 3)
Condition
Control Nullified Stereotype Threat
Males Females Males Females Males Females
N= 46 48 50 47 45 47
Subtest M SD M SD M SO M SD M SO M SD
Atrith-
metic 13.28 746 1023 4.62 1418 7.78 11.70  3.53 1220 553 9.96 6.16
Number
Series 8.52 374 7.60 2.86 8.56 436 7.11 2.66 9.22 333 5.62 2.35
Worded
Probl. 8.39 343 6.40 2.80 760 309 672 232 744 283 574 272
Sums 1290 592 1155 5.14 13.14 586 1121  4.66 1297 511 1181 5.18

Results of factor analyses in the six groups are reported in Table 3.7. In the first
step we assessed the fit of the one-factor model, which is acceptable. The second step does
not result in a significant increase in chi-square. Therefore, factor loadings appear invariant
over the six groups. The restriction on residual variances in the third step results in a clear
deterioration in model fit. The largest modification indices are found in the male group,
nullified condition, and are related to the residual variance of the Number Series subtest
(MI = 23) and of the Arithmetic subtest (MI = 18). Furthermore, the residual variance of
the Arithmetic test in the females in the stereotype threat condition is also partly
responsible for misfit (MI = 13). Freeing these three parameters in a stepwise fashion
(Steps 3a, 3b, 3c) results in clear improvements in model fit. These freely estimated residual
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variances are larger in the corresponding groups than in the other groups. In the fourth
step, the factor variances of the male group and of the female group are restricted to be
equal over conditions. This results in a slight, but non-significant, increase in chi-square.
Considering the perfect values of RMSEA and CFI in Step 4, we conclude that factor
variances of the sex groups are invariant over conditions. The factor variance of the female
group is smaller ( = 15.08, SE = 2.47) than the factor variance of the male group () =
38.09, SE = 5.50).

Table 3.7
Fit measures of steps towards strict factorial invariance (Study 3)
Step  Restrictions DF 2 p ADF  Ay? p CFI
RMSEA
1 - 12 9.61 0.650 - - - 0.000 1.000
2 A 27 1839  0.891 15 8.78 0.889  0.000 1.000
3 NGO 47 6417 0.049 20 4578+ 0.001  0.099 0.967
3a  AOL 46 4718 0424 (1 1699 0.000  0.031 0.998
3b AO12 45 3674 0805 (1 10.44*< 0.001  0.000 1.000
3¢ A,O123 44 2600 098 (-1 1074+  0.001 0.000 1.000
4 N,O123 Weon 48 3539 0912 4 9.39 0.052  0.000 1.000
5 NO123 1 Weon 63 7673 0115 15 41.34%x  0.000  0.072 0.973
5 A©125, td, Weon 62 6399 0407 ()1 1274% 0000 0040 0996
5b @123, 145, Weon 61 5519 0685 ()1  880% 0003 0000  1.000
6 A3, 45 Weon scon 65 5912 0682 4 393 0416 0000  1.000

Note: Underlined restrictions ate tested by likelihood ratio test Ay2 * p<0.05; **p<0.01; (-): Parameter freely
estimated; 1: res.var. Number Series, Males, Nullified; 2: res.var. Arithmetic, Males, Nullified; 3: res.var. Arithmetic
females, stereotype threat; 4: intercept Number Series, Females, stereotype threat; 5: intercept Number Series, Males,
stereotype threat

Considering the mean effects that we found by means of the MANOVA, one
would expect intercept differences across groups. In the fifth step the intercepts are
restricted to be invariant across groups. This clearly results in a deterioration in model fit,
with a highly significant increase in chi-square, worsening in RMSEA, and drop in CFL
Inspection of the modification indices shows that this restriction is untenable because of
the intercept of the Number Series subtest in the stereotype threat condition in both sex
groups (females: MI = 12; males: MI = 8). Indeed, freeing both parameters results in clear
improvement in model fit (i.e., Steps 5a and 5b). As expected, the intercept of this difficult
subtest is lower in the female group in the stereotype threat condition (7> = 5.92, SE =
0.45), than in the groups in the other conditions (> = 7.19, SE = 0.31). In the male group
under stereotype threat this intercept is higher (zz = 8.40, SE = 0.45), thus nicely reflecting
the stereotype lift effect on this relatively difficult subtest. In the sixth step, factor means of
each sex group are restricted to be equal over conditions. This restriction appears tenable.
The factor mean of the male groups is significantly higher than the factor mean of the
female groups (a = 2.61, SE = 0.67, Z = 3.92, p< .001). In terms of the pooled within-
group standard deviation units of the latent factor, this difference in latent ability has an
effect size of 0.52.
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The current stepwise approach has the risk of path-dependence, in the sense that
the results of later restrictions (i.e., steps in the lower part of Table 3.1) may depend on the
particular parameters, which were freed in previous steps because of high modification
indices. In addition, within a particular test setting one would normally test for strict
factorial invariance with respect to the existing groups. Therefore, both as an illustration,
and as a check, we also report tests for strict factorial invariance with respect to sex within
each of the three conditions. This enables us to investigate whether these tests can
differentiate between situations (i.e., conditions) in which stereotype threat is, or is not,
present. Note that in this situation it does not make sense to restrict factor variances and
factor means, thus Steps 4 and 6 are skipped. The results of the tests per condition are
reported in Table 3.8. As can be seen, in the control condition, restricting factor loadings,
residual variances, and intercepts does not result in a worsening in model fit. In this
condition strict factorial invariance with respect to sex is cleatly tenable. Test scores of
males and females in this condition are therefore comparable, and sex differences in test
performance can be explained by differences in factor mean (¢ = 3.16, SE = 1.28, Z = 2.47,
p< .01). This sex difference in factor mean has an effect size of 0.55, which is comparable
to the effect size estimate in the six-group analysis.

Table 3.8
Fit measures of stepwise test of strict factorial invariance over sex per condition (Study 3)
Step Restrictions DF 2 p ADF Ay? p RMSEA CFI
Control condition
1 - 4 2.33 0.675 - 0.000 1.000
2 A 7 4.72 0.694 3 2.39 0.495 0.000 1.000
3 ANO 11 6.39 0.846 4 1.67 0.796 0.000 1.000
5 AO,z 14 10.03 0.760 3 3.64 0.303 0.000 1.000
Nullified condition
1 - 4 2.56 0.634 0.000 1.000
2 A 7 5.04 0.655 3 2.48 0.479 0.000 1.000
3 ANO 11 18.69 0.067 4 13.65%*  0.009 0.104 0.946
5 AO,z 14 19.42 0.150 3 0.73 0.866 0.071 0.962
Stereotype threat condition
1 - 4 4.72 0.317 0.063 0.996
2 A 7.23 0.406 3 2.51 0.473 0.000 0.999
3 ANO 11 17.89 0.084 4 10.66%* 0.031 0.113 0.958
5 AO,z 14 40.31**  0.000 3 22.42%* 0.000 0.197 0.839

Note: Underlined restrictions are tested by likelihood ratio test Ay2 *p<.05; **p<.01; Restrictions: equality
constraints over sex-group

In the nullified condition, restricting the residual variances leads to a clear
deterioration in fit, as is evident by the significant chi-square difference between Steps 3
and 2, increased RMSEA, and lowered CFI. With the added restriction on intercepts,
model fit does not appear to worsen any further, indicating that the mean-structure is sex-
invariant. The largest modification indices are related to the residual variances of the
Arithmetic and the Number Series subtests.

In the condition in which the gender-stereotype was activated, we see that the
baseline model (Step 1) shows sufficient fit, although RMSEA is somewhat large (i.e.,
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RMSEA > .006). Here, again, the restriction on factor loadings is not accompanied by any
substantial worsening in model fit. In the third step, in which residual variances are
restricted to be sex-invariant, the fit does deteriorate. However, the clearest deterioration in
model fit is found when mean structure is modeled (Step 5). All fit measures show that
strict factorial invariance is smtenable in this condition. As expected, the largest
modification indices are found with the intercept of the Number Series subtest and the
residual variance of the Arithmetic subtest.

Conclusion

The MANOVA results indicate that stereotype threat affected the arithmetic test
scores of the male and female groups in a differential manner. As expected, the clearest
effect of stereotype threat was found on the difficult Number Series subtest. Females
clearly underperformed on this subtest when they were reminded of the gender stereotype
that females perform less well than males on arithmetic ability tests. This corroborates the
typical result that stereotype threat negatively affects math performance of female test
takers on difficult tests (e.g., Spencer et al., 1999).

The factor analyses showed that strict factorial invariance over sex clearly failed in
the stereotype threat condition. Specifically, stereotype threat resulted in bias with respect
to sex in the Number Series subtest. In the nullified condition we saw that residual
variances were larger in the male group, indicating the presence of slight measurement bias
with respect to males. Perhaps this is because the instruction text had a sort of stereotype
threat effect on these males. Therefore, the instruction text (falsely) stressing the absence of
sex differences appears not to create ideal test circumstances for males. In the control
condition, strict factorial invariance with respect to sex was tenable. Thus, in that condition,
test scores of males and females are comparable, and sex differences in test scores can be
interpreted in terms of differences in the latent construct.

In contrast with several studies conducted in the US (Ben Zeev, Fein, & Inzlicht,
2005; Smith & White, 2002; Spencer et al., 1999), we did not find a significant mean
difference on female math performance between control and nullified conditions. This may
be due to a difference in test setting. In the majority of American studies participants were
tested alone as opposed to in large mixed-sex groups. Such differences in setting are known
to affect the strength of stereotype threat (Inzlicht & Ben Zeev, 2003; Sekaquaptewa &
Thompson, 2003). Alternatively, gender stereotypes may be less strong in the Netherlands.

When test takers were reminded of gender stereotypes concerning math ability, this
resulted in stereotype threat negatively affecting female performance and in stereotype lift
positively affecting male performance. Interestingly, this stereotype lift effect did not reach
significance in the MANOVA analysis, but was clearly detected using MGCFA. In sum, the
results of the MGCFA analyses cleatly indicate that tests for strict factorial invariance are
capable of determining whether or not stereotype threat plays a role in a particular test-
situation.
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3.9 General Discussion

There is a large and still-growing body of research that supports the notion that
stereotype threat can negatively affect test performance in stigmatized groups (Steele et al.,
2002). The magnitude of these negative effects is often investigated in laboratory
experiments, in which stereotype threat can be manipulated. However, such research within
real-life settings is difficult for ethical and logistical reasons (Sackett, 2003; Steele & Davies,
2003; Steele et al., 2002). Nevertheless, viewing and modeling stereotype threat effects as a
source of measurement bias, the seriousness of stereotype threat for the comparability of
groups can be investigated by testing for measurement invariance with respect to groups,
regardless type of group, test setting, or test under investigation, provided, of course, that a
reasonable factor structure is tenable.

Stereotype Threat as a Biasing V ariable

Measurement invariance with respect to groups is an essential aspect for
interpreting group differences in scores of any kind of psychological measurement. Tests
for measurement invariance enable one to differentiate between group differences in the
latent constructs that a certain test is supposed to measure (i.e., real ability differences), and
measurement artifacts related to group membership. We view stereotype threat as a source
of measurement bias. Surely, no one would suggest that stereotype threat affects real (i.e.,
latent) abilities, at least not in the short term. Instead, stereotype threat affects the
measurements of ability, and this is precisely what tests of measurement invariance are
designed to investigate. Formally, if measurement invariance holds, and one conditions on
latent ability, there should be, by definition, no group differences in (manifest) test scores.
This is cleatly not the case if stereotype threat lowers scores of members of a group that is
subject to negative ability stereotypes. Therefore, measurement invariance is expected to be
violated if stereotype threat differentially affects test scores of groups. Note that the same
applies to stereotype lift effects (Walton & Cohen, 2003) and priming effects on test scores
(e.g., Wheeler & Petty, 2001). For instance, in Study 3 we saw that the stereotype lift effect
of males on the difficult subtest resulted in a heightening in the measurement intercept of
this subtest. Moreover, the enhanced performance of females on the Easy test due to
stereotype threat in Study 2 was also clearly detected.

Recent studies into the mediating variables of stereotype threat effects have shown
that stereotype threat negatively affects working memory capacity (Schmader & Johns,
2003) or increases disruptive mental load (Croizet et al., 2004). This research suggests that
the mediatory principle underlying stereotype threat effects has a strong relation to the
construct of intelligence. If indeed stereotype threat affects test performance through the
construct, this could result in stereotype threat effects that are completely collinear with the
subtests' factor loadings. In that case, the relative strength of stereotype threat effects on
each subtest correlates perfectly with the relation of each subtest with the construct. If this
occurs, stereotype threat effects could conceivably be accompanied by measurement
invariance with respect to groups. However, constructs such as intelligence and mathematic
ability are stable characteristics, and stereotype threat effects are presumably short-lived
effects, depending on factors such as test difficulty (e.g., O'Brien & Crandall, 2003; Spencer
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et al., 1999). Furthermore, stereotype threat effects are often highly task-specific. For
instance, Seibt and Forster (2004) found that stereotype threat leads to a more cautious and
less risky test-taking style (i.e., prevention focus) the effects of which depend on whether a
particular task is speeded or not, or whether a task demands creative or analytical thinking
(ct. Quinn & Spencer, 2001). In light of such task-specificity, we view stereotype threat
effects as test artifacts, resulting in measurement bias. Steele appears to subscribe to this
view when he states that "stereotype threat effects may be a possible source of bias in standardized tests"
(Steele, 1997, p. 622). It is an empirical question whether stereotype threat effects could
ever be accompanied by measurement invariance. However, the results of the studies
reported here lend support to the conceptualization of stereotype threat effects as a source
of measurement bias.

It should be noted that within our empirical examples sample sizes are rather small.
The power to find subtle group differences in model parameters may therefore be low.
Nevertheless, the fact that bias was cleatly detected in our studies indicates that MGCFA is
a powerful tool in detecting measurement bias (cf. Cheung & Rensvold, 2002; Meade &
Lautenschlager, 2004), even if these effects are only present at the covariance level (Study
1). In light of the fact that measurement invariance is basically a null hypothesis
(Borsboom, 2006b), the failure to reject measurement invariance may always be due to a
lack of power. Fortunately, power studies within MGCFA can be conducted readily (Saris
& Satorra, 1993).

Using MGCFEA in Experiments

Our results show that multi-group confirmatory factor analysis provides a fruitful
means to investigate stereotype threat effects. It is unfortunate that many investigators do
not go beyond mean differences as tested by analysis of variance or ANOVA in analyzing
experimental data. Variance and covariance differences are a potential source of
information. For instance, the absence of an increase in residual variance of the affected
subtests in Study 2, suggests that the stereotype threat effect did not vary over women (see
Appendix B, scenario 1). The effect of stereotype threat on the factor loading in the
minority group in Study 1, suggests that the stereotype threat effects interacted with latent
ability (see Appendix B, scenario 3). Moreover, MGCFA allows for more specific tests of
experimental effects thereby increasing power. For example, the stereotype lift effect for
males in Study 3 did not reach significance in the MANOVA framework, yet with MGCFA
the corresponding intercept differed significantly from those in the other groups. If
possible, the use of a measurement model such as multi-group confirmatory factor analysis
should be preferred to analysis of variance. Moreover, the use of measurement models can
add to our understanding of stereotype threat effects.

Many recent stereotype threat studies are aimed at identifying the mediating factor
underlying its effects on test performance (see, e.g., Smith, 2004 for an overview). The
current modeling framework may greatly contribute to this exercise, because mediators
such as anxiety (e.g., Ben Zeev et al., 2005), working memory capacity (Schmader & Johns,
2003), and regulatory focus (Seibt & Forster, 2004) can be measured. Such measured
mediators as well as many conceivable moderators (e.g., domain identification; Smith &
White, 2001) may be incorporated in the model in a way that may eventually capture the
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"stereotype threat factor" as displayed in Figures 2 through 4. Lubke and colleagues (2003a)
discuss the incorporation of covariates in the MGCFA framework. When studying
mediators, this method boils down to extending the factor model by adding factors, which
are believed to be responsible for the depressing effect of stereotype threat. For instance,
one may measure arousal (e.g., Ben Zeev et al., 2005), add to the factor model an arousal
factor (besides the ability factor), and see whether this arousal factor shows an increase in
factor mean (or variance) under stereotype threat. Then, in a model that takes into account
latent ability, one can test whether the stereotype threat effect on test performance is
mediated by arousal. Moreover, one can compare various alternative models statistically,
such as whether arousal also affects the ability factor, whether arousal fully mediates the
effect, whether arousal interacts with ability, etc. In comparison to traditional approaches
of studying mediation (e.g., Baron & Kenny, 1986), the advantage of using MGCFA lies in
the fact that MGCFA allows for a differentiation between effects on measurements of
ability and effects on ability itself. This distinction is of substantive interest and may have
consequences for statistical power, which is often an issue in mediation analysis (cf.
MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). The flexibility of the common
factor model and structural equation modeling in general to incorporate many factors,
mediators, and moderators in a linear or nonlinear fashion, opens many doors that can
contribute to our understanding of stereotype threat.

Understanding Measurement Bias

Of course, measurement bias may have many causes besides stereotype threat. It is
important to stress that the broad definition of measurement invariance does not suppose
anything about the possible causes of measurement bias. Unfortunately, measurement bias
has been, and still is, mostly interpreted incorrectly in terms of item content. For instance, a
test item could contain a concept (e.g., a football term such as "40-yard line") that is less
known to one group (say, women), resulting in increased difficulty of that item for that
particular group. However, measurement bias is not a fixed characteristic of a certain test or
test item, but a characteristic of how test scores relate to the construct that a test is supposed
to measure. Although item content may be used to interpret the causes of measurement bias,
the latter may be due to characteristics of test settings. Therefore, stereotype threat theory
provides a better understanding of why measurement bias occurs. Unfortunately, the use of
bias detection methods is rarely accompanied by theoretical expectations regarding why and
how measurement bias occurs (but see Oort, 1992). Needless to say, understanding the
sources of measurement bias can increase the chances of measurement bias being detected,
either when bias is studied by MGCFA, or when bias is studied by item response models.

Stereotype Threat and Item Response Modeling
As we saw in our three studies, within multi-group confirmatory factor analysis, the
effects of stereotype threat are particularly evident in the performance on the more difficult
subtests. This differential aspect of stereotype threat is also relevant to the study of
measurement invariance within the framework of item response theory, where item
difficulty is modeled explicitly. The item level can be very informative in investigating
stereotype threat effects, particularly when these are viewed as sources of measurement
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bias. Within item response theory, several methods have been developed to investigate
measurement bias, which in this respect is usually denoted by Differential Item Functioning
or DIF (see Millsap & Everson, 1993). If only difficult items are subject to the interference
of stereotype threat, this implies that easy items should be hardly affected (e.g., Spencer et
al., 1999). This enables one to use easy items of tests for conditioning in testing for
measurement bias with respect to stigmatized groups. In addition, only the complex or
difficult items in a test would show bias in the presence of stereotype threat. Therefore,
DIF analyses can also be used to investigate the effects of stereotype threat on test scores
in real-life settings. In this respect recent results of a study into DIF with respect to sex on
the SAT-m are of interest. Bielinski and Davison (1998; 2001) found that particularly
difficult items are biased with respect to sex, which is consistent with the idea that
stereotype threat has depressed scores of females on this test.

Generalizability

The generality of stereotype threat effects on test performance in real-life settings is
an important issue. The number of studies investigating strict factorial invariance with
respect to ethnic groups is rather small (but see Dolan, 2000; Dolan & Hamaker, 2001;
Dolan et al., 2004). Clearly, there is a need for more research in this topic. If a certain test
score gap is accompanied by measurement invariance (and power is not an issue),
stereotype threat is not likely to play a differential role in those particular group differences.
If, on the other hand, strict factorial invariance with respect to groups is violated,
stereotype threat is one of the probable causes of measurement bias. Then, measures of
mediators or moderators of stereotype threat could be used to model the sources of
measurement bias (Lubke et al., 2003a).

As argued by Steele and colleagues (Steele et al., 2002), it depends on the test
situation, domain-identification of a person, the content of the stereotype, and the kind of
test, whether stereotype threat has an effect on test performance. We argue that its effects
are detectable by means of tests for measurement invariance, regardless of test situation.
Clearly, tests for measurement invariance can be useful to investigate the seriousness of
stereotype threat on test performance, particularly in high-stakes test situations. We hope
that by using the current modeling approach within an experimental context we can bridge
the gap between differential psychology (with its interest in individual differences) and
experimental psychology (with its interest in experimental effects), in order to gain a better

understanding of when individual abilities are correctly reflected in test scores, and when
they are not (cf. Cronbach, 1957).
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3.10 Appendix A: General Formulation MGCFA Model

Let y,denote the observed p-dimensional random column vector of subject j in

group (or experimental condition) i. We specify the following linear factor model for y, -
yij = Ti +/\il7ij +£ij (5)
where 77,is a g-dimensional random vector of cortelated common factor scores (q<p), and

g,is a p-dimensional vector of residuals that contain both random error and unique

measurement effects (Meredith, 1993). The (p x q) matrix A; contains factor loadings, and
the (p x 1) matrix 7 contains measurement intercepts. It is generally assumed that g is p-
variate normally distributed with zero means and a diagonal covariance matrix @, i.e.,
residual terms are mutually uncorrelated. Furthermore, the vector 5, is assumed to be g-

variate normally distributed with mean ¢ and a (q x q) positive definite covariance matrix
¥. In addition, 77, and ¢, are assumed to be uncorrelated. Given these assumptions, the
observed variables are normally distributed v, ~N, (#i,zi), where,

H =T v Na; ©)

Zi :/\iLIJiA[i +ei’ (7)
where the superscript t denotes transposition. Equations 6 and 7 represent the implied
mean vector and implied covariance matrix, respectively. In case of several correlated
common factors, a sufficient number of elements in /A; should be fixed to zero to avoid
rotational indeterminacy (Bollen, 1989; Joreskog, 1971). In the same matrix /\;, q elements
should be fixed to equal 1 to identify the variances of the common factors. Similarly, for
reasons of identification, latent group differences in means instead of latent means
themselves are modeled (S6rbom, 1974).

311  Appendix B

Here we present three scenarios where measurement bias due to stereotype threat
(ST) is present. We use the one factor model presented in Equations 2 - 4 and the
assumptions given above. We assume the presence of an ummeasured ST factor that
incorporates all the mediating variables of ST. The scores on this ST factor are represented
by 0. We assume that ST effects are uncorrelated with latent ability (i.e., Cov(z, o) = 0). For
clarity, we leave out person and group indices and restrict our attention to the group that is
affected by ST (i.e., stigmatized group). Our aim is to highlight the effects of ST on the
measurement parameters of the manifest variables. For an extensive discussion of the
implications of strict factorial invariance, see Lubke et al. (2003b).

Scenario 1. ST Effects on Subtest 1. (Figure 3.2)
Let Y; denote the scotres on a biased subtest I, and let Y denote the scores on a
subtest K that is not affected by ST. In that case, the linear model for Y% is given by:
Y =0t Ay + s (8)
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where Az, represents the factor loading of Y on the latent ability factor 7. The linear model
for Y} (i.e., scores on the affected subtest) is given by:

Y, =g+ /1/,/77 + Ao + &l (9)
where A, denotes the factor loading of Y; on the ST factor. Note that 4, has a negative
value by definition, indicating the debilitating effect of ST on test performance on subtest
L. From this model, one can derive (see, e.g., Bollen, 1989) the following expressions for
the implied variance (Var), and the expected value (E) of the affected subtest scores Y, as
well as the implied covariance (Cov) of Y, with the unaffected scores Y

Var(Ye) = A2, Var(y) + Var(ez), (10)
Var(Y)) = 2, Var(y) + A2,Var(o) + Vat(g), (11)
Cov(Yr Y)= Ay Var(y), (12)
E(Yy) = + duE(1), (13)
E®) =+ MEM) + AE (o), (14)

where E(o) is greater than 0. Because the effects of ST (i.e., 0) are unknown and not
modeled, the effects of the ST factor on Y are incorporated in the measurement
parameters of this subtest on the latent factor (7). This leads to measurement bias in the
corresponding parameters. The residual variance of the affected subtest is larger in the
stigmatized group due to the added variance of ST: Var(e)* = A%,Var(g) + Var(g). In
addition, the intercept (1) in the stigmatized group would be lower due to the ST effects: 7/*
= 7 + AE (o), reflecting increased difficulty and lowered scores of the affected subtest.
Note that, since the covariance between the scores on the affected subtest and the scotes
on any wunaffected subtest (such as Y}) is unrelated to o, the factor loading of the biased
subtest L. (i.e., A;) remains unchanged. In homogeneous samples, ST effects may not vary
over persons (i.e., Var(g) = 0). This would result in the absence of added variance, while
intercept bias is still present. Furthermore, it is conceivable that the mean of the ST effect
is zero (i.e., E(g) = 0), resulting in the absence of intercept bias. Finally, if the mean the ST
factor is negative (i.e., E(0) < 0), 0 may be viewed as a stereotype lift effect (Walton &
Cohen, 2003).

Scenario 2. ST Effects on Subtests 1. and M (Figure 3.3)

Suppose that subtests L and M are affected by ST. Let Y, and Y, denote the scores
on these two affected subtests. Suppose again that scores Yz on subtest K are unaffected by
ST. The linear model for Y% is given by (8), whereas those for Y;and Y, are:

Y, =0+ Ay + Ao + & (15)
Y = tnt Aoy + Anoo + € (16)
The expected value and implied variance of Y% are given by (10) and (13), respectively. We

derive the following expressions for implied variances, implied covariances, and expected
values of Y;and Y.

Var(Y,,) = A2, NVat(y) + 22,Var(g) + Var(s,), 17
Cov(YrY,)= AehmVat(y), (18)
Cov(Y,Y,)= AhmNat(y) + AeisVar (o), (19)
E(Y) = 5+ i) + (o) (20)

E(Y,) = 50 + dnE() + Jnc(), @)
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Var(Y) is given by (10), and Cov(YsY) is given by (12). The effects on residual variances
and intercepts for both the affected subtests are parallel to the effects in the first scenario.
Thus, the residual variances of L. and M are increased, and the intercepts of L. and M are
lowered due to ST. In addition, the covariance between Y, and Y, is now increased by the
effect due to the ST factor: AudVar(g). This added covariance shows up as a subdiagonal
element in the residual covariance matrix. Specifically, this results in an additional
covariance between the residuals of subtest L. and M: Cov(e,e,) = AesiVar(o). However, if
the effects of ST do not vary over persons (i.e., Var(s) = 0), the bias due to stereotype
threat is only apparent in between-group differences of the intercepts of the affected
subtests L. and M, and the residual variances and residual covariance are unbiased.

Scenario 3. Non-Uniform ST Effects on Subtest 1. (Figure 3.4)

Non-uniform effects of ST can occur if ST effects depend on the level of latent
ability. This may occur, for instance, if domain identification and latent ability are positively
correlated, with higher ability reflecting stronger identification with the domain and hence
stronger ST effects. Suppose subtest L is non-uniformly affected by ST, and subtest K is
again unaffected by ST. Let Y and Y represent the scores on subtests K and L. The usual
linear model for subtest K is given by (8). Non-uniform ST effects on Y can be modeled
by adding an interaction factor 7o, resulting in this non-linear expression for the affected
subtest:

Y, =+ /1/,/77 + Ao + l/gﬁ]a + ¢, (22)
where i, represents the negative factor loading of the interaction term on Y. This model
gives rise to the following expressions for Yz

Var(Y)) = A2, Var(y) + 22,Var(g) + A24,Var(no) + 247 Cov (y, no) +

2MihiLCov (o, o) + Vat(g), (23)
Cov(YeY) = AyVar(y) + AhyCov(y, o) (24)
E(Y) = o+ ME(®@) + ME (o) + AE(q0). (25)

As can be seen, this scenario leads to an increased residual variance:

Vat(e)* = Var(e) + A2,Vat(o) + 22,,Vat(na) + 2hyryCov(y, no) +

2 Cov(, 19) (26)
where 24,5 Cov(y, 7o) is negative, while the other terms increase the variance.
Furthermore, the ST effect depresses the intercept of the affected subtest: 77* = 7 + A,E (0)
+ AyoE (o). What most clearly characterizes the interaction effect, however, is the fact that
the value of the factor loading of subtest L is lowered due to the non-uniform effect. This
effect is due to the fact that the covariance of Y; with all other unaffected subtests, such as
Y%, is lowered by the negative term AgA;,Cov (7, 7o) (provided that the mean of 7 is different
from zero). If the mean of the biasing factor E(0) is zero, this can account for the absence
of mean effects (i.e., AuE(0) = AyE (o) = 0), and for the fact that the direction of the effect
changes for low and high ability persons (cf. Figure 3.5). Finally, whereas the factors 7 and o
can have a normal distribution, the nonlinear effects lead to non-normal distribution of Y.
Therefore, besides the fact that kurtosis and skewness values can point towards such
nonlinear effects, such non-normality leads the normal-theory Maximum Likelihood
estimator to show an upward bias in terms of model fit.
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3.12  Appendix C: Stereotype Threat Research and the Assumptions Underlying
Analysis of Covariance

In this appendix, we argue that the use of analysis of covariance (ANCOVA) in
stereotype threat (ST) experiments is problematic, because ST theory implies violations of
the assumptions underlying ANCOVA. Such violations could result in incorrect type-one
error rates, and distortions in the adjustment of means.

Besides the usual analysis of variance assumptions, the assumptions underlying
ANCOVA are as follows (e.g., Wildt & Ahtola, 1978). First, the relationship of the
dependent variable and the covariate is linear. Second, the regression weights of the
dependent variable on the covariate are equal for all design cells (i.e., regression weight
homogeneity). Third, the variance of residuals is equal over cells (i.e., homogeneity of
residual variance). Fourth, the covariate is measured without error and is independent of
the experimental manipulation. For theoretical reasons, the tenability of these assumptions
within ST experiments is at least questionable.

In a typical ST experiment (e.g., Steele & Aronson, 1995, study 2) the effects of a
ST manipulation (e.g., non-diagnostic vs. diagnostic condition) on the test scores (i.e.,
dependent variable) of two groups (e.g., Blacks and Whites) are investigated. If a covariate
(e.g., SAT scores) is used to adjust the dependent variable for pre-existing group
differences, an (2x2) ANCOVA appears suitable. However, the tenability of assumptions
underlying this analysis appears unlikely, especially when one compares the ST cell (ie.,
stigmatized group, diagnostic condition) with the other cells in the design.

Stereotype threat theory states that ST effects particularly influence test scores of
people for whom the ability of interest is important or self-relevant (Steele, 1997). It is
likely that within each cell there are individual differences in domain-identification.
Therefore, the manipulation triggering ST would result not only in mean effects (i.e., ST
effects identical for each subject), but also in (co)variance effects (i.e., ST effects differing
for subjects) on the dependent variable. Furthermore, if we suppose the presence of a
positive correlation between (latent) ability and domain-identification (see Steele, 1997, p.
617), this would result in an interaction between the covariate (i.c., ability as measured by
the SAT) and the experimental manipulation (i.e., ST effects on dependent variable).
Higher SAT scores would imply higher domain-identification, and therefore stronger ST
effects. This would result not only in a curvilinear relation between covariate and
dependent variable in the affected cell (i.e.,, ST condition), but also in differences in
regression weights over the cells. Admittedly, most ST research has used homogeneous
samples, but even if individual differences in domain-identification within cells are absent,
there are other reasons to expect a violation of homogeneity of regression weights.

If mediators such as heightened anxiety or lowered motivation are the causes of
lowered test scores within ST conditions, it is likely that these mediators will also affect the
regression of the dependent variable on the covariate. Again, such mediators can result in a
violation of homogeneity of regression weights. In addition, added mediator variance (e.g.,
anxiety variance) could result in differences in error variances between design cells, which
would violate the homogeneity of variance assumption.
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Finally, the assumption that the covariate is error-free seems to be untenable
because such measures are not perfectly reliable. Error in the covariate lowers the precision
of the analysis. More importantly, the covariates themselves (e.g., SAT) are possibly
affected by ST. It could be argued that for the high-ability participants used in most ST
studies, the SAT is fairly easy and hence would not be stereotype threatening (Spencer et
al., 1999). However, there are several reasons (e.g., SAT is by definition self-relevant and
diagnostic of ability) to expect that the SAT scores are affected by ST. Either way, from a
theoretical point of view, use of a covariate that may already be affected by the
phenomenon under investigation is potentially tautological. Technically, if the covariate is
affected by ST then this implies that the covariate and the manipulation are not
independent, which may obscure the effects of the manipulation or even produce effects
that are spurious (Wildt & Ahtola, 1978, p. 90).

In conclusion, ST theory explicitly predicts violations of practically all assumptions
underlying ANCOVA. Therefore, ANCOVA appears to be unsuitable for investigating ST
effects in quasi-experimental settings. In light of ST theory’s emphasis on individual
differences, it seems unlikely that ST only affects the means of the dependent variable (i.e.,
effects are identical for each subject within a cell) and leaves the covariance structure
unaffected. Therefore, measurement models in which such effects are explicitly modeled
(e.g., MGCFA) appear more suitable in analyzing ST effects.
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4

Are intelligence tests measurement
invariant over timer
Investigating the nature of the Flynn Effect

The gains of scores on standardized intelligence tests (i.e., Flynn Effect) have been subject
of extensive debate concerning their nature, canses, and implications. The aim of the
present chapter is to investigate whether five intelligence tests are measurement invariant
with respect to cobort. Measurement invariance implies that gains over the years can be
attributed to increases in the latent variables that the tests purport to measure. The
studies reported contain original data of Dutch WALS gains from 1967 to 1999,
Dutch DAT gains from 1984 to 1995, gains on a Dutch children intelligence test
(RAKIT) from 1982 to 1993 and re-analyses of results from Must et al. (2003) and
from Teasdale and Owen (2000). The results of multi-group confirmatory factor
analyses clearly indicate that measurement invariance with respect to cohorts is untenable.
Uniform measurement bias is observed in some, but not all subtests. The implications of

these findings are discussed.

4.1 Introduction

Ever since Flynn (1984; 1987) documented worldwide increases in scores on
standardized intelligence tests, there has been extensive debate about the nature, the causes,
and the implications of these increases (e.g., Neisser, 1998). There are several unresolved
issues concerning the zature of these increases, now commonly denoted the Flynn Effect.
One issue concerns the exact cognitive abilities that have increased over the years. The rise
of scores is usually found to be greater on tests of fluid intelligence (e.g., Raven Progressive
Matrices) than on tests of crystallized intelligence, especially on verbal 1Q tests (Colom,
Andres-Pueyo, & Juan-Espinosa, 1998; Emanuelsson, Reuterberg, & Svensson, 1993;
Emanuelsson & Svensson, 1990; Flynn, 1987, 1998b; Lynn & Hampson, 1986, 1989;
Teasdale & Owen, 2000). Differential increases have raised the question whether the gains
can be related to an increase in general intelligence, or g (Colom & Garcia-Lopez, 2003;
Colom, Juan Espinosa, & Garcia, 2001; Flynn, 1999a, 1999b, 2000a; Jensen, 1998; Must,
Must, & Raudik, 2003; Rushton, 1999, 2000a).

A second, more fundamental, issue is whether the increases are genuine increases
in cognitive ability, or that they merely reflect measurement artifacts, such as heightened
test sophistication or altered test taking strategies (Brand, 1987; 1990; Brand, Freshwater, &
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Dockrell, 1989; Flynn, 1990; Jensen, 1996; Rodgers, 1998). The proponents of the view that
the intelligence gains are genuine have searched for real-world signs of the increase (e.g.,
Howard, 1999, 2001). They have offered several explanations, including improved nutrition
(Lynn, 1989, 1990; Martorell, 1998), a trend towards smaller families (Zajonc & Mullally,
1997), better education (Ceci, 1991; Husén & Tuijnman, 1991; Teasdale & Owen, 1989;
Tuddenham, 1948), greater environmental complexity (Schooler, 1998), and heterosis
(Mingroni, 2004).

If, on the other hand, the increases are due to a measurement artifact, this
obviously complicates the comparison of cohorts with respect to intelligence test scores. In
addition, this may possibly have implications for the comparisons of other groups (e.g.,
Blacks and Whites in the US). Based on his results, Flynn (1987) questioned the validity of
IQ tests, and suggested that other between-group differences on IQ tests may not reflect
true intelligence differences (p.189). Furthermore, Flynn states that: “Massive 1Q gains add
viability to an environmental hypothesis about the 1Q gap between Black and White
Americans” (1998a, p. 40). High heritability estimates of IQ are supposedly incompatible
with the hypothesized environmental causes of the secular increases (but see Mingroni,
2004). Dickens and Flynn (2001) have recently proposed a formal model that can account
for this paradox. This extensive model offers an explanation of the Flynn Effect in the
presence of high heritability. However, the model does not address the issue of the nature of
the score gain since it is primarily concerned with measured intelligence or 1Q.

The purpose of the present chapter is to consider the nature of the Flynn Effect.
Our specific aim is to investigate whether secular gains found on five different multivariate
intelligence tests reflect gains in the common factors, or hypothetical constructs, that these
test are supposed to measure. These common factors are typically identified by means of
factor analyses of test scores obtained within a group (cohort). To this end, we investigate
whether these tests are factorially invariant with respect to cohort. Factorial invariance
implies that the same constructs are measured in different cohorts, and that the observed
gains in scores can be accounted for by gains on these latent constructs (Lubke et al.,
2003a; Meredith, 1993). In addition, factorial invariance implies measurement invariance
with respect to cohort (Meredith, 1993), which in turn means the intelligence test is
unbiased with respect to cohort (Mellenbergh, 1989). We use Multi-Group Confirmatory
Factor Analysis (MGCFA) to investigate factorial invariance between cohorts. An explicit
technical discussion of this approach may be found in Meredith (1993). Discussions in
more conceptual and applied terms are provided by Lubke, et al. (20032)(2003a) and Little
(1997). MGCFA addresses within-group differences (i.e., the covariances between cognitive
subtests within a cohort) and between-group differences (i.e., the mean difference between
cohorts on these tests) simultaneously. If factorial invariance is tenable, this supports the
notion that (within-group) individual and (between-group) cohort differences are
differences on the same underlying constructs (Lubke et al., 2003a). Conversely, if factorial
invariance is untenable, the between-group differences cannot be interpreted in terms of
differences in the latent factors supposed to underlie the scores within a group or cohort.
This implies that the intelligence test does not measure the same constructs in the two
cohortts, or stated otherwise, that the test is biased with respect to cohort. If factorial
invariance is not tenable, this does not necessarily mean that all the constituent 1Q subtests
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are biased. MGCFA provides detailed results concerning the individual subtests, and allows
one to consider partial factorial invariance (Byrne, Shavelson, & Muthen, 1989).
Measurement bias between cohorts could be due to a variety of factors, which require
further research to identify (Lubke et al., 2003a).

Several studies have addressed the issue whether differential gains on intelligence
subtests are positively correlated with the g loadings of these subtests (Colom et al., 2001;
Flynn, 1999a; Jensen, 1998; Must et al., 2003; Rushton, 1999, 2000a). This issue concerns
the question whether between-cohort differences are attributable to the hypothetical
construct g. As such these studies address the same question as we do here. However, we
do not limit ourselves to g, and we employ MGCFA, rather than the method of correlated
vectors (i.e., correlating differences in means on a subtest and the subtest’s loading on
common factor interpreted as g). Using the method of correlated vectors, Jensen (1998, pp.
320-321), Rushton (1999), and Must et al. (2003) found low or negative correlations, and
conclude that the Flynn Effect is not due to increases in g. However, Flynn (1999a; 1999b;
1999¢; 2000a), in a critique of Rushton’s conclusions concerning Black-White differences,
obtained contradictory results. In addition, Colom, et al. (2001) report high positive
correlations using standardization data of the Spanish DAT. Thus, it remains unclear
whether the Flynn Effect is due to increases in g It may be argued that the contradictory
findings are the result of differences in the tests' emphases on crystallized or fluid
intelligence (Colom & Garcia-Lopez, 2003; Colom et al., 2001). However, of more
immediate concern is the method of correlated vectors. This method has been criticized
extensively by Dolan (2000) and Dolan and Hamaker (2001). One problem is that the
correlation, which forms the crux of this method (ie., the correlation between the
differences in means and the loadings on what is interpreted as the g factor), may assume
quite large values, even when g is not the major source of between group differences
(Dolan & Lubke, 2001; Lubke et al., 2001). Indeed this correlation may assume values
which are interpreted in support of the importance of g, while in fact MGCFA indicates
that factorial invariance is not tenable (Dolan et al., 2004). MGCFA may be viewed as a
comprehensive model based approach, which includes explicit testing of the various
aspects of factorial invariance, and which includes, but is not limited to, the hypothesis that
g is the dominant source of group differences. Note that in the investigation of black-white
differences in intelligence test scores, this hypothesis (i.e., the importance of ) is referred to
as “Spearman’s hypothesis”. The emphasis of the present analyses is on establishing
factorial invariance in common factor models. Due to the nature of the available data sets,
our focus is on first order common factor models, rather than on the (first or second order)
g model.

4.2 Testing Factorial Invariance with MGCFA

Multi-Group Confirmatory Factor Analysis can be applied to address the question
whether differences in IQ test score between groups reflect true, i.e., latent differences in
ability (Lubke et al., 2003a). We now present in detail the confirmatory factor model which
can be used to this end (c.f. Bollen, 1989; Lubke et al., 2003a; S6rbom, 1974).
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Let y; denote the observed p-dimensional random column vector of subject j in
population i. We specify the following model for y;:

vi = ut Aimi + e, M
where 7; is a q-dimensional random vector of correlated common factor scores (q < p), and
& is a p-dimensional vector of residuals that contain both random error and unique
measurement effects. The (p x q) matrix /\; contains factor loadings, and the (p x 1) matrix
7; contains measurement intercepts. It is generally assumed that & is p-variate normally
distributed with zero means and a diagonal covatiance matrix ©;, i.e., residual terms are
mutually uncorrelated. Furthermore, the vector 7; is assumed to be g-variate normally
distributed with mean @; and (q x q) positive definite covariance matrix #. Given these
assumptions, the observed variables are normally distributed y; ~ Np(z, 2j), where,
assuming the covariance between 7; and ¢ is zero:

ui=1+Nia @

2=/N¥YN+ O. 3
Note that superscript t denotes transposition.

We identify a sufficient number of fixed zeroes in /l; to avoid rotational
indeterminacy given correlated common factors. In the same matrix /1, we fix certain
elements to equal 1 to identify the variances of the common factors. Similarly, for reasons

of identification, we model latent differences in means instead of latent means themselves
(S6rbom, 1974: see below).

Table 4.1
Summary of models in case of the two coborts 1 and 2
No. Description 2= 2= "= 1=
Configural invariance NYN+6, N, YN/ +6, 7 7,
Metric invariance NYN+O, NYN+O, 7 7
3 Equal residual vatiances NYN+O NYN+O 7 2
42 Strict factorial invariance NYN+O NYN+O T 7 +/N6
4b Strong factorial invariance NYN+O, NYN+O, T 7+

Note: Except for step 4b (nested under 2) each model is nested under the previous one; Between-cohort differences
in common factor means are expressed by 0 (i.e., § = a2 — ay).

Factorial invariance can be investigated by fitting a series of increasingly restrictive
models. These are presented in Table 4.1. We fit three models without mean restrictions,
namely configural invariance (Model 1; equal pattern of factor loadings; Horn & McArdle,
1992), metric invariance (Model 2; /Ay = Ay factor loadings equal across cohorts; Horn &
McArdle, 1992), and a model with equal factor loadings and equal residual variances (Model
3; /N = N2 & O = @). In the next two steps we impose additional restrictions on the
mean structure, and fit two models that are denoted strong factorial invariance (Model 4b)
and strict factorial invariance (Model 4a; Meredith, 1993).26 The latter involves the equality

26 Note that these models go by different names. Model 2 is also known as Weak Factorial Invariance (Widaman &
Reise, 1997) or Pattern Invariance (Millsap, 1997a), whereas Steenkamp and Baumgartner (1998) denote step 4b by
Scalar Invariance.
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of intercepts (77 = 72), in addition to equality of factor loadings and residual variances.
Observed mean differences are then due to common factor mean differences: 2 - m1= (a2
— ay). Strong factorial invariance does not include the equality constraint on the residual
variances (@ Z @). Meredith (1993) has shown that for normally distributed data, strict
factorial invariance within a factor model is required to demonstrate measurement
invariance with respect to groups. As mentioned above, measurement invariance implies
unbiasedness with respect to groups, or cohorts (Dolan et al., 2004; Lubke et al., 2003a;
Mellenbergh, 1989). Strong factorial invariance is less restrictive in the sense that it allows
unique/etror-variances to differ between cohorts. One may argue that strong factorial
invariance is sufficient in comparisons made between groups (Little, 1997). However, we fit
both models and view the strong version as a minimal requirement for measurement
invariance. Strict factorial invariance enables one to draw clearer conclusions concerning
group differences (Lubke & Dolan, 2003).

In the context of the Flynn Effect we consider carefully the restriction on
measurement intercepts (77 = 72), necessary for both strong and strict factorial invariance.
Note that the mean of a given subtest within the later cohort is a function of both the
intercept and the common factor mean multiplied by the corresponding factor loadings
(see Eq. 2). Intercept differences between groups imply uniform bias with respect to groups
(Mellenbergh, 1989). In the present context, this may occur, if, say, one group has higher
test sophistication or different test taking strategies that raise the scores in ways unrelated
to latent intelligence (Brand, 1987). Therefore we define true intelligence differences
between cohorts as factor score differences within a strict or strong factorially invariant
factor model, and consequently we define true intelligence differences between cohorts as
differences in the means (and possibly (co)variances) of these common factors.

We assume that the data are approximately normally distributed and fit models in
the LISREL program (LISREL 8.54; Joreskog & S6rbom, 2003) using maximum likelihood
estimation. We assess model fit by the y2 in relation to Degrees of Freedom (DF), and by
other fit indices such as the RMSEA (Browne & Cudeck, 1993), the CFI (Bentler, 1990),
and the AIC and CAIC (cf. Jéreskog & Sérbom, 2003). The relative fit of the models in
Table 4.1 can be assessed with these indices, with lower values of AIC and CAIC indicating
better fit. By rule of thumb, a given model is judged to be a reasonable approximation if
RMSEA is about .05 or lower, and CFI is greater than 0.95. We view the y?2 in relation to
degrees of freedom as a measure of badness of fit, rather than a formal test of exact fit
(Joreskog, 1993). The Comparative Fit Index (CFI) gives the relative fit of a model in
relation to a null model of complete independence. Widaman and Thompson (2003) have
argued that because of the nesting of models it is inappropriate to use such a null model
within a multi-group context. Therefore, we use a model without any factor structure, in
which intercepts and residual variances are restricted to be group invariant (i.e., model 0A
in Widaman & Thompson, 2003) as the null model in computing the CFI values.

We use a stepwise approach, in which increasingly more across-cohort constraints
are introduced. If a given equality constraint leads to a clear deterioration in fit (ie.,
difference in 2, in relation to difference in DF), we conclude that the particular constraint
is untenable. If so, modification indices can pinpoint the source, in terms of parameters,
responsible for misfit. Modification Indices (MIs) are measures of how much chi-square is
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expected to decrease if a constraint on a given set of parameters is relaxed, and the model is
re-fitted (Joreskog & Sérbom, 2003). We now turn to the confirmatory factor analyses of
the five datasets.

4.3 Study 1: Dutch Adults 1967 /1968 and 1998/1999: WAIS

Samples

The Wechsler Adult Intelligence Scale (WAIS) was translated in Dutch more than
thirty-five years ago (Stinissen, Willems, Coetsier, & Hulsman, 1970). Here we compare the
1967/1968 standardization sample of the Dutch WAIS (N = 2100) with 77 Dutch subjects
who completed the WAIS during standardization of the WAIS-IIT in 1998 and 1999
(Wechsler, 2000). Mean age of the nineties sample is 40.3 years (SD = 14.0). In terms of the
WAIS-III scores, this sample appears representative, with a mean WAIS-III IQ of 100.6
and a standard deviation of 14.8 (Wechsler, 2000). However, it should be noted that the
original Dutch WAIS-IIT standardization sample is slightly underrepresented with respect
to subjects from low-educational backgrounds (Swets & Zeitlinger, 2003; Tellegen, 2002).
Therefore these WAIS-IIT 1Q)’s are an underestimation of approximately 2 IQ points
(Swets & Zeitlinger, 2003).

In the 1998/1999 sample, the WAIS administration followed between two and
twelve weeks after administration of the WAIS-III. This quasi-retest could have resulted in
an increase in WAIS subtest scores. However, the subtests of the WAIS-III have been
altered and the percentage of overlapping items of the WAIS-III and WAIS (mean per
subtest: 50%) is smaller than that found in comparisons of for example the WAIS versus
the WAIS-R (84%) in the US. Furthermore, the differential gains of the subtests reported
below do not seem to reflect those that show the largest retest-effect (e.g., Catron &
Thompson, 1979; Matarazzo, Wiens, Matarazzo, & Manaugh, 1973). Nevertheless, a test of
factorial invariance of these data sets is considered relevant since Flynn (1984; 1998¢) has
used data sets where administrations of an older version were preceded by the
administration of a new one, or vice versa. Our focus is primarily on factorial invariance
between the cohorts, more representative samples without the possible retest-effect should
be used to investigate WAIS-IQ gains of the general Dutch population.

Measures

The WAIS contains eleven subtests: Information (INF), Comprehension (COM),
Arithmetic (ARI), (SIM), Digit Span (DSP), Vocabulary (VOC), Digit Symbol (DSY),
Picture Completion (PCO), Block Design (BDE), Picture Arrangement (PAR), Object
Assembly (OAS). Appendix A contains a brief description of all subtests (c.f. Stinissen,
1977, Stinissen et al., 1970; Wechsler, 1955). The confirmatory factor analyses are based on
an oblique three-factor model, which includes the common factors: verbal comprehension
(INF, VOC, COM, SIM), perceptual organization (PCO, PAR, BDE, OAS, DSY), and
memory/freedom from distractibility (DSP, ARI, DSY). This factor model is displayed in
Figure 4.1.
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Results and Discussion

Correlations between subtests as well as means and standard deviations of both cohorts are
reported in Table 4.227. As can be seen from the mean differences between cohorts, the
Flynn Effect is present on all subtests, with effect sizes (in 1967/1968 SD-units) varying
from 0.51 (Digit Span) to 1.48 (Similarities). This results in 1Q-increases of 15.5, 22.4, and
19.8 for Verbal-1Q, Performance-1QQ and Total-1Q), respectively. These I1Q gains are in line
with gains on the WAIS(-R) found in the US and in Germany (Flynn, 1998c; Satzger,
Dragon, & Engel, 1996).
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Figure 4.1 WAIS factor model.

27 We include summary statistics in this paper, so that the interested reader may investigate factorial invariance using
alternative (factor) models. The LISREL input files for all analyses carried out here can be downloaded from

http://users.fmg.uva.nl/jwicherts/.
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Table 4.2
Correlations and descriptive statistics of WALS 1967/1968-1998/ 1999

INF  COM ARI SIM DSP  VOC DSY PCO BDE PAR OAS

INF .63 .57 .67 .35 .76 .33 49 32 .35 .05
COM .66 .60 .67 .34 73 .29 A1 .32 .33 18
ARI .57 .52 .56 43 .52 43 42 .34 48 .10
SIM .67 .67 .53 .36 75 .36 49 42 40 .09
DSP 43 40 48 41 .35 51 27 .16 32 .05
VOC 75 71 .55 72 44 34 43 33 31 .05
DSY 45 41 44 43 .39 49 A7 .39 .55 .29
PCO .50 44 .39 47 34 .50 44 .55 .58 42
BDE 41 42 43 44 37 44 45 46 .60 42
PAR A1 .35 31 .39 .26 44 .39 49 43 37
OAS 34 .33 28 .36 21 .36 .38 46 49 41

INF COM ARI SIM DSP VOC DSY PCO BDE PAR OAS
M7/68 |9.10 1413 7.60 10.93 11.17 27.63 4747 953 1327 10.73 36.00
SD “67/68 [544 552 380 555 333 1210 1283 3.54 6.42 445 1488
M98/99 |13.78 20.84 11.10 19.14 1288 40.22 5858 1351 2041 1438 44.65
SD 98/99 [4.82 421 296 435 3.66 1021 1320 3.03 593 374 15.10
Effect Size |[0.86 1.22 092 148 0.51 1.04 0.87 1.13 1.11 0.82 0.58

Note. Correlations of 1967/1968 sample (N = 1100) below diagonal and 1998/1999 sample (N = 77) above
diagonal. Effect sizes in 1967/1968 SD units.

Table 4.3

Fit indices test for factorial invariance WAILS 1967/ 1968-1998/ 1999
Model  Equality Y2 DF  Compare Ay? ADF RMSEA CFI AIC CAIC

constraints

1 - 2749 80 0.047 0994 418 913
2 A 2797 89  2wsl 4.8 9 0.044 0.994 406 841
3 N& O 3323 100 3vs2 526 11 0.044 0993 421 782
4a N& O& ¢ 4085 108 4avs3 76.2 8 0.050 0.990 494 801
4b N& 1 368.1 97  4bvs2 884 8 0.051 0991 484 865

The fit indices of the factor models differing with respect to between-cohort
equality constraints are reported in Table 4.3. The model with identical configuration of
factor loadings in both cohorts (Model 1; configural invariance) fits poorly in terms of Chi-
square. However, the large y? is due to the large standardization sample (Bollen & Long,
1993), and RSMEA and the CFI indicate that this baseline model fits sufficiently. In the
second model (Model 2; metric invariance) we restrict factor loadings to be equal across
both cohorts (i.e., A7 = 1. All fit indices indicate that this is does not result in an
appreciable deterioration in model fit, and therefore this constraint seems tenable.
However, the restriction imposed on the residual vatiances (Model 3; &, = @) is not
completely tenable, since AIC and Ay?2 indicate a clear deterioration in fit as compared to
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the metric invariance model. However, RMSEA, CFI, and CAIC indicate that this
restriction is tenable. In a formal sense, residual variances are unequal across groups,
although the misfit due to this restriction is not large. More importantly, both models (4a
and 4b) with equality constraints on the measurement intercepts (77 = 72) show insufficient
fit. The RMSEA-values are larger than the rule-of-thumb-value of 0.05, and (C)AICs show
larger values in comparison to the values of the third model. Although the CAIC values of
models 4a and 4b are somewhat lower than the CAIC of the unrestricted model (reflecting
CAIC’s strong preference for parsimonious models), the difference in chi-square
comparing models 4a and 4b to less restricted models is very large.?8 Both strong factorial
invariance and strict factorial invariance therefore appear to be untenable. This means that
measurement intercepts of the cohorts are unequal and consequently that mean differences
in test scores (the Flynn Effect) on this Dutch WAIS-test cannot be explained by latent
(i.e., common factor mean) differences between the 1967/1968 and 1998/1999 samples.

However, using MGCFA it is possible to relax selected constraints in an ill-fitting
model, to investigate the source of misfit, and, perhaps to arrive at an interpretable
modified model. We now turn to a modification of the strong factorial invariance model
that we denote by partial strong factorial invariance (Byrne et al., 1989). In this model we
free the parameters with the highest modification indices (in Model 4b), namely the
intercepts of Similarities (MI = 33) and Comprehension (MI = 20). By allowing these
parameters to differ between the cohorts, we attain a model with acceptable fit (y2 = 301.3,
DF = 95, RMSEA = 0.044, CFI = 0.993, AIC = 414, CAIC = 809). This enables a
cautionary interpretation of the factor mean gains (a2 — as) thus found. The parameter
estimates of the gains in this partial invariance model are: memory/freedom from
distractibility: 2.34 (SE = 0.25, Z = 9.20, p< .01); verbal comprehension: 5.11 (SE = 0.49,
7, = 10.53, p< .01); perceptual organization 3.69 (SE = 0.33, Z = 11.27, p< .01). Thus, all
three common factors show significant gains. It should be noted that this model must be
seen as a post hoc (exploratory) analysis, and that mean differences on the Similarities and
Comprehension subtests are now #nexplained by the factor on which these load.

This partial strong invariance model has three correlated (oblique) first-order
factors, which interrelatedness can be explained by a second-order factor, which can be
denoted by g or general intelligence. This enables a test of the hypothesis that the score gain
found in the current comparison could be solely due to increases in this higher order factor.
Note that this second-order model with additional constraints is nested under the partial
strong factorial invariance model above (without such a higher-order factor). We found
that the second-order model has group-invariant second order factor loadings (invariance
test: Ay? = 1.0, ADF = 2), and group-invariant first order factor variances (invariance test
of ¥;= ¥y Ay? = 1.5, ADF = 3). In the second order model with invariant second-order
factor loadings and invariant first-order factor variances, we allow only second-order factor
mean and second order factor variance differences. This second-order model has the

following fit indices: 2 = 321.5, DF = 102, RMSEA = 0.044, CFI = 0.993, AIC = 423,

28 Note that the CFI does not differentiate well between the models. This is primarily due to the fact that inter-
subtest correlations are high and therefore the null-model has a very large chi-square. Even if, say, the chi-square of
Model 4a would have been 1500, the CFI still would assume a value well above 0.95. This renders the CFI less
suitable for investigating between-group restrictions in this data set.
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CAIC = 771. It appears that this model fits reasonably, although the high modification
index (MI = 17) of the factor mean difference in the perceptual organization (first order)
factor suggests that the gains are not solely due to general intelligence.

In conclusion, although the overall gains found in this comparison are unexplained
by the factor mean differences, a cautionary conclusion would be that part of the gains
(excluding the subtests Similarities and Comprehension) could be explained by genuine
increases in intelligence.

4.4 Study 2: Danish Draftees 1988 and 1998: Borge Prien’s Prove

Samples
The data in this comparison stem from Teasdale and Owen (2000) who compared
several cohorts of Danish draftees, tested in the year they turn 18. The data includes all
Danish draftees of 1988 (N = 33.833) and 1998 (N = 25.020), comprising about 90 to 95
percent of the Danish male population of 18 year-olds of those years (Teasdale & Owen,
1989, 2000).

Measures

All draftees completed a group test of cognitive abilities named Borge Prien’s
Prove (BPP), which includes four subtests: Letter Matrices (LEM), Verbal Analogies Test
(VAT), Number Series Test (NST) and Geometric Figures Test (GFT). These subtests are
characterized by fluid and abstract (Teasdale & Owen, 1987, 1989, 2000). A short
description of the subtests is given in Appendix B. The factor model used has one factor
with four indicators. Although this is a small number of subtests for a factor model, this
single factor model is consistent with the common use of a total test score based on these
subtests (see e.g., Teasdale & Owen, 1987). More practically, the tenability of this model
should be judged by its fit. We use (normal theory) maximum likelihood estimation even
though the data are slightly negatively skewed (Teasdale & Owen, 2000), since maximum
likelihood (ML) estimation is quite robust to mild skewness.

Table 4.4
Correlations and descriptive statistics of Borge Prien’s Prove 1988-1998
LEM VAT NST GFT
LEM .56 .61 47
VAT .57 .59 47
NST .62 .61 43
GIT 48 49 45
LEM VAT NST GIT
M 1988 9.99 12.27 9.61 10.06
SD 1988 2.59 4.02 3.11 3.18
M 1998 10.18 12.53 9.80 10.57
SD 1998 2.46 3.93 3.04 3.18
Effect size 0.07 0.06 0.06 0.16

Note. Correlations of 1988 sample (N = 33833) below diagonal and of 1998 sample (N = 25020) above diagonal.
Effect sizes in 1988 SD units.
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Results and Discussion

Descriptive statistics of both cohorts are reported in Table 4.4. As previously
described by Teasdale and Owen (2000), the largest increase between 1988 and 1998 is
found on the Geometric Figures Test. It is also apparent that the overall gain is small in
terms of 1988 SD-units. Furthermore it is noteworthy that standard deviations of all
subtests but the Geometric Figures Test have decreased in the ten-year period. Teasdale
and Owen (2000) show that the overall standard deviation decline is mostly caused by the
fact that gain is strongest in the lower end of the distribution. In addition, they conclude
that this is probably not caused by a ceiling effect.

Table 4.5

Fit indices test for factorial invariance of Borge Prien’s Prove 1988-1998
Model Equality Y2 DF Compare Ay> ADF RMSEA CFI AIC  CAIC

constraints

1 - 4719 4 0.062 0.955 507 746
2 A 4755 7 2vs1 3.7 3 0.047 0.955 504 714
3 N& O 5471 11 3vs2 71.6 4 0.040 0.949 565 735
4a N& O& ¢ 7824 14 4avs 3 2353 3 0.043 0926 797 936
4b N& 7 710.1 10 4b vs 2 2346 3 0.048 0932 734 913

Teasdale and Owen (2000) state that the similarity of test inter-correlations across
both cohorts is striking (p. 117). We now use these data to test whether factorial invariance
with respect to cohorts is tenable. This enables us to unravel whether or not the Danish
gains reflect true (i.e., latent) gains in intelligence. Table 4.5 contains the fit indices of the
different factor models used to this end. As can be seen, the model without across-cohort
equality constraints (Model 1; configural invariance) has a very large y2. However, the
sample sizes are again large and both the RMSEA, and the CFI indicate that the fit of the
baseline model is sufficient. In the second model (metric invariance) factor loadings are
constraint to be cohort-invariant (i.e., 1, = ~12). This step is accompanied by a relative
improvement in fit, with all fit indices having better values in Model 2 than in Model 1.
Therefore we conclude that metric invariance is tenable. The various fit indices with which
we can judge the tenability of the next restriction on the residual vatiances (Model 3; @ =
@) are somewhat inconsistent. The RMSEA indicates an improvement in model fit from
Model 2 to Model 3, while Ay2, CFI, AIC and CAIC show deterioration in fit. The highest
modification index in this step is found on the parameter of the residual variance of the
Letter Matrices Test (MI = 67). Regardless of the conclusion about the equality of the
unique/error-variances, the subsequent restriction of cohort-invariant measurement
intercepts (i.e., 77 = 72) leads to a clear deterioration in fit, with all fit indices assigning
poorer values in Models 4a and 4b as opposed to the Models 3 and 2 (i.e., models without
this mean restriction). Therefore, both strong factorial invariance (Model 4a), and strict
factorial invariance (Model 4b) are rejected. Thus, we conclude that the Flynn Effect found
in this Danish comparison cannot be explained by an increase in latent intelligence (i.e.,
factor mean differences between cohotts).

We should note the sample size is accompanied by great power to reject models.
This power issue can be investigated using simulation studies. A pragmatic alternative could
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be to treat the data as if it was composed of a smaller number of cases (see Muthén, 1989).
We have used the number of cases command of LISREL to this end, and found that in
case of 1000 subjects in each cohort the results are similar to those found with the original
number of cases. Therefore, a reasonable number of cases would have led to the same
results and power appears not to be the main reason for the rejection of the factorial
invariance models.

As shown by the modification indices of Model 4b, the rejection of the intercept-
restriction is primarily caused by the intercept of Geometric Figures (MI = 231). As noted,
this subtest shows greater increase than the other subtests. We could again free this
intercept parameter, together with the aforementioned residual variance-parameter of the
Letter Matrices Test. The model found by allowing these two parameters to differ between
cohorts shows sufficient fit (y2= 483.2, DF = 12, RMSEA = 0.036, CFI = 0.955 AIC =
502, CAIC = 662). In this partial strict factorial model the factor mean of the 1998 cohort
differs significantly from the factor mean of the 1988 cohort: the parameter estimate of a» —
aris 0.17 (SE = 0.018, Z = 9.49, p< .01). Again, a careful conclusion would be that some,
but apparently not all, mean differences between the cohorts could be explained by a latent
increases in intelligence. Furthermore, the partial strict factorial invariance model shows
that the (latent) factor variance in the second cohort is smaller (3.67, SE = 0.047) than the
factor variance of the first cohort (3.96, SE = 0.046). The latter is consistent with earlier
findings (Teasdale and Owen, 1989) and the results in Teasdale and Owen (2000). They
noted that the gains over the cohorts appear to be larger at the lower end of the
distribution. In their 1989 paper, Teasdale and Owen have put some effort into finding out
whether this differential gain is caused by a ceiling effect of the test itself. Their simulation
of data suggested that a ceiling effect is not the reason for the diminishing test score
variance until 1987. However, in the current comparison of the 1988 and 1998 cohorts, not
only the factor variance, but also the residual variance of LMT is smaller. The possibility of
a ceiling effect on this subtest in the current comparison can therefore not be ruled out.

A shortcoming of the current data set is the small number of subtests and as a
result the simple factor structure. It remains unclear whether the results would haven been
similar in case the test consisted of more scales and factors. However, the fit indices show
sufficient fit of the one-factor model.

In conclusion, it appears that gains found on Borge Prien’s Prove from 1988 to
1998 could not be fully explained by latent increases in the factor model. Especially the
large gains on Geometric Figures Test need further explanation as well as the diminishing
residual variance of the Letter Matrices Test. The latter implies that ceiling effects may play
a role in decreasing test score variance in this valuable Danish data set.

4.5 Study 3: Dutch High School Students 1984 and 1994/1995: DAT83

Samples
During the standardization of the Dutch version of the DAT, Evers and Lucassen
(1992) collected data from 3300 third-year high school students at the three major Dutch
educational levels, namely MAVO (medium-low level), HAVO (medium-high) and VWO
(high). Here we compare the standardization samples of these three levels (with 1100 cases
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each) acquired from 1982 to 1986 (median in 1984) with high school students on the
corresponding levels in 1994 and 1995 (from Oosterveld, 1996). Whereas the 1984
standardization samples are selected to be representative for Dutch children at their
respective educational levels (Evers & Lucassen, 1992), the 1994/1995 subjects were not
sampled to be representative. Nevertheless, the latter data stem from ten different schools
in different parts of The Netherlands. These (regional) high schools are located in middle-
sized towns and therefore the students are from both rural and urban areas. The
1994/1995 samples contain a total 922 subjects, of which 490 females (of eleven subjects
gender was unknown). Because Evers and Lucassen (1992) found large sex differences on
the DAT, we randomly selected 93% of the females in order to equal the gender-
proportion of the three nineties cohorts to the gender-proportion (50% female) of the 1984
standardization samples. The remaining numbers of cases for the 1994/1995 cohorts are:
397 for MAVO, 272 for HAVO, and 188 for VWO. Information on the social economic
background of individual students is missing, although information on the schools indicates
that the ethnic composition of the schools does not greatly deviate from that of the overall
Dutch population. As a matter of fact, seven of the ten schools in the nineties cohort also
participated in the 1984 standardization. Thus, the representativeness of the nineties
samples seems mainly to be compromised by the omission of subjects from large-sized
towns such as Amsterdam. Precise age of the subjects during testing is unknown, but the
mean would normally lie around 14'2 years. Importantly, there is no reason to expect
differences in age composition of the 1984 and 1994/1995 cohorts. In addition, some
changes in the composition of the levels could have occurred, although the Dutch high
school system did not undergo any systematic change between 1982 and 1995.

Measures

The Dutch Differential Aptitude Test (DAT '83; Evers & Lucassen, 1992) is a
group intelligence test containing nine subtests with a time limit. The Dutch DAT is largely
an adaptation of the American DAT (form S&T) with one additional vocabulary scale
(Evers & Lucassen, 1992). Since two subtests were not deemed informative by the school
authorities, a significant part of the nineties sample was not administered the Mechanical
Reasoning (MR) (40% missing), and/or the Speed & Accuracy (SA) subtest (64% missing).
This resulted in a shortening of the testing session for these subjects, but this appears not
have resulted in higher scores on the remaining subtests. Probably because of the breaks in
between subtests, the scores of these subjects on the subtests that would have followed MR
and SA did not significantly differ from the corresponding scores of subjects that were
administered both subtests. Therefore, we pool both groups and leave the two missing
subtests out of the current comparison. The seven remaining subtests are: Vocabulary
(VO), Spelling (SP), Language Use (LU), Verbal Reasoning (VR), Abstract Reasoning (AR),
Spatial Relations (SR), and Numerical Ability (NA). Appendix C contains a description of
these subtests. Throughout we apply an oblique two-factor model, roughly similar to the
first two factors of the factor solution described in the manual (Evers & Lucassen, 1992).
These factors can be denoted by a verbal factor (VO, SP, LU, VR, NA) and an abstract
factor (VR, AR, SR, NA).
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Table 4.6
Correlations and descriptive statistics of DAT °83 1984-1995 medium-low level (MA10)

VO SP LU VR AR SR NA
VO 0.13 0.51 0.33 0.13 0.18 0.11
SP 0.23 0.19 0.11 0.02 -0.04 0.10
LU 0.55 0.32 0.26 0.12 0.19 0.09
VR 0.36 0.17 0.35 0.34 0.38 0.24
AR 0.27 0.08 0.27 0.40 0.58 0.44
SR 0.28 -0.04 0.21 0.39 0.52 0.35
NA 0.25 0.16 0.18 0.32 0.42 0.38

VO SP LU VR AR SR NA
M 1984 42.5 59.2 29.4 18.7 33.3 30.7 17.7
SD 1984 10.2 8.4 6.9 7.2 7.3 9.3 6.0
M 1994/1995 39.89 58.97 27.05 17.32 32.61 30.76 15.14
SD 1994/1995  [9.07 795 582 787  7.30 10.56 5.49
Effect size -0.26 -0.03 -0.34 -0.19 -0.09 0.01 -0.43

Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 397) above diagonal.
Effect sizes in 1984 SD units.

Results and Discussion

We now present results for each educational level separately, beginning with the
lowest level. Means, standard deviations and intet-subtest correlations of both MAVO-
cohorts are reported in Table 4.6. As can be seen from the effect sizes, there is no Flynn
Effect in this subgroup. All but one subtest (Spatial Relations) show a decrease in scores
from 1984 to 1994/1995. A further breakdown on gender shows no clear gender
differences. These declining scores could have been the result of imperfect sampling of the
nineties cohortt, such as the aforementioned lack of subjects from large cities or perhaps by
a changing composition of the low level educational group. Whatever the reasons for the
decline, it is reassuring to see the similarity to the pattern of gains found on the Spanish
DAT between 1979 and 1995 (Colom et al., 1998; 2001). Since four of the current DAT
subtests (SR, AR, VR and NA) are also present in the Spanish DAT, we can compare effect
sizes (i.e., gains/losses) on subtests in both countries. These four effect sizes of the
MAVO- comparison correlate highly (pmcc = 0.90; spearman = 0.80) with the Spanish
effect sizes found by Colom and colleagues (Colom et al., 1998; 2001).

Since our main interest is in whether the Flynn Effect is accompanied by factorial
invariance, we leave out our findings on factorial invariance in this MAVO group.
However, results with respect to the tenability of factorial invariance of the MAVO cohorts
are in line with the following results of the HAVO cohorts.
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Table 4.7
Correlations and descriptive statistics of DAT '83 1984-1995 medium-high level (HA170)

VO SP LU VR AR SR NA
VO 0.29 0.53 0.32 0.10 0.13 0.02
SP 0.31 0.35 0.09 0.03 -0.09 0.04
LU 0.51 0.36 0.39 0.20 0.18 0.03
VR 0.28 0.16 0.33 0.43 0.38 0.19
AR 0.10 0.04 0.17 0.36 0.61 0.42
SR 0.18 0.00 0.13 0.37 0.53 0.32
NA 0.12 0.13 0.13 0.23 0.35 0.29

VO SP LU VR AR SR NA
M 1984 49.8 64.5 345 23.6 37.5 35.9 22.2
SD 1984 9.7 8.3 6.5 8.6 6.2 10.3 6.0
M 1994/1995 48.78 66.68 35.55 23.87  37.80 37.05 20.07
SD 1994/1995 9.37 8.91 7.31 8.37 6.08 10.51 6.04
effect size -0.11 0.26 0.16 0.03 0.05 0.11 -0.36

Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 272) above diagonal.
Effect sizes in 1984 SD units.

The subtest correlations, as well as the descriptives of both medium-high level
(HAVO) cohorts are reported in Table 4.7. In these data, a Flynn Effect is present, with the
highest increase on the subtest Spelling. Nevertheless, the Numerical Ability and the
Vocabulary subtests show a decrease from 1984 to 1994/1995. Again, the relative gain of
the four corresponding DAT scales shows striking similarity to gains found in Spain
(Colom et al., 1998), with a correlation (pmcc) between the effect sizes in both countries of
0.82 (spearman = 0.80). Since it has been suggested that the Spanish DAT gains are
compatible with increases in g, i.e., with a “Jensen effect” (see Colom et al., 2001), it is
interesting to check whether the HAVO gains can be considered factorially invariant with
respect to cohort, since factorial invariance is a crucial aspect of the hypothesis that the
manifest gains are due to gains in g.

Table 4.8

Fit indices test for factorial invariance of DAT 83 1984-1995 medinm-high level (HA10O)
Model  Equality Y2 DF Compare Ay?> ADF RMSEA CFI AIC CAIC

constraints

1 - 619 22 0.051 0983 158 456
2 A 700 29  2wsl 8.1 7 0.045 0.982 152 407
3 N& O 862 36 3vs2 162 7 0.045 0978 154 366
4a N& O& ¢ 1533 41  4avs3 671 5 0.063 0.952 210 390
4b N& 1 1362 34  4bvs2 662 5 0.065 0.958 204 428

2 A Jensen Effect occurs when g loadings of (sub)tests correlates significantly with the (sub)tests’ correlations with
other variables
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Fit indices of the models leading up to factorial invariance in the HAVO-
comparison are reported in Table 4.8. The first model fits sufficiently as judged by RMSEA
and CFI. The step from the configural invariance model to the metric invariance model
(Model 2; A; = ) is accompanied by a very slight decrease in CFI, but all other fit
measures improve and therefore factor loadings appear invariant over cohort. With respect
to the next restriction of equal residual variances Model 3; @ = @), the AIC shows a
small increase, and the CFI drops slightly. The other fit indices indicate that residual
variances are cohort-invariant. More importantly, in comparison to Models 3 and 2, both
factorial invariance models (4a and 4b) show a clear decline in all fit indices (although
CAICs in steps 4a and 4b are still lower than the CAIC of Model 1). Considering the large
Ay?, the drop in CFI, and the clear increase in RMSEA, we conclude that the equality-
restriction on the measurement intercepts (77 = 72) is untenable and therefore that the
Dutch increase in DAT test scores at this educational level cannot be explained by
increases in latent intelligence.

Here we again consider the partial strong factorial invariance model, and relax the
intercepts associated with the largest modification indices. The measurement intercepts of
Numerical Ability (MI = 36) and Vocabulary (MI = 18) seem to be the cause of the poor fit
of the factorial invariance model. Note that both scales showed a decline from 1984 to
1994/1995. When the intercepts of both tests are freed we obtain an acceptable model fit
(x2 = 79.58, DF = 32, RMSEA = 0.046, CFI = 0.980, AIC = 112, CAIC = 390). In this
partial strong factorial invariance model the factor mean of the verbal factor is significantly
higher in the 1994/1995 sample as opposed to the 1984 sample (1.46, SE = 0.56, Z = 2.60,
p< .01), whereas the abstract factor does not show a significant gain from 1984 to
1994/1995 (parameter estimate 0.37, SE = 0.38, Z = 0.97, p> .05).

Table 4.9
Correlations and descriptive statistics of DAT °83 1984-1995 high level (1V'TWO)

VO SP LU VR AR SR NA
VO 0.36 0.57 0.40 0.11 0.22 0.16
SP 0.39 0.37 0.25 0.19 0.12 0.24
LU 0.56 0.45 0.38 0.15 0.11 0.15
VR 0.38 0.32 0.44 0.45 0.42 0.41
AR 0.15 0.14 0.22 0.35 0.54 0.38
SR 0.19 0.08 0.15 0.39 0.53 0.33
NA 0.20 0.22 0.19 0.29 0.31 0.33

VO SP LU VR AR SR NA
M 1984 56 70.9 39.9 30.1 40 40 26.3
SD 1984 9.4 8.7 7.2 8.8 53 9.7 5.8
M 1994/1995  |51.12 69.37 37.18 24.45 40.03 38.93 23.86
SD 1994/1995 ]9.81 8.84 6.93 9.59 5.18 9.85 6.22
effect size -0.52 -0.18 -0.38 -0.04 0.01 -0.11 -0.42

Note. Correlations of 1984 sample (N = 1100) below diagonal and of 1994/1995 sample (N = 188) above diagonal.
Effect sizes in 1984 SD units.
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Next, we turn to the highest educational level, denoted VWO. Descriptive statistics
and subtest-correlations of both VWO-cohorts are reported in Table 4.9. As was the case
in the medium-low educational level (MAVO) above, Flynn Effect seems absent at this
educational level. Again, this could be due to sampling or to changing composition of the
educational levels. Like the MAVO-comparison, we skip the test for factorial invariance,
although we should note that results indicate that again factorial invariance is untenable. In
addition, the effect sizes of the four ovetlapping subtests (AR, SR, NA and VR) show
similarity with the Spanish DAT-gains (pmcc = 0.79, spearman = 0.80).

In conclusion, the DAT shows clear gains in scores only at the medium-high
educational level (HAVO), whereas the medium-low (MAVO) and high (VWO) levels
show no increase. It is interesting that this result agrees with the pattern of gains that Spitz
(1989) reported on the WAIS and WAIS-R. Further research based on better sampling
could clear up the issue of Dutch DAT-gains. Irrespective of the causes of these conflicting
findings, we found that the DAT is biased with respect to cohort. The gains found at the
HAVO level and the losses found at the other levels can thus not be explained by latent
(i.e., factor mean) differences in intelligence. This conclusion runs counter to the finding
that the Spanish DAT gains are related to the g factor (Colom et al., 2001). Nevertheless,
the effect sizes on all three levels show clear similarity with Spanish DAT gains. Finally, a
partial factorial invariance model in the HAVO-group reveals that some of the observed
gains can be attributed to gains in the verbal common factor, but not in the abstract factor.
The Numerical Ability and Vocabulary subtests show a decrease that could not be
explained by latent differences between the cohorts.

4.6 Study 4: Dutch Children 1981/1982 and 1992/1993: RAKIT

Samples

In this study we compare 5-year-olds from the 1981/1982 standardization sample
of the RAKIT (Bleichrodt et al., 1984) with a sample of 5-year-old twins (210 males and
205 females) that were tested in 1992 and 1993 (Rietveld, van Baal, Dolan, & Boomsma,
2000). The standardization sample (N=207) is representative of Dutch 5-year-olds in 1982
(Bleichrodt et al., 1984). The representativeness of the second cohort may be evaluated in
the light of data on Socio-Economic Status (SES) as measured by the occupational status of
the fathers. The 208 twin-pairs appear to be of somewhat higher SES (low 24%, middle
48%, high: 28%; Rietveld et al., 2000) than the overall 1993 Dutch population (32%, 44%,
24% respectively; Statistics Netherlands, 2003). Nevertheless, the nineties cohort is clearly
composed of a broad sample of social backgrounds.

The raw test scores of both cohorts are normalized with respect to age. Because
both cohorts contain cases out of two standardization age groups (i.e., 59 to 62 months,
and 63 to 71 months; Bleichrodt et al., 1984), we also conducted analyses in each age group
separately. However this produces similar results as those reported below. Although some
information is lost by the normalization, the scores appear comparable across cohorts.
Since the 1992/1993 cohort contains twin-pairs, the individual cases are not independent.
For that reason, we conduct two sets of analyses, one for each twin. Each first twin is
randomly assigned to twin Sample 1 or twin Sample 2, the second twin then is assigned to
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the other twin sample. The twin data provides a useful opportunity to cross-validate the
results of model fitting, in which the 1982 cohort is compared to both twin Sample 1, and
twin Sample 2. Finally, we note that because of a missing subtest, we deleted one twin case
in the second sample, whose monozygotic brother had an I1Q of 84.

Measures

The RAKIT (Bleichrodt et al., 1984) is an individually administered Dutch
intelligence test for children (aged 4 to 11 years) comprising 12 subtests. RAKIT-IQ has
been shown to correlate 0.86 with IQ from the WISC-R (Bleichrodt et al., 1984). In the
1992/1993 cohortt the shortened version of the RAKIT was administered. The 1Q of this
version has been shown to correlate 0.93 with the IQ of the total scale (Bleichrodt et al.,
1984). The subtests of the shortened version are: Exclusion (EX), Discs (DI), Hidden
Figures (HF), Verbal meaning (VM), Learning Names (LN), and Idea Production (IP). A
description of these subtests is provided in Appendix D. Throughout, we use the oblique
two-factor model presented by Rietveld et al. (2000), with three subtests loading on a
nonverbal factor (EX, DI and HF) and three subtests loading on a verbal factor (LN, VM
and IP).

Table 4.10a
Correlations and descriptive statistics of RAKIT 1982-1992/1993 (twin Sample 1)

EX VM DI LN HF 1P
EX 0.34 0.40 0.34 0.30 0.14
VM 0.34 0.12 0.52 0.24 0.30
DI 0.39 0.28 0.15 0.30 0.10
LN 0.24 0.40 0.06 0.19 0.33
HF 0.39 0.30 0.28 0.26 0.08
1P 0.13 0.36 0.19 0.31 0.24

EX VM DI LN HF 1P
M 1982 15.01 15.17 14.95 14.97 15.37 14.94
SD 1982 5.02 5.10 4.99 4.97 5.06 4.99
M 1992-1 15.50 16.00 13.60 16.63 16.30 15.36
SD 1992-1 4.38 4.24 5.28 4.58 4.61 423
effect size-1 0.10 0.16 -0.27 0.33 0.18 0.08

Note. Cortelations of 1982 sample (N = 207) blow diagonal and of 1992/1993 sample (N = 208) above diagonal.
Effect sizes in 1982 SD units.

Results and Discussion

Descriptive statistics of the standardization sample and twin Sample 1 are reported
in Table 4.10a, and descriptive statistics of twin Sample 2 are given in Table 4.10b. As can
be seen from the effect sizes, all but the Discs subtest show higher scores in the 1992/1993
sample, with the highest gain on the Learning Names subtest. Furthermore, there are some
differences between both twin-samples, but these are trivial. Average 1Q in 1982 is 100 by
definition. The increase of scores to 1992/1993 is reflected in average 1Qs of 102.6 (SD =
13.7) and 103.0 (SD = 12.6) in twin Sample 1 and 2, respectively. Considering the
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somewhat higher SES of the nineties sample, these gains appear small in comparison to
gains found on the WISC-R in the US (i.e., 5.3 I1Q points from 1972 to 1989; Flynn, 1998c)
and on the German WISC (20 IQ points from 1956 to 1983; Schallberger, 1987).

Table 4.10b
Correlations and descriptive statistics of RAKIT 1992/ 1993 (twin Sample 2)
EX VM DI LN HF 1P
EX .35 .32 19 .29 15
VM 10 46 .26 .20
DI .07 18 14
LN 24 .26
HF 10
EX VM DI LN HF 1P
M 1992-2 15.68 15.76 14.34 16.68 16.37 15.13
SD 1992-2 4.21 4.48 4.65 4.66 4.37 4.09
effect size-2 0.13 0.12 -0.12 0.34 0.20 0.04

Second sample (N = 207)

Table 4.11
Fit indices test for factorial invariance of RAKIT 1982 — 1993/ 1994
15t sample
Model Equality Y2 DF Compare Ay> ADF RMSEA CFI AIC CAIC
constraints
1 - 232 16 0.043 0.988 98 289
2 A 300 20  2vsl 68 4 0.046 0.983 97 268
3 N& O 474 26  3vs2 173 6 0.062 0961 102 243
4a N& O& 7 0685 30 4avs3 212 4 0.078 0929 116 236
4b N& 1 50.7 24 4bvs2 20.7 4 0.072 0952 109 260
2rd sample

Model  Equality Y2 DF Compare Ay> ADF RMSEA CFI AIC CAIC

constraints

1 - 251 16 0.052 0982 101 292
2 A 301 20 2wsl 5.0 4 0.049 0979 98 269
3 N& O 387 26  3vs2 8.6 6 0.049 0973 95 236
4a N& O& 7 542 30 4avs3 156 4 0.064 0.947 104 224
4b N& 1 455 24  4bvs2 154 4 0.068 0.953 107 257

Fit indices of the various models for both twin-samples are reported in Table 4.11.
The first model (i.e., configural invariance) fits well in both the comparison containing twin
Sample 1 and the comparison containing twin Sample 2. With the exceptions of a minor
decrease in CFI values of both samples, and a small increase in RMSEA in the first twin
sample, the fit indices of the metric invariance model (Model 2) indicate that the across-
cohort restriction on factor-loadings (i.e., ~1; = ~12) is tenable. The restriction of invariant
residual variances (Model 3; @ = @) is accompanied by some decrease in fit in twin
sample 1: CFI, RMSEA and AIC of Model 3 are worse than those of Model 2 and the Ay?
is rather large. In the second twin sample this restriction seems tenable, despite the small
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drop in CFI value. However, a clear deterioration in fit in both twin samples is found when
the factorial invariance models are fitted (Models 4a and 4b). In both samples the CAIC is
the only fit index with a smaller value in these models as opposed to models 1 through 3.
All other fit indices indicate that the restriction of invariant measurement intercepts (i.e., 77
= 12) is untenable. Again it appears that mean differences between both cohorts cannot be
explained by latent (i.e., factor mean) differences in intelligence.

The rejection of factorial invariance (Models 4a and 4b) is caused mainly by the
intercepts of the Discs and Learning Names subtests. That is, in both twin samples, these
parameters have the largest modification index in Model 4b (DI: MI = 15 and LN: MI = 4
in twin sample 1; DI: MI = 7 and LN: MI = 8 in twin sample 2). Relaxing the equality
constraints on these parameters, resulted in a partial strong factorial invariance model with
the following fit indices: y2 = 31.43, DF = 22, RMSEA = 0.042, CFI = 0.985, AIC = 94,
CAIC = 255, and 2= 31.09, DF = 22, RMSEA = 0.045, CFI = 0.982, AIC = 95, CAIC =
256 in twin Samples 1 and 2, respectively. Thus, this partial strong factorial invariance
model appears to have sufficient fit. A further look at the factor mean differences between
the 1982 cohort and both 1992/1993 twin cohorts indicates that the factor means in the
first twin sample are not significantly larger than those of the standardization sample: 0.69,
SE = 0.43, Z = 1.61, p> .05 and 0.80, SE = 0.44, Z = 1.82, p> .05 for the nonverbal and
the verbal factor, respectively. However, in the second twin sample the factor mean of the
nonverbal factor is significantly higher than the standardization sample (0.85, SE = 0.42, Z
= 2.04, p< .01), whereas the factor mean of the verbal factor in this second twin sample is
not significantly higher (0.56, SE = 0.46, Z = 1.22, p > .05) than the corresponding factor
mean of the 1982 cohort.

Again, we conclude that factorial invariance with respect to cohort is rejected.
Hence, mean gains on the RAKIT between the 1982 and the 1992/1993 cohorts could not
be explained fully by latent (i.e., factor mean) differences in intelligence. Only in the second
twin sample a small part of the gains can be explained by a significant latent gain in the
abstract factor. Especially the decline in scores on the Discs subtest and the gain in scores
on Learning Names subtest require further investigation.

4.7 Study 5: Estonian Children 1934/1936 and 1997/1998: National Intelligence
Test

Samples

The data from this last comparison stems from Olev Must and colleagues (Must et
al., 2003), who compared two Estonian datasets covering a period of 60 years, from
1934/1936 to 1997/1998. The two cohorts contain 12- to 14-year-old schoolchildren who
completed the Estonian National Intelligence Test. Must et al. (2003) found gains on most
of the subtests, which were not consistent with a “Jensen effect”. It is interesting to submit
these Estonian data to the MGCFA approach since MGCFA has been found to lead to
different conclusions then those found with Jensen’s method of correlated vectors (e.g.,
Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 2004). In addition, MGCFA can
pinpoint subtests that manifest the gains in this Estonian data set. For the analyses we have
pooled both age groups, we thus have 307 and 381 cases in the thirties and nineties
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cohorts, respectively. For further information on the samples the reader is referred to Must

et al. (2003).

Measures

The Estonian version of the National Intelligence Test is a group-administered
intelligence test containing 10 subtests: Arithmetic (AR), Computation (CT), Sentence
Completion (SC), Information (IN), Concepts (CC), Vocabulary (VO), Synonyms-
Antonyms (SA), Analogies (AN), Symbol-Number (SN), and Comparisons (CP) (c.f., Must
et al., 2003). These subtests are described shortly in Appendix E.

In order to obtain a reasonable factor structure, we have conducted exploratory
factor analyses on both cohorts, using promax rotation. This resulted in an oblique two-
factor model with factors denoted abstract (AR, CT, AN, SN, and CP) and verbal (AR, SC,
IN, CC, VO, SA, AN). This model is used in the fitting of the subsequent models.

Results and Discussion

Table 4.12 provides the subtest correlations, as well as the means and standard
deviations of both cohorts, computed by pooling the data over both age groups. As can be
seen by the effect sizes, highest increase is found on the symbol number subtest. Counter
to the expected Flynn Effect, four subtests show a decline, namely: Arithmetic,
Computation, Vocabulary, and especially Information. Since this decline may also be due to
a decrease in the latent factor(s), we proceed with the analyses.

Table 4.12
Correlations and descriptive statistics of National Intelligence Test 1934/ 1936 — 1997/ 1998
AR CT SC IN CC VO SA AN SN CpP

AR 41 49 48 23 40 .38 45 23 24
CT 49 .36 48 27 46 .35 .53 34 48
SC .65 43 .60 44 .53 A7 .50 .25 .30
IN .68 A48 .76 A7 .63 41 .62 .26 42
CC 47 32 .65 .61 .35 34 42 31 .30
VO .53 40 .66 73 .56 .39 .52 27 .39
SA .50 34 .51 .55 43 46 45 31 .33
AN .57 A48 .64 .67 .57 .58 48 31 40
SN 48 44 48 52 45 40 .33 .53 44
CP 43 40 43 .53 .38 43 44 49 44

AR CT SC IN CC VO SA AN SN CP

M 1934/1937 [16.92 24.45 27.21 2526 3560 25.65 26.62 13.86 2428 27.10
SD 1934/1937 (447 527 645 670 827 5.51 12.92 5.78 6.63 8.42
M 1997/1998 (1453 22.26 29.83 19.20 39.14 2484 29.52 17.28 30.04 33.00
SD 1997/1998 {450 536 6.02 545 7.00 6.50 8.20 5.99 5.62 8.64

Effect size -0.53 -042 041 -090 043 -0.15 0.22 0.59 0.87 0.71
Note. Correlations of 1934/1936 sample (N = 307) below diagonal and of 1997/1998 sample (N = 381) above
diagonal. Effect sizes in 1934/1946 SD units.
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Table 4.13

Fit indices test for factorial invariance of NI'T 1934/1936 — 1997/1998
Model  Equality ¥2 DF  Compare Ay? ADF RMSEA  CFI AIC CAIC

constraints

1 - 150.7 64 0.063 0.987 282 648
2 / 2096 74 2vsl 589 10 0.074 0978 324 634
3 N& O 3162 84 3vs2 106.5 10 0.088 0.964 400 655
4a N& O&r 11475 92 4avs3 8313 8 0.185 0.831 1250 1460
4b N& 1029.1 82  4bvs2 819.5 8 0.183 0.853 1120 1386

Table 4.13 provides the fit indices of the various factor models. The baseline model
(Model 1; configural invariance) fits sufficiently as judged by the CFI, although RMSEA is
somewhat on the high side. Moreover, it is apparent that the metric invariance model
(Model 2) fits worse than the configural invariance model. All fit measures but the CAIC
show deteriorating fit. Therefore, factor loadings cannot be considered cohort-invariant
(i.e., Ay # A12). Note that this is in stark contrast with the high congruence coefficient of
the first principal component found by Must, et al. (2003). This is due to the different
natures of principal component analysis (PCA) and confirmatory factor analysis. PCA is an
exploratory analysis that does not involve explicit hypothesis testing as is the case with
MGCFA. In addition, the congruence coefficient has been criticized for sometimes giving
unjustifiably high values (Davenport, 1990). The rejection of the metric invariance model is
caused by several subtests, but most clearly by Vocabulary (MI = 20) and Symbol-Number
(MI = 18). The failure of metric invariance is probably the worst possible outcome, as it
implies non-uniform bias with respect to cohorts (Lubke et al., 2003a). Consequently, we
present the next steps for illustrative reasons only. In fitting Model 3 (& = @) the fit
deteriorated still further. The fit indices of the factorial invariance models (4a and 4b) all
indicate a clear deterioration in fit. Clearly the measurement intercepts are not invariant
over cohorts (i.e., 77 # 7). The latter is primarily caused by the Information subtest.
Because of the large number of parameters that show large modification indices in all non-
fitting invariance models, we do not attempt to fit a partial factorial invariance model. The
conclusion regarding the Estonian comparison is cleatly that factorial invariance does not
hold, and that the gains (either increases or decreases) found could not be explained by
latent (i.e., factor mean) differences between the cohorts. Overall, the greatest modification
index is found with the intercept of the Information subtest.

Again, factorial invariance between cohorts most clearly fails at the intercept level.
This result is in line with the results from the Jensen test conducted by Must et al. (2003).
The most notable difference between the analyses in that study and ours is the finding
concerning the factor structure.

4.8 General Discussion
The present aim was to determine whether observed between-cohort differences

are attributable to mean differences on the common factors that the intelligence tests are
supposed to measure. Stated otherwise, we wished to establish whether the Flynn Effect is
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characterized by factorial invariance. To this end, we conducted five studies comprising a
broad array of intelligence tests and samples. The results of the MGCFAs indicated that the
present intelligence tests are not factorially invariant with respect to cohort. This implies
that the gains in intelligence test scores are not simply manifestations of increases in the
constructs that the tests purport to measure (i.e., the common factors). Generally we found
that the introduction of equal intercept terms (77 = 72y Models 4a and 4b, see Table 4.1)
resulted in appreciable decreases in goodness of fit. This is interpreted to mean that the
intelligence tests display uniform measurement bias (e.g., Mellenbergh, 1989) with respect
to cohort. The content of the subtests, which display uniform bias, differs from test to test.
On most biased subtests, the scores in the recent cohort exceeded those expected on basis
of the common factor means. This means that increases on these subtests were too large to
be accounted for by common factor gains. This applies to the Similarities and
Comprehension subtests of the WAIS, the Geometric Figures Test of the BPP, and the
Learning Names subtest of the RAKIT. However, some subtests showed bias in the
opposite direction, with lower scores in the second cohorts than would be expected from
common factor means. This applies to the DAT subtests Arithmetic and Vocabulary, the
Discs subtest of the RAKIT, and several subtests of the Estonian NIT. Although some of
these subtests rely heavily on learned content (e.g., Information subtest), the Discs subtest
does not.

Once we accommodated the biased subtests, we found that in four of the five
studies the partial factorial invariance models fitted reasonably well. The common factors
mean differences between cohorts in these four analyses were quite diverse. In the WAIS,
all common factors displayed an increase in mean. In the RAKIT, it was the nonverbal
factor that showed gain. In the DAT, the verbal common factor displayed the greatest gain.
However, the verbal factor of the RAKIT, and the abstract factor of the DAT showed no
clear gains. In the BPP, the single common factor, which presumably would be called a
(possibly poor) measure of g showed some gain. Also in the second order factor model fit
to the WAIS, the second order factor (again presumably a measure of g) showed gains.
However in this model, results indicated that the first order perceptual organization factor
also contributed to the mean differences.

It could be argued that the current results depend to a large extend to the choice of
factor models. We put considerable effort in finding the best fitting models as the baseline
models. In addition, we have tested for factorial invariance using alternative models, and
found similar results to those reported here. Nevertheless, the interested reader is invited to
replicate results with other factor models. The samples used in the studies differ
substantively in size, resulting in differences in power to reject across-cohort equality
constraints. However, we considered several fit measures that differ in their sensitiveness to
sample size. Since those fit measures show a similar pattern, differences in statistical power,
although important, do not seem to be a critical issue.

Here we investigated factorial invariance at the subscale level. Measurement
invariance can also be investigated at the item level. Flieller (1988) compared two cohorts
of French eight-year-olds that were administered the "Gille Mosaique Test” in 1944 and
1984. Using a Rasch model to describe item responses in both cohorts, Flieller (1988)
found that two-thirds of the 64 items were biased with respect to cohort. That is, the
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majority of item parameters (i.e., item difficulty of the logistic item response function) in
the 1984 cohort differed from the item parameters in the 1944 cohort. This uniform bias
explained a large part of the test score increase on this Binet-type test over this 40-year
period (Flieller, 1988). Thus, like we did in the analysis of subtest scores, Flieller, in an
analysis of item scores, detected uniform measurement bias with respect to cohort.

With MGCFA it is possible to identify the subtests that display measurement bias.
Similarly, by means of analyses based on item response theory (IRT), such as Rasch
modeling, one can identify the individual items that are biased with respect to cohort
(Flieller, 1988). Knowing which subtests or items are biased enables one to formulate
testable hypothesis regarding the causes of the bias. Lubke et al. (2003a) have discussed
how covariates can be incorporated in a multi-group factor model to investigate the sources
of measurement bias. To do this, however, one has to identify covariates or “nuisance
variables” (Millsap & Everson, 1993) that can account for the bias. At the item-level several
approaches also have been proposed (Mellenbergh & Kok, 1991), such as correlational
research, quasi-experimental research, and experimental research. Research on the effects
of video games on intelligence test performance as described by Greenfield (1998) could be
seen as an example of the latter.

Generally speaking, there are a number of psychometric tools that may be used to
distinguish true latent differences from bias. It is notable that with the exception of Flieller
(1988), little effort has been spent to establish measurement invariance (or bias) using
appropriate statistical modeling. The issue whether the Flynn Effect is caused by
measurement artifacts (e.g., Brand, 1987, Rodgers, 1998), or by cultural bias (e.g.,
Greenfield, 1998) may be addressed using methods that can detect measurement bias, and
with which it is possible to test specific hypothesis from a modeling perspective. Consider
the famous Brand hypothesis (Brand, 1987; Brand et al., 1989), that test taking strategies
have affected scores on intelligence tests. Suppose that subjects nowadays more readily
resort to guessing than subjects in earlier times, and that this strategy results in higher
scores on multiple-choice tests. A three-parameter logistic model that describes item
responses is perfectly capable of investigating this hypothesis, since this model has a
guessing parameter (i.e., lower asymptote in the item response function) that is meant to
accommodate guessing. Changes in this guessing parameter due to evolving test taking
strategies would lead to the rejection of measurement invariance between cohorts.
Currently available statistical modeling is perfectly capable of testing such hypotheses.

MGCEFA is greatly preferred above the method of correlated vectors. In view of its
established lack in specificity (Dolan et al., 2004; Lubke et al., 2001) it is not surprising that
the method of correlated vectors gives contradictory results when it is applied to the Flynn
Effect (Colom et al, 2001; Flynn, 1999b; Must et al., 2003). For instance, following
Jensen’s method, we computed the correlations between the g-loadings and the
standardized increases in subtest means in the Dutch WAIS and RAKIT data. This resulted
in correlations of 0.60 (WAIS data) and 0.58 (RAKIT data). We know that in both datasets
factorial invariance is not tenable. Yet correlations of about 0.60 are invariably interpreted
in support of the importance of g. For instance, the repeated application of the correlated
vectors method to Black-White differences in intelligence test scores are resulted in a mean
correlation of about 0.60 (Jensen, 1998).
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The recent applications of method of correlated vectors to intelligence score gains
(e.g., Colom et al., 2001; Flynn, 2000b; Must et al., 2003) followed Flynn’s critique on the
conclusions that Jensen and particularly Rushton (2000a) based on this method (Flynn,
1999¢, 2000a, 2000b). From its beginning the Flynn Effect has been regarded to have large
implications for the comparison of these B-W differences (e.g., Flynn, 1987, 1999¢). Since
the current approach (MGCFA) was previously applied in US B-W comparisons, we have
the opportunity to compare those B-W analyses to the current analyses of different
cohorts. Here we use results from Dolan (2000) and Dolan and Hamaker (2001), who
investigated the nature of racial differences on the WISC-R and the K-ABC scales. We
standardized the AIC-values of the Models 1 to 4a within each of the seven data sets, in
order to compare the results of tests of factorial invariance on the Flynn Effects and the
racial groups. These standardized AIC values are reported in Figure 4.2.

aic
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---l-- BPP

— — DAT HAVO
RAKIT

—%— NIT

- - — D&H 2001

--+--D 2000

Figure 4.2 Plot of standardized AIC values of data sets by stepwise models to achieve
Strict factorial invariance.

As can be seen, the relative AIC-values of the five Flynn comparisons show a
strikingly similar pattern. In these cohort comparisons, models one and two have
approximately similar standardized AICs, which indicates that equality of factor loadings is
generally tenable. A small increase is seen in the third step, which indicates that residual
variances are not always equal over cohorts. However, a large increase in AICs is seen in
the step to Model 4a, the model in which measurement intercepts are cohort-invariant (i.e.,
the strict factorial invariance model). The two lines representing the standardized AICs
from both B-W studies clearly do not fit this pattern. More importantly, in both B-W
studies it is concluded that measurement invariance between Blacks and Whites is tenable,
since the lowest AIC values are found with the factorial invariance models (Dolan, 2000,
Dolan & Hamaker, 2001). This clearly contrasts with our current findings on the Flynn
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Effect. It appears therefore that the nature of the Flynn Effect is qualitatively different
from the nature of Black-White differences in the US. Each comparison of groups should
be investigated separately. 1QQ gaps between cohorts do not teach us anything about 1Q
gaps between contemporary groups, except that each I1Q gap should not be confused with
real (ie., latent) differences in intelligence. Only after a proper analysis of measurement
invariance of these 1Q gaps is conducted, can anything be concluded concerning true
differences between groups.

Whereas implications of the Flynn Effect for B-W differences appear small, the
implications for intelligence testing in general are large. That is, the Flynn Effect implies
that test norms become obsolete quite quickly (Flynn, 1987). More importantly however,
the rejection of factorial invariance within a time period of only a decade implies that even
subtest score znterpretations become obsolete. Differential gains resulting in measurement
bias for example imply that an overall test score (i.e., IQ) changes in composition. The
effects on validity of intelligence tests are unknown, but one can easily imagine that the
factors that cause bias over the years also influence within-cohort differences. Further
research on the causes of the artifactual gains is clearly needed.

The overall conclusion of the present chapter is that factorial invariance with
respect to cohorts is not tenable. Clearly this finding requires replication in other datasets.
However, if this finding proves to be consistent, it should have implications for
explanations of the Flynn Effect. The fact that the gains cannot be explained solely by
increases at the level of the latent variables (common factors), which IQ tests purport to
measure, should not sit well with explanations that appeal solely to changes at the level of
the latent variables.

4.9 Appendix A: Description of the WAIS Subtests
Source: Wechsler (1955; 2000) & Stinissen et al. (1970)

Information (INF) contains 22 open-ended questions measuring general knowledge
concerning events, objects, people and place names.

Comprebension (COM) contains 14 daily-life or societal problems, that the subject has to
understand, explain, or solve. For this the subject needs to comprehend social rules and
concepts.

Arithmetic (ARI) contains 16 arithmetic items that the subject has to solve without the use
of paper and pencil.

Similarities (SIM) contains 13 word pairs about daily objects and concepts. The subject has
to explain the similarities of the words.

Digit Span (DSP) contains 14 series of digits that subjects has to recall verbally forwards (12
items) or backwards (2 items).

Vocabulary (170OC) contains 30 words of which the subject has to give the meaning.

Digit Symbol (DSY) contains 115 items containing pairs of numbers and symbols. The
subject uses a key to write down the symbol related to a number.

Picture Completion (PCO) contains 20 incomplete pictures of everyday events and objects
about which the subject has to name the missing parts.
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Block Design (BDE) contains 13 two-dimensional geometric figures that the subject has to
copy by arranging two-colored blocks.

Picture Arrangement (PAR) contains 10 items in which pictures have to be arranged in a
logical order.

Object Assembly (OAS) contains 5 puzzles of everyday objects that the subject has to
assemble.

4.10  Appendix B: Description of the Subtests from Borge Prien’s Prove
Source: Teasdale & Owen (1987; 1989; 2000)

Letter Matrices (LEM) contains 19 items (15 min) in a 3 x 3 matrix format, with cells
containing series of letters conforming to a pattern. The subject has to give the letter series
that conforms to this pattern.

Verbal Analogies Test (17AT) contains 24 verbal analogies that the subject has to
complement (5 min). The answers have to be chosen from a two lists of 100 possible
responses.

Number Series Test (NST) contains 17 series of four numbers, that the subject has to
complement (15 min).

Geometric Figures Test (GFT) contains 18 items (10 min) with complex geometric figures that
have to be composed by five simple figures.

411  Appendix C: Description of the DAT’83 Subtests
Source: Evers and Lucassen (1992)

Vocabulary (170) contains 75 items (20 min) in which out five words the respondent
has to choose the word with the same meaning as the target word, measures lexical
knowledge.

Spelling (SP) contains 100 words (20 min) of which the respondent has to judge the
correctness of spelling, measures spelling ability.

Language Use (ILU) contains 60 sentences (25 min) in which the respondent has to
look for grammatical errors, measures grammatical sensitivity.

Verbal Reasoning (17R) contains 50 verbal analogies (20 min) that the respondent has
to complement, measures lexical knowledge and inductive ability.

Abstract Reasoning (AR) contains 50 items (25 min) containing series of four
diagrams. The respondent has to choose the diagram that logically follows these series.
Measures inductive ability.

Space Relations (SR) contains 60 items (25 min) in which the respondent has to
imagine unfolding and rotating objects, measures visualization.

Numerical Ability (NA) contains 40 arithmetic problems (25 min) that the
respondent has to solve, measures quantitative reasoning.
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412  Appendix D: Description of the RAKIT Subtests
Source: Bleichrodt, et al. (1984)

Exclusion (EX) contains 30 items in which the child has to choose one out of four figures
that is deviant. This subtest measures inductive reasoning.

Dises (DI) contains 12 items in which the child has to put discs with holes on sticks. This
subtest measures spatial orientation and speed of spatial visualization.

Hidden Figures (HF) contains 30 items in which the child has to recognize two concrete
figures in a complex drawing. This subtest measures transformation of a visual field.

Verbal Meaning (1’M) contains 40 words, which meaning the child has to denote by pointing
out one out of four pictures. This subtest measures passive verbal learning.

Learning Names (LIN) contains 10 pictures of animals whose names the child has to learn.
This subtest measures active learning.

Idea Production (IP) contains 5 items in which the child has to produce names of objects and
situations that belong to a broadly described category. This subtest measures verbal fluency.

4.13  Appendix E: Description of the National Intelligence Test Subtests
Source: Must et al. (2003)

Aprithmetic (AR) contains 16 arithmetic problems that require a solution for an unknown
quantity.

Computation (CT) contains 22 items requiring addition, subtraction, multiplication, and
division of both integers and fractions.

Sentence Completion (SC) contains 20 items requiring filling in missing words to make
sentences understandable and correct.

Information (IN) contains 40 items about general knowledge.

Concepts (CC) contains 24 items requiring selecting two characteristic features from among
those given.

Vocabulary (170) contains 40 items requiring knowledge about the qualities of different
objects.

Synonyms-Antonyms ($A) contains 40 items requiring evaluation of whether the words
presented mean the same or opposite.

Analogies (AN) contains 32 items requiring transferring the relation between two given
words to other presented words.

Symbol-Number (SN) contains 120 items in which the correct digit must be assigned to a
presented symbol from a key.

Comparisons (CP) contains 50 items requiring same or different judgments about sets of
numbers, family names, and graphic symbols presented in two columns.
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The dark past, obscure present, and
bright future of African I1Q

On the basis of extensive reviews of the literature, Lynn concluded that average 1Q of the
Black: population of sub-Sabaran Africa lies below 70. In this chapter, the authors
evaluate published empirical data on this issue. Focus is on average scores of African
samples on Raven's Standard Progressive Matrices (SPM), Colonred Progressive
Matrices, Goodenough-Harris Draw-a-NMan test, and several other 1Q tests. 1 alidity of
1O tests in African samples is evaluated critically. Because of a general lack of rigorous
measurement invariance studies, it is uncertain to what degree 10 scores in Africa reflect
levels of general intelligence. Results show that average 1Q in Africa lies somewhere
around 80 when compared to US norms, and that SPM scores among African adults
have shown a secular increase over the years. 1 ariables representing health, fertility,
nutrition, educational attainment, modernization, and urbanization are shown to
correlate highly with national 10 over the world. 1t is concluded that the Flynn Effect is
in its infancy in Africa. Implications for genetic theories of race differences in intelligence
are discussed.

5.1 Introduction

On the basis of several extensive reviews of the literature, Lynn concluded that the
average 1Q of the Black population of sub-Saharan Africa lies below 70 (Lynn, 1978, 1991,
1997, 2003, 2006; Lynn & Vanhanen, 2002; cf. Rushton & Jensen, 2005a). In a critique on
Lynn’s 1978 and 1991 reviews, Kamin (1995) accused Lynn of distortions and
misrepresentations of data, which, according to Kamin, constituted “a truly venomous
racism” (p. 86). Lynn (2006, p. 244), in turn, accused anyone who might disagree with his
review of IQ in Africa of ignorance and/or political correctness (cf. Rushton, 1996).
Clearly, the topic of 1Q of Africans is highly controversial.

Ad hominem arguments, poor research (followed by simplistic conclusions), or
shying away from this subject (for whatever reason), will certainly not advance our
understanding. We view the study of group differences in IQ test scores as a valid scientific
undertaking, regardless of the nature of the groups. Our understanding of ethnic or racial
group differences depends on rigorous and careful research. The aim of the present chapter
is to present a balanced and critical evaluation of the present body of results of 1Q testing
in Africa. The specific aims of our study are threefold. First, we want to arrive at an
estimate of the average performance of the Black population of sub-Saharan Africa
(henceforth Africans) on three non-verbal tests of general cognitive ability. We express the
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average test performance in terms of IQ based on western norms because we want to
compare our estimate of average test performance to the only presently available results,
namely Lynn’s. The reader should be aware, however, that observed 1Q scores do #of equal
particular levels of general intelligence or g. Whether or not these observed test scores
actually reflect relative positions on the latent dimension of g, depends on many conditions,
which relate to our second aim. The second aim is to arrive at a better understanding of the
meaning of IQ test scores in Africa by focusing on the validity and the psychometric
properties of western IQ tests when applied to Africans. The notion of 1Q) testing in Africa
seems to elicit either a knee jerk rejection of the possibility of obtaining a valid measure
(e.g., Berry, 1974), or a blithe acceptance of this possibility (e.g., Herrnstein & Murray,
1994; Lynn, 2000). In our review, we attempt to determine whether the conditions for good
psychometric measurement have been met in African studies. The third aim of our study is
to evaluate the environmental correlates of mean IQ test scores, which are often proffered
in support of some causal interpretation of mean group differences in IQ. Here we
concentrate on environmental variables that are suspected to have caused gains in IQ levels
of western populations over the years (i.e., the Flynn Effect; Flynn, 2006; Neisser, 1998).
This part of our review suggests that it is very difficult to arrive at rigorous causal claims
concerning the nature of group differences in mean IQ test scores. However, when viewed
in the light of common explanations of the Flynn Effect (e.g., Barber, 2005; Blair, Gamson,
Thorne, & Baker, 2005; Ceci, 1991; Lynn, 1990; W. M. Williams, 1998; Zajonc & Mullally,
1997), there is reason to be optimistic about the future of average IQ in sub-Saharan
Africa.

5.2 Is Average IQ in Africa Really Below 70?

To estimate average 1QQ of countries or racial groups all over the world, Lynn draws
mainly on published data from cognitive ability tests such as Raven's Coloured Progressive
Matrices (CPM; J. C. Raven, 1956) or the Standard Progressive Matrices (SPM; J. C. Raven,
1960). These tests are generally considered to be excellent non-verbal indicators of general
intelligence or g (Carroll, 1993; Jensen, 1998), and have been administered often in Africa.
For instance, Fahrmeier (1975) collected CPM data of schooled and unschooled Nigerian
children. Lynn compared their CPM scores to British norms,30 which resulted in an average
IQ of about 69 (Lynn, 2006; Lynn & Vanhanen, 2002). In another study conducted in
Nigeria, Wober (1969) administered the SPM twice to a group of male factory workers.
Lynn compared their pretest scores to British norms and concluded that their average 1Q
was below 65. On the basis of these two convenience samples Lynn claims that average 1Q

30 Throughout this chapter, we assume that the work on IQ in Lynn and Vanhanen’s book is by Lynn. The
estimation of I1Q is described as follows: "Around 1973, data for the Coloured Progressive Matrices for a sample of
375 6-13 year-olds were collected by Fahrmeier (1975). In relation to the 1979 British standardization of the Standard
Progressive Matrices, the mean I1Q is 70. Because of the 6-year interval between the two data collections, this needs
to be reduced to 69" (Lynn & Vanhanen, 2002, p. 215). Lynn probably used a table provided on page 60 of the SPM
manual (J. C. Raven, Court, & Raven, 1996) to convert raw CPM scores to raw SPM scores, to compare these CPM
scores to British SPM norms of 1979. Note that his downward cotrection for outdated norms is an error because the
norms ate more recent than the test scores in Fahrmeier’s sample. Hence, according to the appropriate use of this
correction (i.e., 2 IQ points per decade), the IQ should have been raised by one point, not lowered by one.
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in Nigeria is below 70 (Lynn & Vanhanen, 2002). Additional published data of over 50
samples from various sub-Saharan countries have led him to conclude that the average 1Q
of Africans is around 67 (Lynn, 1978, 1991, 1997, 2003, 2006; Lynn & Vanhanen, 2002; cf.
Rushton & Jensen, 2005a). This low IQ level is rather implausible, because by western
standards (cf. DSM-1V; American Psychiatric Association, 1994), it would imply that more
than half of the African population suffers from mental retardation. This raises the
question whether Lynn’s estimate is accurate.

Several aspects of Lynn's work on African 1Q have been criticized (Barnett &
Williams, 2004; Dambrun & Taylor, 2005; Hunt & Sternberg, 2006; Kamin, 1995; Lane,
1994), although none of Lynn’s critics have brought new data to bear on the issue. One
point of critique is that Lynn’s estimate of average IQQ among Africans is primarily based on
convenience samples, and not on samples carefully selected to be representative of a
particular population (Barnett & Williams, 2004; Hunt & Sternberg, 2006). For example,
the samples of Fahrmeier (IN = 375) and Wober (IN = 806) neither were intended to be, nor
could be considered to be representative of the entire population of Nigeria, a country with
over 130 million inhabitants. Moreover, despite his objective of providing a “fully
comprehensive review [...] of the evidence on [...] differences in intelligence worldwide”
(Lynn, 20006, p. 2), in his review of 1Q) in Africa, Lynn does not consider a sizeable portion
of the literature. For instance, Lynn did not consider several studies with the SPM in
Nigeria (Magsud, 1980a, 1980b; Okunrotifa, 1976) that clearly indicated that average IQ in
this country is considerably higher than 70. In the current study, we tried to locate
additional published data of western IQ tests that are most commonly used throughout
Africa, namely the SPM, CPM, and the Goodenough-Harris Draw-a-Man test (DAM;
Goodenough, 1926; Harris, 1963). In addition, we review and discuss all sources of data
given by Lynn in his two latest books (Lynn, 2006; Lynn & Vanhanen, 2002). These
additional IQ data are based on the Kaufman-Assessment Battery for Children (Kaufman
& Kaufman, 1983), the Wechsler scales (Wechsler, 1974, 1981), and several other IQ) tests.
Implications

Lynn’s work on African IQ is often taken at face value (e.g., Abdel-Khalek &
Raven, 2006; Campbell, 1996; Herrnstein & Murray, 1994; Kanazawa, 2004; Miller, 1992;
Reeve & Hakel, 2002; Rindermann, 2006; Rushton & Skuy, 2000; Rushton, Skuy, & Bons,
2004; Rushton, Skuy, & Fridjhon, 2002, 2003; Sarich & Miele, 2004; Skuy et al., 2002; Te
Nijenhuis, De Jong, Evers, & van der Flier, 2004; Teasdale & Owen, 2005), even by his
critics (e.g., MacEachern, 2000). Moreover, Lynn’s estimates of national IQ) are used as data
in several studies (Barber, 2005; Dickerson, 2006; Jones & Schneider, 2006; Kirkcaldy,
Furnham, & Siefen, 2004; Meisenberg, 2004; Morse, 2006; Templer & Arikawa, 2000;
Voracek, 2004; Weede & Kampf, 2002; Whetzel & McDaniel, 2006), which were mainly
concerned with predicting national differences in economic development. In addition,
Lynn’s reviews of low average IQ in sub-Saharan Africa are accorded a central role in
theories, which state that race differences in intelligence test scores have a substantial
genetic component (Jensen, 1998; Levin, 1997; Lynn, 2006; Miller, 1995; Rushton, 2000b;
Rushton & Jensen, 2005a; Templer & Arikawa, 2000).

The essence of these theories is that lower intelligence test scores of Africans and
African Americans compared to people of European or Asian descent have evolutionary
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causes (Lynn, 2006; Rushton, 2000b; Rushton & Jensen, 2005a). These theories further
state that African Americans have a certain degree of genetic European-African admixture,
which should raise their intelligence levels as compared to Africans (Lynn, 1991; Rushton
& Jensen, 2005b). The implicit assumptions underlying this reasoning (Loehlin, 2000) are:
(1) that Africans and people from European descent differ in the frequencies of genes
affecting intelligence, (2) that these genes act in an additive fashion, and (3) that the African
and European gene pools among African Americans are representative of the ancestral
African and European gene pools, respectively. If this is the case, it follows that African
Americans should have considerably higher 1Q) levels than Africans. Average 1Q of African
Americans is usually estimated to be 85 (Gottfredson, 2005; Jensen, 1998; Rushton &
Jensen, 2005a) or somewhat higher (Dickens & Flynn, 2006). On the basis of his genetic
theory of race differences in intelligence and the genetic Black-White admixture of African
Americans, Lynn asserts that if the environmental circumstances of Africans would be as
good as those of African Americans, average 1Q of Africans should be around 80. He
states that adverse environmental circumstances in Africa depress African 1Q levels
considerably below 803! (Lynn, 2006, p. 71). Thus, our estimate of average 1Q in Africa
provides as an empirical test of Lynn’s theory.

The genetic or evolutionary theories of race differences in intelligence presuppose
that IQ test scores are valid indicators of general intelligence throughout the world. The
question arises whether these scores are valid and comparable to scores in western samples
in terms of general intelligence (Barnett & Williams, 2004; Ervik, 2003; Hunt & Sternberg,
20006; Lane, 1994).

5.3 Measurement Problems and Psychometric Comparability

A person’s IQ score and a person’s level of latent general intelligence or g can not
simply be equated for the simple reason that IQ tests are fallible instruments. Often in
Africa, 1Q tests are not administered in conditions resembling those in developed
countries. For instance, in Fahrmeiet’s study with the CPM in Nigeria, "children were
tested on porches, in entrance rooms, or under trees" (Fahrmeier, 1975, p. 282) by untrained
personnel. This does not compare very well with the official guidelines as formulated in the
test manual: ""The person to be tested is seated comfortably opposite the psychologist at a
table about 2 feet wide" (J. C. Raven, 1950, p. 13). Often more than not, test administration
in Africa occurs on the ground, on veranda’s, under trees, or in overcrowded and sparsely
furnished classrooms (e.g., Berry, 1983; Fahrmeier, 1975; Hunkin, 1950). Such non-
standard test settings, combined perhaps with harsh climatic circumstances (cf. Sternberg,
2004), are likely to depress performance.

Moreover, the claim that non-verbal IQ tests are “devoid of cultural content” (e.g.,
Templer & Arikawa, 2006, p. 122) does not sit very well with the following measurement
problems. Several items in the CPM and SPM contain geometric shapes which have no
names in many African languages (Bakare, 1972). It is not uncommon in (rural) Africa to

31 Based on his estimate of an average 1Q in Africa, Lynn asserts that adverse environmental circumstances lower
average 1Q in Africa by 13 points.
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come across test takers who are unfamiliar with color-printed material (Giordani, Boivin,
Opel, Dia Nseyila, & Lauer, 1996), or who are inexperienced with using a pencil (Badri,
1965b). Giving such test takers a paper-and-pencil test with unknown colored geometric
shapes (e.g., CPM) is not likely to produce test scores that accurately measure general
intelligence. Unfamiliarity with the stimulus material in western 1Q tests are only the tip of
the iceberg of the many possible cultural effects that may affect performance of African
test takers when diagrammatic non-verbal intelligence tests such as the CPM or SPM are
used to assess general cognitive ability. Other IQ tests include similar or alternative formats
that may be equally unfamiliar to African test takers. For instance, for some African
children photographs are an entirely new phenomenon (Fahmy, 1964). Besides, Africans
may not think that acting fast represents intelligent behavior (Mpofu, 2004; Wober, 1974),
the idea of responding to a multiple choice format may be entirely new to some African
test takers (Irvine, 1966), and it cannot be assumed that a standard instruction enables test
takers to fully comprehend what is expected from them (e.g., Kendall, Verster, & Von
Mollendorf, 1988; MacArthur, Irvine, & Brimble, 1964). Such problems have led several
authors to conclude that intelligence testing is strongly culturally determined (Berry, 1974,
1976; Greenfield, 1997; Irvine, 1969b; Nell, 2000; Sternberg, 2004). Cleatly, measurement
problems associated with IQ testing in Africa should not be ignored.

Others have claimed that I1Q test scores are nevertheless comparable across
cultures (Lynn, 2006; Rushton, 2000b). However, before one can interpret IQ test scores
differences across individuals or groups in terms of some latent cognitive ability (e.g., ),
several conditions have to be met. Necessary but zusufficient conditions for such an
interpretation concern reliability and validity of tests. That is, the test scores must show
some level of consistency, either internally, or in repeated testing. In addition, the test
scores should show merit in their correlation with other cognitive ability test scores (i.e.,
convergent validity). Ideally, structural equation modeling is employed to shed some light
on factors involved in test performance. Test scores’ validity may be substantiated by their
prediction of criteria such as school grades (i.e., predictive validity). Predictive regression
lines can be compared across groups, but these do not establish conclusively the absence of
measurement bias (Millsap, 1997a). For a comparison across diverse cultural groups to be
truly valid, tests and items should function equivalently in all groups of test takers to be
compared. Specifically, tests and items should display measurement invariance with respect
to groups (Mellenbergh, 1989; Millsap & Everson, 1993).

Measurement invariance across groups implies that the relation between test scores
and latent traits, which are supposed to underlie those scores, is identical across groups.
Measurement invariance can be tested by employing a measurement model in which this
relation between test scores and latent trait(s) is explicitly modeled (Holland & Wainer,
1993; Meredith, 1993; Millsap & Everson, 1993). The relation between test scores and
latent traits is central to the question of cross-cultural comparability of IQ test scores (e.g.,
Little, 1997; Poortinga & van der Flier, 1988). Within Item Response Theory (IRT) models,
measurement bias is called Differential Item Functioning (DIF). DIF is said to be absent
when, in a sufficiently restrictive measurement model (e.g., an unidimensional three
parameter logistic item response model), measurement parameters linking ability to tests
scores are approximately equal across groups (i.e., not-significantly different). The absence
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of DIF (i.e., measurement invariance) provides strong support for the claim that the test
score differences across groups reflect group differences on the latent trait that is supposed
to underlie those scores. Put differently, if measurement invariance is supported, this
implies that we are measuring the same thing in different groups. However, as long as
measurement invariance has not been established, one cannot simply conclude that the
measurement problems with IQ) testing in Africa are irrelevant.

IQ scores may or may not reflect accurately levels of general intelligence or g For
instance, in factor analytic studies (Carroll, 1993) the SPM has often shown a high g loading
(i.e., strong correlation with g), but that does not mean this test does not measure additional
traits (e.g., Carpenter, Just, & Shell, 1990; Dillon, Pohlmann, & Lohman, 1981; Mackintosh
& Bennett, 2005; van der Ven & Ellis, 2000). If groups differ on such an additional trait
besides g, a group difference in SPM scores does not solely reflect a group difference in g.
In one of the few factor analyses in which SPM scores of Africans were factor-analyzed
with additional cognitive ability tests, the SPM did appear in some samples to load on
additional factors besides g (Irvine, 1969b). Therefore, group differences in SPM or CPM
scores can not simply be interpreted as group differences in g. In our review, we consider
psychometric properties, measurement invariance, and factorial nature of the SPM, CPM,
and DAM tests in Africa.

Misunderstanding instructions, measurement bias, and suboptimal testing
conditions may all lead to an underestimation of cognitive ability of IQ of Africans.
Therefore, we exclude from our review of average 1Q in Africa those samples in which
such effects were obvious. However, measurement invariance studies involving Africa
samples are very sparse, and not all data sources include sufficient information to establish
whether testing conditions were acceptable (e.g., whether test takers understood the
context and the instructions). Therefore, we stress the importance of care in interpreting
the IQ scores in Africa, which we will provide below: IQ test scores and general
intelligence are distinct entities (Bartholomew, 2004).

5.4 The Flynn Effect

Besides psychometric problems, there are several possible reasons that average 1Q
scores among Africans are often lower than average IQ) scores in western populations.
Lynn (2006) and Rushton and Jensen (2005a) have claimed that genes play an important
role, while environmental circumstances are less important. However, the prenatal,
postnatal, and childhood circumstances of many African children are not as good as those
in the developed world (e.g., Mung'ala Odera, Snow, & Newton, 2004; Sigman, Neumann,
Jansen, & Bwibo, 1989). Moreover, variables related to economic and social development
are known to have a strong positive effect on average 1Q scores. In the western world,
average 1QQ scores have shown remarkable gains over the course of the twentieth century
(Flynn, 1984, 1987, 20006). These gains have been largest for non-verbal tests once
considered relatively unaffected by cultural factors. For instance, in The Netherlands an
unaltered version of Raven's SPM test was administered to male military draftees from
1952 to 1982. The 1982 cohort scored approximately 20 1Q) points higher than the 1952
cohort (Flynn, 1987). Proposed causes of this so-called Flynn Effect include gains in test
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sophistication (Brand, 1987) and improvements in test specific skills (Greenfield, 1998;
Wicherts et al., 2004). Other proposed causes are related to gains in latent cognitive ability,
such as improvements in nutrition (Lynn, 1989, 1990), urbanization (Barber, 2005),
improvements in health care (W. M. Williams, 1998), a trend towards smaller families
(Zajonc & Mullally, 1997), increases in educational attainment (Ceci, 1991; Husén &
Tuijnman, 1991; Tuddenham, 1948), improvement of educational practices (Blair et al.,
2005), greater environmental complexity (Schooler, 1998), the working of gene by
environment correlation in the increasing presence of more intelligent others (Dickens &
Flynn, 2001), and the genetic effect of heterosis (Mingroni, 2004). Although there is some
indication of a similar secular trend in IQ scores on the CPM in Kenya in recent years
(Daley, Whaley, Sigman, Espinosa, & Neumann, 2003), little is known about the Flynn
Effect in Africa. However, in developing countries south of the Sahara, most of the
environmental variables assumed to be responsible for the Flynn Effect, have not been
subject to the improvements that the developed wotld has enjoyed over the last century. As
far as the data permit, we will also focus on possible secular trends in 1Q test scores in
Africa. In addition, in the last part of our study we relate estimates of national 1Qs of sub-
Saharan African countries and other countries around the world to variables that have been
proposed as causes for the Flynn Effect in the developed world. The results of this exercise
may contribute to our understanding of the current status of African IQ levels and of the
potential of the Flynn Effect in sub-Saharan Africa.

5.5 Average IQ in Africa

Our review focuses primarily on the SPM and CPM. These tests are commonly
used in Africa, and Lynn’s review of African IQ draws mainly on SPM and CPM data. In
addition, the SPM and CPM are non-verbal tests that are often claimed to be the best
indicators of g. According to Spearman’s hypothesis (Jensen, 1998), which states that g is
the main locus of mean differences in IQ scores, these tests should show the largest
difference between African and European samples. We also consider the DAM test
because it is used commonly in Affrica. Because the DAM test is less highly g loaded
(Jensen, 1980), Spearman’s hypothesis implies that African IQ on the DAM should be
higher than IQ on the CPM and SPM tests.

Method

Selection bias

It is well known that the use of convenience sampling may result in highly
inaccurate estimates of the characteristics of a population. In his attempts to estimate
average scores of the population of (countries in) sub-Saharan Africa, Lynn uses published
studies, which often employed convenience sampling. For instance, Fahrmeier (1975) did
not intend his sample to be representative for the entire population of Nigerian school-
aged children. If so, he would not have sampled children solely from one of the many
ethnic groups in Nigeria. More importantly, he would not have restricted his sampling
scheme to children in one town in North-Nigeria, a part of Nigeria where primary school
attendance was considerably below the national average in the 1970s (i.e., under 30% as
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opposed to 71% nationwide; Maduagwu, 2003). Nevertheless, some samples used by Lynn
to arrive at population estimates of average test scores in sub-Saharan Africa were in fact
sampled carefully to be representative of a (sub)population of a particular country (e.g.,
Costenbader & Ngari, 2001; MacArthur et al., 1964). Unfortunately, Lynn ignores a sizeable
portion of studies in which IQ tests were administered in Africa. Besides, he gives small
unrepresentative samples as much weight as large representative ones in his estimates of
average 1Q of Africans. Because in most cases representative samples are much larger than
convenience samples, one straightforward, albeit partial, solution to the issue of selection
bias is to weight average 1Q scores by sample size. An additional reason to do so, is that the
effect of sampling variability decreases as sample size increases.

Note that our review of the literature and our estimates of average IQ are
concerned with the overall Black population of sub-Saharan Africa. This represents a crude
generalization that does not do justice to the wide cultural, social, and economic differences
between the many peoples of sub-Saharan Africa. However, the data are generally
insufficient to arrive at an acceptable estimate of average I1Q per country or cultural group.

Selection of Studies

We did not limit our attention to studies identified by Lynn. Instead, we tried to
locate studies in which the IQ tests most commonly used in Africa (SPM, CPM, DAM)
were administered to samples of Africans. To this end, we used Psychinfo and a
combination of various search terms. The search terms we used were "Raven", "IQ",
"progtressive matrices", "Draw", combined with the words "Africa", “African”, and the
names of all countries in the continent (e.g., "Nigeria" or "Nigerian"). We located additional
papers while scanning the reference lists of the papers we found. In addition, we collected
in Web of Science all articles (from 1988 onwards) referring to the various manuals of the
SPM, CPM, and the DAM. This resulted in about 2500 papers for the SPM/CPM and 300
papers for the DAM. The titles of all these papers were scanned for relevance. We used
only books, papers, or reports that were available through the IBL system in the
Netherlands, a system to which 400 Dutch libraries are connected. Although our approach
resulted in a large sample of studies of African I1Q, it is conceivable that we missed other
studies.

The following criteria were employed in the selection of studies. First, the
condition of administration of the tests should reasonably approximate those stipulated in
the test manual. For instance, we excluded the SPM scores of Zindi's (1994a) sample of
Zimbabwean school children, because the SPM was not administered in its entirety (i.e.,
only 36 of the 60 items were given), and because it is not clear how Zindi arrived at his IQ
estimate of 70. We also disregarded Klingelhofet's large sample of secondary school
students from Tanzania (average 1Q of 78 according to Lynn), because Klingelhofer
imposed a time limit on the SPM (a nonstandard condition). He did so to "[preclude]| some
of the kinds of comparisons that have marked the literature" (Klingelhofer, 1967, p. 200).
Whenever tests were administered twice, we used the pretest scores. We did not assign 1Q
values to studies in which the SPM, CPM, or DAM did not meet basic psychometric
standards, as will be discussed in the results section. For instance, the test-retest reliability
in Wober’s sample of Nigerian factory workers was 0.59, i.e., lower than the 0.80 typically
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found with the SPM (J. C. Raven et al.,, 1996), and the correlation between pretest SPM
scores and educational attainment did not deviate significantly from zero (see also Wober,
1966). Therefore, we did not consider this sample in our estimation of average 1Q.

We used only data sets from sources which included sufficient descriptive statistics.
This excluded a large number of studies, in which raw means or percentile scores were not
given. Whenever medians were given, we took the median as an estimate of the mean. In
one source (Morakinyo, 1985), percentile scores were reported, and we translated these to
approximate raw means to compare the scores to a more recent norm table. Unless stated

otherwise, all IQs are standardized 1Qs normed in Great Britain (CPM, SPM) or the US
(DAM).

The last criterion is concerned with norms. We excluded CPM data of age ranges
for which no British norms exist. This criterion resulted in the exclusion of several studies
in which the CPM was administered to adolescents and adults (Betlioz, 1955; Berry, 1966;
Binnie Dawson, 1984; Boissiere, Knight, & Sabot, 1985; Kendall, 1976; Sternberg et al.,
2001). Lynn assigns average 1Qs below 70 to these samples (cf. Herrnstein & Murray,
1994). However, there are no (British) CPM norms above the age of 11. Lynn (R. Lynn,
personal communication, June 22, 2006) employs a table from the SPM manual (J. C.
Raven et al.,, 1996) with which CPM scores can be converted to SPM scores (cf. Lynn,
1997). These approximate SPM scores can be compared to norms for adults, allowing a
rough estimate of 1Q. However, this method does not result in accurate estimates of 1Q,
because the CPM is too easy for healthy test-takers above the age of 11. This results in a
problematic ceiling effect. Because of this ceiling effect, it is very hard to get an above-
average SPM-norms IQ on the CPM. For instance, the only possible CPM score equivalent
to an above average 1Q for a twenty-year-old would be a perfect score on this 36-item test.
That is, an CPM score of 36 is equivalent to an SPM score of 57 (J. C. Raven et al., 1996),
which corresponds to an IQ of 115. Likewise, a CPM score of 34 corresponds to an 1Q of
93. However, some unreliability would normally lead an above average intelligent adult to
make a few mistakes on the CPM. With 4 errors, the adult’s IQ score drops to 84. This
effect virtually guarantees an underestimation of 1Q with the CPM in samples above the
age of 11, particularly in adults. The drawbacks of this conversion method are evidenced by
the fact that a carefully selected norm sample of 894 normal healthy adults from Italy and
San Marino (Measso et al,, 1993) would have had an average 1Q of 75 on the CPM
according to this conversion method. Even in the subsample of those with at least 14 years
of schooling (IN = 89), average 1Q based on this method would be as low as 84. Because
this conversion method does not result in reasonable IQQ estimates, we do not consider 1Q
scores based on CPM scores of adults and adolescents.

Converting Raw Scores to 1Q
While IQ scores on the DAM are usually provided in the original source, the SPM
and CPM raw scores need to be converted to percentile scores given in norm tables. These
percentile score are then translated to 1Q scores on the basis of a normal distribution with
M =100 and SD = 15. For the SPM scores collected during the 1950s and 1960s, we use
British norms of 1938 for children and 1948 norms for adults (both of which are given in:
J. C. Raven, 1960). For the data collected after 1965 (i.e., the midpoint of various
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SPM/CPM standardizations), we used British SPM norms of the 1979 standardization for
children (J. Raven, 2000) and the 1992 standardization for adults (J. C. Raven et al., 1990).
Likewise, we used the 1956 British norms (J. C. Raven, 1956) of the CPM for samples in
the 1950s and the first half of the 1960s. For samples beginning 1966, we employed the
British CPM norms of 1982 (J. C. Raven, Court, & Raven, 1990). In contrast to Lynn's
approach, we did not correct for the Flynn Effect. The primary reason is that the secular
trend has not been documented in African countries, and so we cannot reasonably correct
for an effect, which has not been established. In addition, we chose the year of 1965 as a
midpoint, so the upward and downward corrections would be approximately?? balanced.

It is important to note that Raven never intended to use the Progressive Matrices
tests to be used as an IQ) test. There are indeed several reasons for not converting Raven’s
scores to 1Q)s. First, the Progressive Matrices are limited to a single test-format. If the test
taker is unfamiliar with this format, or the stimulus material in it, intelligence will be
underestimated. In addition, in comparison to 1Q batteries, such as the Wechsler scales
(Wechsler, 1974, 1997), the number of items in Raven's scales is quite small in the SPM
(i.e., 60 items), and smaller still in the CPM (i.e., 36 items). An additional problem arises in
the translation from SPM/CPM raw scores to 1Q scores, particulatly in the extreme scote
ranges. For instance, a raw SPM score of 9 for a 7 year-old equals the first percentile of the
British 1979 norms of this age group. Given a normal distribution with a mean of 100 and
an SD of 15, this first percentile is equivalent to an 1Q of 65. However, suppose that by
chance our 7-year-old were to guess one additional item correctly. This would raise the raw
score to 10, which is equivalent to the fifth percentile in the 1979 SPM norms, which
corresponds to an IQ of 75. In the extremes of the distribution, norm tables include large
leaps, and a single item that functions differentially between groups (i.e., is biased) might
mean a 10-point IQ effect.

In our calculation of 1Qs based on raw SPM and CPM scores, we tried to be as
careful as possible. Because most of these norms tables do not give percentiles for all raw
scores, some inter- and extrapolation was necessary to arrive at percentile scores. In the few
cases in which a raw mean was below the 1t percentile, we assigned an 1Q of 64 (similar to
the approach employed by Lynn & Vanhanen, 2002). In studies where scores were reported
for subsamples, we first estimated IQs for the separate groups, and then computed an IN-
weighted average of 1Q scores. Whenever scores were given for a particular age range (e.g.,
7-8 years), the average 1QQ was compared to the norms for the corresponding age groups
(e.g., 7, 72, 8, and 8" year-olds). The average IQQ was an average of these age-norms after
weighing for sample size. If a data source indicated that the age distribution was peaked at a
certain age, we adjusted our estimates accordingly. Our approach almost always resulted in
an 1Q estimate that was equal to the estimate that was based on the overall average raw
score of the sample, when compared to the norm that corresponded to the average age of
the entire sample. If not, we took the average 1Q) of both approaches. All steps in the

32 Nevertheless, we did check whether the Flynn Effect correction made a difference. The correction used in our
check is based on Lynn’s approach in which British norms on the SPM and CPM should be lowered by 2 IQ points
per decade when data is more recent than standardization, or 2 points per decade upwards whenever the data is older
than the standardization (Lynn & Hampson, 1986). Similatly, for the DAM, we also follow Lynn’s adjustments of 3
1Q points per decade.
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estimation of IQ scores are available upon request by the first author. We note that in
determining 1Q), it is conceivable that the aggregation of raw scores from different test
takers with varying ages does not necessarily match the average of 1Q scores, when these
are computed at the individual level. In sum, the assignment of 1Q) values for the SPM and
the CPM is problematic, and the values we provide are only given in order to arrive at a
rough estimate of average IQ that can be compared to the average 1Qs estimated by Lynn.

Results
The overview of studies into I1Q of samples sub-Saharan African is now provided
for each of the most commonly used tests separately. Next, we will focus on some of the
additional data provided by Lynn to back up his claim that average IQ in Africa lies around
67. After that, we will discuss the issue of measurement invariance, and the data employed
by Lynn to validate his estimates of national 1Q.

Raven's Standard Progressive Matrices

1O estimate. Table 5.1 gives average SPM scores and corresponding 1Q) scores for 38
samples in sub-Saharan Africa, totaling 13,880 cases, of which 8,808 cases (63%) were
included in Lynn’s (2000) latest literature review. The table reports the country of origin, a
short description of the sample, the sample size, the approximate or given year of
administration, the age range or average age, the percentage of formally schooled (i.e., more
than 3 years of education) persons in each sample, reliability of the SPM (where given), the
average raw score, range of raw SD values per subsample (where given), our IQ estimates,
and the 1Q estimates provided by Lynn (2006). Of the 36 samples to which we did assign
an 1Q (IN = 13,727), the average 1Q varies between 69 and 97 compared to an average 1Q
of 100 in Great Britain. Combining these averages results in an N-weighted mean IQ of 78
(median 78, SD = 5.8).33 Average 1Q on the SPM in the United States is approximately 2
points lower than the average in Great Britain (Lynn & Vanhanen, 2002; J. C. Raven et al.,
1996). If we choose to compare the African SPM scores to an 1Q of 100 for the United
States, average SPM 1Q) in sub-Saharan Africa would be 80 (median 80) on the basis of the
present samples.

The samples that were considered by Lynn, but to which we did not assign an
average 1Q are Wobert's (1969) sample of factory workers, and Verhaegen’s (1956) sample
of uneducated adults from a primitive tribe in then Belgian Congo in the 1950s. Verhaegen
indicated that the SPM test format was rather confusing to these test takers and that the
test did not meet the standards of valid measurement. In Wober's study, the reliability and
validity were too low for valid measurement (Wober, 1975). Besides, it is rather hard to
believe that the highest scoring person in Wober’s sample (whose raw score was 27) did not
reach the cognitive level of an average 8-year-old British child. Unless one subscribes to the
view that these employed men are mentally retarded, these data cannot be taken seriously.

Three of the remaining samples show average 1Qs below 70. These are Owen's
large sample of Black school children South African tested in the 1980s, the 17 (not 26 as

33 Were one to correct for the Flynn Effect in a way comparable to Lynn (cf. Footnote 32), the average 1Q equals 77.
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Lynn reports) Black South Africans carefully selected because of their illiteracy by Sonke
(2001), and a group of uneducated Ethiopian Jewish children who lived isolated from the
western world in Ethiopia, and immigrated to Israel in the 1980s (Kaniel & Fisherman,
1991). Apart from Owen's sample, these samples cannot be considered population samples.

Carefully selected samples are Irvine's (1969b) random selection from the 1962
standardization of several tests among schooled children in Zimbabwe (then Southern
Rhodesia), the standardization data from the Northern Rhodesia Mental Survey
(MacArthur et al., 1964), Notcutt's (1950) standardization samples of Zulu school children
and literate and illiterate Zulu adults in South Africa, and Jedege and Bamgboye's (1981)
randomly selected secondary school students in Nigeria. These more carefully sampled
groups of test takers all show average 1Qs of 75 or higher.

There are some large discrepancies between our IQ estimates and those provided
by Lynn. In some instances this is due to the Flynn Effect correction employed by Lynn
(e.g., Nkaya, Huteau, & Bonnet, 1994). Other discrepancies are due to the use of different
norm tables. For samples from before 1966, we used the UK norms of 1938/1948, whereas
Lynn calibrated all samples against the UK norms of 1979 for children, and the 1993 US
norms for adults. Despite his Flynn Effect correction, Lynn’s use of recent norm tables for
older samples leads to lower IQ estimates in several samples (Latouche & Dormeau, 1956;
Notcutt, 1950; Ombredane, Robaye, & Robaye, 1957; Pons, 1974). In some instances,
however, we wetre unable to replicate Lynn's 1Q estimate (KKozulin, 1998; Laroche, 1959;
Lynn & Holmshaw, 1990).3* For instance, Laroche's sample of adolescent boys (average
age 12.7) tested in 1955 scored on average 29.5, which corresponds roughly to the 8th
percentile (i.e., IQ of 79) for these age groups in the 1979 British standardization. Because
of Lynn's Flynn Effect correction (i.e., 24 years), this should be increased to an 1Q of 84.
However, Lynn writes that the average scores were below the 1st percentile (Lynn &
Vanhanen, 2002, p. 202), and assigns an average 1Q of 68 to this sample. Our estimate of
IQ in this sample is based on the comparison with 1938 norms, which gives a mean score
near the 17th percentile (IQ of 806) for these age groups.®> Further differences may have
arisen from the fact that we added two points to SPM scores when persons were tested
individually (Ahmed, 1989; Grieve & Viljoen, 2000; Lynn & Holmshaw, 1990; Sonke,
2001), in accordance with the explicit instructions in the test manual (J. C. Raven et al,,
1996). For several adult samples, Lynn's estimates lie somewhat higher than ours, possibly
because Lynn employed United States norms for adults, where IQ is slightly lower than in
Britain.

3 Lynn’s IQ estimate of children aged 9 and a half (Lynn & Holmshaw, 1990) is 65 (he additionally subtracts two
points for the Flynn Effect). This is probably based on a (rounded) score of 12. However, the mean of this sample
(i.e., 12.7) is closer to 13 and that score cortesponds to an IQ of 72 for 9-1/2 year-olds. Our estimate is higher still
because the SPM was administered individually in this study.

3 Note that with the addition of the Flynn Effect correction of 2 points per decade, this value should be lowered by
3 1IQ points, resulting in an IQ of 83.



Table 5.1

Sub-Sabaran African scores on the Standard Progressive Matrices

Source Country Sample description N Year Age Edu Rel M SD IQ IQLynn

(Ahmed, 1989) Sudan School children from Khartoum 146 +1988  8-12 100 - 18.56 - 77 72

(Crawford Nutt, 1976)  South Africa  Children from high school in Soweto 228  £1975 19 100 .82 45.00 5.6-6.1 83 -

(Grieve & Viljoen, South Africa  Impoverished University students 30 1996 19-29 100 - 37.37 6.79 75 77

2000; Sonke, 2001) in rural Venda

(Irvine, 1969b) Zimbabwe Random selection of children with 8 years 200 1962 14-18 100 - 27.8 9.89 81 -
of education

(Jedege & Bamgboye, Nigeria Random selection of secondary school 755 1977 11-15 100 - 28.49 - 77 -

1981) students in Oyo State

(Kaniel & Fisherman, Ethiopia Uneducated Ethiopian Jews in Israel 250 11985 14-15 0 - 27 - 69 69

1991)

(Kozulin, 1998) Ethiopia Ethiopian Jews immigrated to Israel 46 +1995  14-16 100 - 28.41 8.81-10.50 72 65

(Laroche, 1959) Congo-Zaire  Boys in schools in Elizabethville 222 1955 10-15 100 .94 295 8.9-11.9 86 68

(Latouche & Dormeau, Central Candidates for centre for accelerated 1144  £1953 17+ 100 - 19.54 7.82-9.45 72 64

1956) Afr. Republic  technical learning in Bangui

(Latouche & Dormeau, Congo-Braz.  Candidates for centre for accelerated 1596 £1953 17+ 100 - 23.93 9.15-9.74 78 64

1956) technical learning in Brazzaville

(Latouche & Dormeau, Congo-Braz.  Candidates for centre for accelerated 580  £1953 17+ 100 - 23.55 7.90-9.14 78 -

1956) technical learning in Pointe-Noire

(Lynn & Holmshaw, South Africa  Children from socially representative state 350 1988 9.5 100 - 12.7 4.5 77 63

1990) primary schools

(MacAtrthur et al., 1964) Zambia Repr. sample of students in class 6 759 1963 15.5 100 - 027 - 79 77

(MacArthur et al.,, 1964) Zambia Repr. sample of students in Form IT 649 1963 17.5 100 - 034 - 87 -

(MacArthur et al,, 1964) Zambia Technical college students 195 1963 18+ 100 - 030 - 84 -

(MacArthur et al.,, 1964) Zambia Mine farm youth students 292 1963 16.5 100 - 026 - 79 -

(Magqsud, 1997) South Africa  High school students of Batswana Tribe 140 +1995 17-20 100 .83 [139 - 75 -

(Magsud, 1980b) Nigeria Secondary school gitls in Kano city 136 £1979  13-15 100 - 38.7 533-6.12 85 -

(Magsud, 1980a) Nigeria Boys from two primary schools 120 +1979  11-12 100 - 22.1 4.1 72 -

(Morakinyo, 1985) Nigeria Psychiatric out-patients and controls 28 +1983 18+ ? - 047 - 87 -

(table continues)



Table 5.1 (continued)

Source Country Sample description N Year Age Edu Rel M SD IQ IQLynn
(Nkaya et al., 1994) Congo-Braz.  Secondary school children 88 +1992 1325 100 .91  29.6 11.6 75 73
(Notcutt, 1950) South Africa  Zulus in primary schools near Durban 1008 1948 8-16 100 - 22.49 3.70-10.90 81 75
(Notcutt, 1950) South Africa  Literate and illiterate Zulu adults 703 1949 17+ 44 - 22.15 6.90-11.85 75 64
(Ombredane et al,, 1957) Congo-Zaire = Members of Baluba tribe 320 1954 17-29 74 - 22.14 - 75 64
(Okunrotifa, 1976) Nigeria Rural primary school children 50 1974 5.5 100 - 012 - 87 -
(Okunrotifa, 19706) Nigeria Urban primary school children 100 1974 7.0 100 - 013 - 84 -
(Owen, 1992) South Africa  Children from schools in PWV 1093 1986 16 100 .93 27.65 10.72 69 63
and Kwazulu-Natal
(Pons, 1974) Zambia Bemba adult males employed in mining 152 1961 18+ 100 .82  23.18 8.5 77 64
(Pons, 1974) Zambia Bemba adult males employed in mining 1011 £1965 18+ 100 .88  33.66 9.79 87 -
(Raveau, Elster, & Madagascar  African adults working in France 143 £1975 18-49 100 - 40.92 12.47 79 82
Lecoutre, 1976)
(Raveau et al., 1976) Vatious African adults working in France 588 +1975 1849 100 - 38.47 12.02 74 -
(Rushton & Skuy, 2000) South Africa  University students in psychology 173 1998 17-23 100 .91  43.32 8.79 80 83
(Rushton et al., 2002) South Africa  University students in engineering 198  +2000 17-23 100 .87 50 6.4 92 93
(Skuy et al., 2002) South Africa  University students in psychology 70 +2000 17-29 100 - 43.20 7.84-10.24 80 81
(Sonke, 2001) South Africa  Illiterates from rural Venda 17 1995 1320 50 - 25.7 7.67 69 68
(Verhaegen, 1956) Congo-Zaire  Unschooled adults from Kasai 67 +1955 18+ 0 - 12.89 3.87 NA 64
(Wober, 1969) Nigeria Male factory workers 86 1965 18+ ? 59 159 4.84 NA 64
(Zaaiman, van der South Africa  Disadvantaged university students 147 1995 18+ 100 - 52.3 4.2 97 100

Flier, & Thijs, 2001)

Note: The assignment of 1Q values is problematic and these values are only provided in order to compare them to the IQs estimated by Lynn.
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From Table 5.1, it is apparent that the samples not considered by Lynn have
considerably higher average IQQ than the samples that he did consider. In some cases, Lynn
chose not to include in his review particular data despite the fact that these additional data
were presented in the same sources from which he drew his data (Crawford Nutt, 1976;
MacArthur et al., 1964; Raveau et al., 19706). In this respect, Lynn’s exclusion of the large
representative sample that MacArthur and colleagues collected for Form II students in
Zambia is particulatly striking.3¢

Note that five of the SPM samples reviewed here contain Black university students
from South Africa (Grieve & Viljoen, 2000; Rushton & Skuy, 2000; Rushton et al., 2002;
Skuy et al., 2002; Zaaiman et al., 2001). These students (IN = 618) score higher on average
(IQ: M = 88, median = 92) than the remaining samples. In some studies (Grieve & Viljoen,
2000; Rushton & Skuy, 2000; Skuy et al., 2002), the university samples scored lower than
would be expected from academically selected groups. One aspect of these samples is that
they were all tested by White researchers, which may have lowered test performance among
these Black students (Dambrun & Taylor, 2005; but see Jensen, 1980). Moreover, various
studies have shown that African American students may suffer from the performance
lowering effects of stereotype threat (Steele & Aronson, 1995; Steele et al., 2002). For
instance, in one study (McKay, Doverspike, Bowen Hilton, & Martin, 2002) African
American students were administered the Advanced version of Raven’s Progressive
Matrices under one of two conditions that differed in the presentation of this test. Students
who were told that they were doing an IQ test supposedly suffered from stereotype threat
(.e., the fear of conforming to the stereotype of lower I1QQ among African Americans),
which lowered their scores by about 5 IQ) points as opposed to African American students
who were led to believe they were making a non-intellectual test (i.e., a less threatening
condition in which the stereotype is irrelevant). Although we are not familiar with any
studies of the effect of stereotype threat on test performance in (South) Africa, given the
long history of constitutionalized discrimination of Blacks in South Africa, it would not be
surprising if stereotype threat has an effect (Suzuki & Aronson, 2005). According to
stereotype threat theory (Steele et al., 2002), this effect should have particularly strong
negative effects on test performance of test takers who are academically well motivated and
for whom intelligence is an important aspect of their identity, such as university students.
Further research into the effects of stereotype threat in (South) Africa is clearly needed.’

In contrast to the university students, 734 cases (5.3%) in Table 5.1 had no formal
schooling (defined as 3 years of education or less). These 734 uneducated test takers had an
N-weighted average 1Q) of approximately 71, which is considerably below the overall
average. Note that the SPM may lack validity in samples with no formal schooling (Dague,
1972), but lower scores among non-schooled test takers may also reflect true levels of

36 Lynn only used the representative sample of Standard 6 students of this elaborate study. It is unclear why he
excluded the other large sized samples in the Northern Rhodesia Mental Ability Survey, most notably the large
representative sample of Form II students. The raw median values of all samples are presented next to one another
in one table on page 84 of the report, so he could not have missed the other sample medians.

37 Dambrun and Taylor (2005) claimed that the entire Black-White IQ gap in the US can be accounted for by the
effects of stereotype threat, but this conclusion is not warranted (Sackett, Hardison, & Cullen, 2004; Wicherts,
2005b). In addition, the effects of stereotype threat have not been studied on representative samples of African
Americans, but mostly on small samples of university students.
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lower ability. Because in sub-Saharan Africa the percentage of unschooled young people is
around 20%,3® we may want to correct for this underrepresentation of unschooled persons.
A rough stratification for educational level could be achieved by adding 2514 fictional
uneducated cases with an IQ of 71 to the total sample. This would lower the average I1Q by
one point to 77. In sum, average 1Q of sub-Saharan samples covered in this review equals
78, or 77 when corrected for the underrepresentation of uneducated subjects. This needs to
be raised to 79 or 80 when compared to US norms. This is considerably higher than Lynn's
estimate of sub-Saharan African 1Q based on the SPM data, which, when weighted by
sample size, would result in a mean IQ of 69 and a median of 64.

Psychometric properties. As can be seen in Table 5.1, the reliability of the SPM was
computed in several studies in Africa. Reliabilities are generally above 0.80, which is
comparable to those found in western samples (J. C. Raven et al., 1996). Only in Wober’s
(1969) sample, the reliability was unacceptably low.

Convergent validity of the SPM is studied mainly in South-Africa. Grieve and
Viljoen (2000) report a correlation of 0.40 between SPM scores and a reasoning test.
MacArthur et al. (1964) and Notcutt (1950) correlated SPM scores with various
achievement and cognitive ability tests, which resulted in reasonably high correlations.
Moreover, SPM scores were found to correlate considerably with the performance of a
perceptual learning potential test among South-African students (Skuy et al., 2002), and
with the performance on a verbal learning task among healthy and unhealthy adults in
Nigeria (Morakinyo, 1985). Likewise, Crawford Nutt (1977) reports significant correlations
between the SPM and several reasoning tests.

In Crawford Nutt’s (1977) principle axis analyses on these data, the SPM scores did
not show the highest factor loading on the dominant axis, indicating that the SPM may not
be as highly g loaded as it is in western samples. Irvine (1969b) conducted a factor analysis
of SPM items and concluded that, unlike in the western samples studied by him, the SPM
was not unidimensional in African samples. In a large scale factor analytic study employing
data from Zambia and Zimbabwe, Irvine (1969a) found that the SPM was not solely an
indicator of g in one sample, although it was in another sample.

Predictive validity of the SPM was studied by Zaaiman et al. (2001), who found that
the SPM correlated reasonably well with college performance. In addition, Magsud (1980a)
found highly significant correlations between SPM scores and school grades. An interesting
aspect of Maqsud’s study was that these correlations were generally higher in the modern
school than in the more traditional school. Howevert, this could also be due to differences
between schools in grading practices or student population.

Some studies failed to support validity of the SPM in Africa. Laroche (1959) found
non-significant or only low correlations between SPM scores and school grades. In stark
contrast to comparable samples of children from Britain, Japan, and Hong Kong (cf. Lynn,
1991), Lynn and Holmshaw (1990) did not find SPM scores in their sample of Black South
African children to correlate significantly with reaction time tasks (at least not with the
cognitive aspects of these tasks; Jensen, 1998). Ogunlade (1978, not in Table 5.1) obtained
a correlation of only 0.15 between SPM scores and school achievement among 537

38 Based on UNESCO estimates of gross enrollment ratio in primary education over the period 1970-2003.
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secondary school students in Nigeria. Finally, Wober (1966; cf. Wober, 1969) reported a
non-significant negative correlation between SPM scores and assessments of job efficiency
among 173 Nigerian employees. These negative results signal the need for more validity
studies of the SPM in Africa.

To summarize, judged by correlations with criteria and other tests, the SPM has
been found to be valid as well as invalid in Africa. Several studies support convergent and
predictive validity of the SPM in Africa, particularly among samples with relatively high
scores. However, in light of the many claims of unsuitability of the SPM in Africa (Irvine,
1969b; Ogunlade, 1978; Verhaegen, 1956; Wober, 1966, 1975) more research into the
construct validity of the SPM is clearly needed. There is also a clear need for more work on
the factorial status of the SPM in African samples (Irvine, 1969a). It is unclear (Crawford
Nutt, 1977) whether the SPM is as highly g-loaded in Africa as it is in the west (Carroll,
1993), and whether the SPM is factorially pure remains to be seen. Additional factor
analyses with a larger battery of tests could shed light on this issue.

In none of the studies reported in Table 5.1 was measurement invariance studied
with the methods of contemporary item response theory, and we are unfamiliar with any
study of differential item functioning in which western SPM scores are compared to scores
of African samples. We return to the issue of measurement invariance below. In the
absence of information on measurement invariance of the SPM, the degree to which
measurement bias may have led to an underestimation of ability in the sub-Saharan African
samples remains unknown. Nevertheless, considering the low scores in some samples, such
an underestimation is rather likely.

The Flynn Effect in the SPM. The results in Table 5.1 are based on data from diverse
samples, of varying age groups, and from different countries. Therefore, any secular trend
in these data represents only a tentative indication of African IQ trends. Nevertheless, the
adult samples (ages 17 and higher) are fairly comparable with respect to age, because they
all include young adults (even the Raveau samples only include a handful of cases above the
age of 40). In the study of adult trends, we excluded the university samples, because all of
these are quite recent. We studied the Flynn Effect in the current samples by comparing all
raw scores to the norms from the older standardization samples (i.e., 1938 for children and
1948 for adults). For the newer samples this resulted in higher IQs than the values in Table
5.1. The results are plotted in Figure 5.1. In this figure, we present separate (IN-weighted)
regression lines of IQQ on year of administration for adults (solid line) and children (dashed
line), separately.

As can be seen, the steep regression line for the adults suggests the presence a
considerable Flynn Effect, while the regression line of the children samples is more flat.
Both (IN-weighted) regression lines deviate significantly from zero (p < .001). These
regression lines are equivalent to increases of 7 I1Q points per decade for adults,3? and 2 IQ
points per decade for children. The rise of adults is comparable to that reported for male
adults in the Netherlands from 1952-1982 (Flynn, 1987), while the increase for children is
comparable to the increase in Great Britain among children from 1949 to 1982 (Lynn &

3 Note that a Flynn Effect cotrection of the average IQs on the basis of this result is not necessary, because we aim
to compare these IQs to British norms. In Britain, the gain in SPM scores equals about 2 IQ points (Lynn &
Hampson, 1986). As said, this correction lowers average 1Q by one point.
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Hampson, 1989). A comparison of the adult samples from the different eras does not
provide a compelling reason to think that samples are incomparable, so the rise in adult
samples appears to be a robust phenomenon. When tested for significance without
weighing for sample size, the Flynn Effect for adults remains significant (p < .001), whereas
in the samples of children, the Flynn Effect is no longer significant (p > .05). In sum, there
appears to have been a considerable Flynn Effect for African adults on the SPM among the
samples considered here. More comparable adult samples are needed for more accurate
estimates of the Flynn Effect in Africa. Nonetheless, the secular gain in Africa suggests that
the IQ gap between British and African adult test takers has diminished over the years.
There is an indication of a smaller rise in the children’s samples, but a more definitive
indication of a Flynn Effect among African children should await more comparable
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Figure 5.1 Secular trends in 1Q for adult and children samples on the SPM.

Colonred Progressive Matrices
IQ estimates. Table 5.2 reports on the twelve studies in which the Raven's Coloured
Progressive Matrices was administered to sub-Saharan African children (combined N =
4,313). The average 1Qs vary from 68 to 94. The N-weighted average of the twelve samples
equals 78, (median 77, SD = 7.2). If we exclude Fahrmeier's (1975) study, in which the
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CPM was administered in a non-standard fashion, we arrive at an average 1Q of 79 (median
82, SD = 6.9). Therefore, the average 1Q of children in sub-Saharan Africa on the CPM
appears to be 78 or 79.40 When compared to an average 1Q of 100 for the US, this 1Q
among sub-Saharan African children equals 80 or 81.

Besides the Fahrmeier's data, the samples that score relatively low are the children
from poor rural areas tested by Jinabhai et al. (2004), a sample of Ethiopian orphans
(Aboud, Samuel, Hadera, & Addus, 1991), and the representative sample of Ghanaian
children (Glewwe & Jacoby, 1992; Heady, 2003). The low 1Q for orphans is not surprising
(but see Wolff, Tesfai, Egasso, & Aradom, 1995), given the harsh circumstances that such
children often encounter (Aboud et al., 1991). Moreover, 1Q in rural areas is often lower
than in urban areas (e.g., Loehlin, 2000). However, the low average IQ of the representative
sample of children in Ghana is peculiar, given that of all sub-Saharan countries Ghana is
relatively well-developed (UN Development Programme, 2005). The low scores could be
explained by the fact that the tests were administered in children’s houses. As the principle
investigator put it: “[the test takers] may have been sitting in a chair or even on the ground”
while taking the tests (P. Glewwe, personal communication, January, 17, 2006). This may
have lowered the scores. Two recent representative standardization samples in Kenya
(Costenbader & Ngari, 2001) and South-Africa (Knoetze, Bass, & Steele, 2005) show
average 1Qs around 80. The highest scoring samples are those of private school children,
whose fathers’ SES is high (Okonji, 1974), and a small sample of Ethiopian Jewish children
in Israel (Tzuriel & Kaufman, 1999).

Of the total of 4,165 children in the school-aged range, about 793 children (19 %)
did not attend school. This is approximately equivalent to the population estimates of
school attendance in current day sub-Saharan Africa (cf. Footnote 38). Moreover, the
number of rural children and urban children in the samples in Table 5.2 appear to roughly
reflect the population distribution in sub-Saharan Africa. Moreover, of the 11 samples
considered, four are considered by the authors to be representative for a particular
population. Although definitive statements require completely stratified random population
samples, the data in Table 5.2 appear to provide a reasonable estimate of average 1Q of
African children on the CPM.

In two instances, Lynn's estimate of average 1Q is lower than would be expected
from his Flynn Effect correction (Costenbader & Ngari, 2001; Jinabhai et al., 2004). It is
conceivable that Lynn’s estimates are lower because he used the CPM-to-SPM conversion
method to estimate 1Q. With respect to the Ghanaian data, Lynn used as his source one
average CPM score from a larger sample of ages 9-18 given by Glewwe and Jacoby (1992;
see also Rushton & Jensen, 2005a). Our 1Q) estimate of this sample is based on mean scores
reported separately for age and gender (from Heady, 2003), and can be regarded more
accurate. In addition, we excluded age groups for which there no British CPM norms exist.

40 With the addition of a Flynn Effect correction of 2 IQ points per decade, the average 1Q should be lowered by 2
points.



Table 5.2

Sub-Sabaran African scores on the Coloured Progressive Matrices

Source Country Sample description N Year Age Edu M SD IQ IQLynn
(Aboud et al.,, 1991) Ethiopia Children in an orphanage in Jimma 134 +1989  5-11 100 1356 - 72 -
(Costenbader & Ngari, Kenya Children from representative schools 1222 %1998  6-10 100 1586  3.51-7.82 82 75
2001
(Dalczy et al., 2003) Kenya Children from rural district of Embu 118 1984 7.5 100 1282  3.21 75 76
(Daley et al., 2003) Kenya Children from rural district of Embu 537 1998 7.5 100 1731  2.56 90 89
(Fahrmeier, 1975) Nigeria Schooled and unschooled children in town 334 +1973  6-11 57 1142 - 68/NA 69
in North-Nigeria
(Heady, 2003) Ghana Representative population sample 589 1988 9-11 82 1580 - 72 -
(Heyneman & Jamison, = Uganda Students in 61 representative primary schools 1907 1972 10-18 100 27.07  8.47 NA 73
1980
J inal)ahai et al., 2004) South Africa  Children from 11 rural primary schools 806 +2002  8-10 100 139 3.9 72 67
in poor
Vulamehlo district
(Knoetze et al., 2005) South Africa Xhosa-speaking primary school students 172 +2002  7.5-11 100 17.21  2.50-5.84 77 -
in peri-urban Eastern Cape
(Okonyji, 1974) Nigeria Children in private school in Lagos 73 1972 8-11 100 2352  4.09-6.10 94 -
(Ombredane, Robaye, &  Congo-Zaire Children of "very underdeveloped" 151 +1955  6-11 79 14.50 76 -
Plumail, 1956) Asalampasu tribe
(Tzuriel & Kaufman, 1999) Ethiopia Ethiopian Jews immigrated to Israel 29 +1992  6-7 100  15.60  1.65 94 -
(Wolff et al., 1995) Eritrea Orphans and refugee children during war 148 1990 4-7 NA 124 3.0-3.6 87 -

Note: The assignment of 1Q values is problematic and these values are only provided in order to compare them to the 1Qs estimated by Lynn.
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The average 1Q in samples considered by Lynn is lower than the average 1Q in
than the samples that Lynn did not consider. But then we did not consider several adult
and adolescent samples that were administered the CPM. It is certainly the case that the
adult samples studied by Berry (1966) and others (Berlioz, 1955; Binnie Dawson, 1984;
Kendall, 1976) showed very low CPM averages as compared to western samples (Measso et
al., 1993). However, in some cases these averages are too low to be credible. For instance,
Berry's sample of adults scored below 14 on average. It is hard to believe that these men
were all severely mentally handicapped (if so, Berry would have presumably mentioned this
in his paper). Besides, these samples cannot be considered random population samples. In
two studies with the CPM (Berry, 1966; Binnie Dawson, 1984), the authors deliberately
sampled adults with very little knowledge of western culture. The samples of adults in
Tanzania and Kenya (Boissiere et al., 1985), and a large sample of adolescents from Uganda
(Heyneman & Jamison, 1980) were more carefully sampled, and showed much higher
average CPM scores. Even if we had included these adult and adolescent samples, average
IQ based on the CPM scores in sub-Saharan Africa would not change very much. The
reason is that most of these low scoring samples are small, whereas the large sample of
adolescents in Uganda (IN = 1907) showed an average score equivalent to an average 1Q
above 79.41

Psychometric properties of the CPM. Only in the study by Costenbader and Ngari (2001),
is the reliability of the CPM reported. Both the internal reliability (0.87) and the test-retest
reliability (0.84) in this study are sufficient and comparable to those in western samples.
Several studies in Table 5.2 focused on convergent and predictive validity of the CPM. For
instance, Tzuriel and Kaufman (1999) found that the CPM correlated reasonably well with
two dynamic tests of cognitive ability, Aboud et al. (1991) found the CPM predicted school
grades (r of 0.36 with age partialled out), and Heady found that CPM scores correlated
significantly with scores on math and reading tests. In a study among 85 adolescents in
Kenya (not in Table 5.2), CPM scores correlated reasonably well with vocabulary test
scores, but non-significantly with the scores on a practical intelligence test (Sternberg et al.,
2001).

In several studies, the validity of the CPM was not supported. For instance, the
correlation of the CPM with school grades in Fahrmeier’s of sample of school children was
only significant in two of the seven classrooms, where these correlations could be
computed (although power may have been low due to small sample sizes). Similarly,
correlations of CPM scores with other cognitive ability tests were low in two other studies
(Jinabhai et al., 2004; Okonji, 1974). In yet another study (not in Table 5.2) among 196
children in Benin, the CPM correlated quite lowly with seven other cognitive tests (van den

4 Lynn (2000) states that the 1907 primary school students tested with the CPM in Uganda (Heyneman & Jamison,
1980) are 11 years old, but most of these students are around 13. It is important to note that the score reported in
Lynn’s source (Heyneman & Jamison, 1980) is based on the number correct out of 33 instead of 36 items
(Heyneman, 1975), but Lynn’s source does not mention this. The first three items were used for instruction, so the
average score needs to be raised by 3 points (these items typically have p-values of 1). If we add three points to the
score and employ the CPM to SPM conversion (J. C. Raven et al., 1996), we can compare scores to the SPM norm
table for the correct age range. This results in a rough estimate of an average IQ of 79. Due to the ceiling effect
discussed earlier, this figure is likely to be too low.
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Briel et al., 2000). In sum, validity of the CPM in sub-Saharan Africa shows some promise,
but has not been established, and needs to be studied further.

Unfortunately, in none of the studies in Table 5.2, measurement invariance was
studied. Nevertheless, Ombredane and colleagues did study item characteristics in their
samples (Ombredane, 1957; Ombredane et al., 1956) and found that the CPM showed a
relatively large number of Guttman errors (e.g., Meijer & Sijtsma, 2001) in their samples.
We were unable to locate any rigorous study of DIF in which CPM scores were compared
across western and African samples, neither did we find studies into the factorial
characteristics of the CPM. In the absence of such studies, it is uncertain to what degree
lower CPM scores of sub-Saharan African children as opposed to western children reflect
lower levels of general intelligence in the former group. The degree to which measurement
bias may have led to an underestimation of ability in the sub-Saharan African samples
remains unknown.

Fhynn Effect in the CPM. Daley et al. (2003) already documented a Flynn Effect in the
CPM among two comparable samples of children from rural Kenya. If we exclude these
two Kenyan samples, there is no indication of a Flynn Effect in the remaining samples in
Table 5.2. The number of studies is fairly small, and all but three of the samples antedate
1980. More definitive conclusions with respect to a Flynn Effect on the CPM in Africa
require more comparable samples.

Draw-a-Man Test

Goodenough-Harris Draw-a-Man test (DAM; Goodenough, 1926; Harris, 1963) is
a non-verbal intelligence test for children aged two to thirteen in which children are
required to make a drawing of a man. This drawing is rated on 51 (original version;
Goodenough, 1926) or 73 (revised version; Harris, 1963) criteria that reflect cognitive
development. Scores on the Draw-a-Man test have been shown to correlate reasonably well
with scores on cognitive ability tests such as the Stanford-Binet (e.g., J. H. Williams, 1935)
and the SPM (Carlson, 1970). It should be noted that the DAM test is not generally
considered as good an indicator of general intelligence as tests like the SPM or CPM. We
have nevertheless included this test in the current review, because the DAM can be
administered easily and at low cost. For that reason, it is used commonly throughout
Africa. Also, Lynn used DAM scores to estimate the average 1Q in Africa.

1Q estimates. The results of eleven studies of the DAM in sub-Saharan Africa are
reported in Table 5.3. There are several samples to which we did not assign an IQQ estimate
for the simple reason that the administration of the DAM in these samples proved was
fraught with difficulties. The first of these is Fahmy’s (1964) study among schooled and
unschooled children of a primitive tribe in Sudan. He indicates that “[the| children who had
no schooling, never used a pencil, and have no experience in how to conceptualize their
visual image” (p. 172). Moreover, most of the unschooled children “recruited from under
the bush” by Fahmy were naked. It is noteworthy that within Goodenough’s scoring
scheme of the DAM test, five out of a total of 51 points are awarded for clothing worn by
the drawn man. Not surprisingly, Fahmy considered the DAM test unsuitable for these
Sudanese children, regardless of school attendance. In a study with the DAM also involving
Sudanese children, Badri (1965b) noted that: “Many [children from remote villages] hold
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pencils in unusual ways and say they have never before made a drawing on paper” (p.333).
Badri therefore reaches a conclusion similar to Fahmy's with respect to the unsuitability of
the DAM for these Sudanese children he tested. Despite these obvious problems, Lynn
assigned these samples low 1Qs on the basis of their DAM performance. However, the
DAM appears to unsuitable for African children without schooling (cf. Serpell, 1979). The
most obvious reasons for this are inexperience with pencil drawing and the unfamiliarity
with two-dimensional pictures, which is often encountered among these children.

The nine samples to which we assigned an average 1Q (combined N = 4,459) have
average Qs varying from 76 to 99. The N-weighted average 1Q equals 81 (median 76, SD
= 6.3) when compared to the US norms published in 1926 for the older and 1963 for the
more recent samples.*2 Combined, the samples with assigned DAM 1Qs appear to be
roughly representative for school-going children. However, more definitive statements on
average 1Q of African children on the DAM have to await more carefully sampled data.
The lowest scoring sample, which is described as fairly representative for the urban school
children in South Africa, is also the largest sample. The DAM in this study appeared not to
have been administered under ideal circumstances: “Classroom conditions were not ideal
from the point of view of scientific test administration” (Hunkin, 1950, p. 54). This may
have lowered test performance to an unknown degree.

One aspect that needs attention is the fact that the IQs in the three samples for
which the 1926 norms were used (Badri, 1965a; Bardet, Moreigne, & Sénécal, 1960;
Hunkin, 1950; Vernon, 1969) are not regular IQs (i.e., those based on the standardized
normal distribution with M = 100, SD = 15), but 1Qs based on the outdated concept of
mental age (i.e., the mental age times 100, divided by the chronological age). Raw scores in
the Badri and Vernon studies are not given. However, Hunkin and Bardet et al. provide the
average raw scores of their samples. Together with the means and SDs for US norm groups
for ages 6-10 (from Goodenough, 1920), this enables a computation of the standardized 1Q
for these age groups in the samples in Hunkin (IN = 1067) and Bardet et al. (IN = 494),
which results in average 1Qs of 83 and 76, respectively. When only the data of standardized
IQs are used (combined N = 2,805), the N-weighted average 1Q as compared to the US
DAM norms equals 84 (median 83, §D = 5.1).43 It is again apparent from Table 5.3 that the
samples not considered by Lynn showed higher 1Qs than the samples he did consider. In
this table, however, any discrepancy between Lynn’s IQ) estimates and ours are due to
Lynn’s corrections for outdated norms.

42 The norms used are relatively old. A cortrection for the Flynn Effect according to Lynn’s approach (3 1Q points
per decade), results in an overall average 1Q of 74.
4 With a Flynn Effect correction, this needs to be lowered with 6 points.



Table 5.3

Sub-Saharan African scores on Goodenough’s Draw-A-Man test

Source Country Sample description N year  age Edu IQ IQ Lynn
(Badri, 1965a) Sudan 4% grade boys from rural and urban areas 293 11963 Not given 100 86! 74
(Badti, 1965b) Sudan Culturally deprived preschool boys 80 +1963 6 NA NA 64
(Bakare, 1972) Nigeria Uppet-class and lower-class school children 393 +1970 6-15 100 87 -
(Bardet et al., 1960) Senegal School children from Dakar and rural area 750 +1958 6-15 100 76 / 76 -
(Fahmy, 1964) Sudan Children from primitive Shilluk tribe 184 1954  7-13 M NA 52
(Hunkin, 1950) South-Africa  Children from native schools in Durban 1729 1947  6-13 100 83/ 76! 70
(Minde & Kantor, 1970) Uganda Children in three primary schools 514 1972 9-14 100 89 -
(Nwanze & Okeowo, 1980) Nigeria Children with reading problems 13 +1978 5-10 100 99 -
(Ohuche & Ohuche, 1973) Sierra Leone  Children in experimental school 202 1968  5-11 100 95 -
(Richter, Griesel, & Wortley, 1989) South-Africa Urban school children from townships 415 1988  5-13 100 84 77
(Skuy, Schutte, Fridjhon, South-Africa Soweto secondary school children 100 11998 12-24 100 83 -
& O'Carroll, 2001)

(Vernon, 1969) Uganda Boys of above average SES 50 +1965 12 100 951 -

Notes. 1 IQs based computation with mental age. Remaining 1Qs are based on standardized 1Qs.

The assignment of IQ values is problematic and these values are only provided in order to compare them to the IQs estimated by Lynn.
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The 1963 norms of the DAM have been strongly criticized for being inaccurate
(Howard Scott, 1981). If we add to the 1Qs in the recent samples the 10 points to correct
for the inaccuracy of the 1963 norms (as suggested by Howard Scott), the average IN-
weighted standardized 1Q on the DAM of the samples (IN = 2,805) becomes 88 (median
83, 5D =9.3).44

In sum, the average 1QQ on the DAM test can not be accurately determined. It is
clear, however, that the average 1Q of African samples is well above 80, and not the
average 1Q of 70 that Lynn reported.

Psychometric properties of the DAM. Two studies in Table 5.3 provide information of
reliability of the DAM in sub-Saharan Africa. Test-restest reliability reported by Ohuche
and Ohuche (1973) equals 0.82, but those reported by Minde and Kantor were considerably
lower (0.63 - 0.66). Nonetheless, these values are in the range of values given in Harris’
(1963) manual. Predictive and convergent validity was studies in several samples. Richter
and colleagues (Richter et al., 1989) found a strong correlations (multiple » = 0.64) between
the DAM and five cognitive ability tests among the younger age group (ages 5 - 7).
However, among children aged 8 - 13, the DAM did not correlate significantly with four
(other) cognitive ability tests (multiple » = .20, NS).#> In the same sample, DAM scores
correlated significantly with school performance, although common variance was rather
small (r = .37, /2 =.14). Other studies in Africa also documented low correlations between
DAM scores and school performance (Bakare, 1972; Minde & Kantor, 1970), particulatly
for older age groups (Hunkin, 1950; Ohuche & Ohuche, 1973). Predictive validity of the
DAM for school performance appears to be reasonable for young children, but insufficient
for those above age 8 (but see Nwanze, 1985). These results are in line with studies in the
US that showed that DAM scores do not predict academic achievement very well (Howard
Scott, 1981).

Of all studies in Table 5.3, only Hunkin (1950) considered item characteristics in a
rigorous manner. She documents several items on which African children score lower than
US children. For instance, among the African children, the item related to clothing on the
drawn man (Item 9a) showed marked lower performance than in the US standardization
sample. Whereas Hunkin (1950) concludes that the test is suitable in principle for Urban
Black children, she clearly states that US norms should not be used for that population. In
fact, several authors (Badri, 1965a; Minde & Kantor, 1976; Munroe & Munroe, 1983;
Serpell, 1979), including the test developers themselves (Goodenough & Harris, 1950),
have argued that the comparison of DAM scores across cultures is problematic, because of
cultural differences in experience with pencil-drawing on paper, and because several aspects
of the scoring scheme are clearly culturally loaded. These problems signal a strong need for
more insight into differential item functioning of the DAM test. However, we were unable
to locate studies into measurement bias of this test using modern methods. In light of the
absence of such studies, severe caution should be entertained in the interpretation of these

4 With a Flynn Effect correction, this estimate of average overall IQ equals 82.

4 Richter et al. (1989) argue that the DAM test underestimates the IQ of test takers of eight years and older. This
appears to be based on the fact that the mean scores of these older test takers differ more from the US mean than
the mean scores of younger children. However, they have failed to take into account that the SD increases with age.
When 1Qs are computed, the age groups above 7 have slightly higher IQ than the younger age groups. The exclusion
of these age groups does not alter the overall N-weighted average 1Q.
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average scores in Table 5.3, and the average 1Qs we reported above. There is a real
possibility that the DAM underestimates latent cognitive ability among African test takers.
Nevertheless, the DAM shows some promise as a test of cognitive ability in Africa,
particularly for younger test takers, provided that these are familiar with pencils and
drawing.

Fhynn Effect in the DAM. Richter et al. (1989) reported a secular rise in test scores
among Zulu children in South Africa from 1947 to 1988, but this may be due to the
suboptimal testing conditions in Hunkin’s (1950) study. The number of remaining samples
in Table 5.3 is small, and there is no apparent secular rise in these samples. The study of
Flynn Effect in the DAM is further complicated because of the use of different scoring
schemes in older and newer samples.

Raufiman Assessment Battery for Children

In a series of studies, Boivin, Giordani and co-workers administered the K-ABC to
children in the Democratic Republic of Congo (Boivin & Giordani, 1993; Boivin, Giordani,
& Bornefeld, 1995; Giordani et al., 1996). Lynn used these data sets to substantiate his
claim of low IQ levels among Africans. However, the African data from the K-ABC are
not very convincing as far as average 1Q of the African population is concerned. The first
problem with these data is that the studies were mainly concerned with the effect of
intestinal parasites (Boivin & Giordani, 1993) and malaria (Boivin, Giordani, Ndanga,
Maky, & et al., 1993) on cognitive development. For that reason, the children in these
samples were all from underdeveloped rural areas. In some studies, children were especially
selected for their poor health (Boivin & Giordani, 1993). Of course, malaria and intestinal
parasite infections are common in tropical Africa, but such selective samples cannot be
used to estimate the average 1Q of the African population.

To make matters worse, in these samples K-ABC tests were adapted to be
administrable to rural children in Africa (Giordani et al,, 1996). For that reason, the
instructions and items were changed. It is unclear to what extend this has altered the
measurement properties of the K-ABC. For all of these children, individual cognitive
assessment was an entirely new experience. More importantly, for most of the children, it
was their first encounter with color-printed material. Giordani and colleagues (1990)
studied the psychometric properties of the K-ABC in their rural African samples. However,
they are also severely cautious with respect to the comparability of these African scores to
US norms. For instance, in some K-ABC subtests, items included objects that were rather
unfamiliar to these test takers, such as telephones. It is therefore likely that at least some
items in the K-ABC show DIF (Giotrdani et al., 19906), and that several subtests are not
comparable across Western and African samples. Lynn uses these samples in his overview
without regard of the clear warnings by the original authors with respect to the
incomparability of these scores to western samples. Lynn also included in his overview the
scores from a sample of 184 Kenyan rural children who all suffered from malaria (Holding
et al,, 2004). In this study, a// subtests of the K-ABC were altered. Lynn assigned the sample
an IQ of 63, but it is entirely unclear to what degree the alterations in the test even allows
for the comparison to US norms.
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There exist additional data from the K-ABC in Africa, but these data are not
considered by Lynn. First, in one study (Skuy, Taylor, O'Carroll, Fridjhon, & Rosenthal,
2000) the K-ABC was administered to 21 Black children from South Africa, and the
average 1Q) was found to be 98. In yet another study, the average 1Q on the basis of the K-
ABC in a sample of Senegalese children equaled 81 (Boivin, 2002). As was the case with the
other tests, the samples not considered by Lynn show higher average 1Qs than the samples
he did consider. In sum, because of the special nature of the samples, the changes in this
test, and the likely presence of measurement bias, the data from the K-ABC considered by
Lynn cannot reasonably be used to arrive at an estimate of the average 1Q of African
children.

Wechsler Scales

Lynn included in his overview of African IQ several studies using the Wechsler
Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981) (Avenant, 1988 in Nell, 2000;
Nell, 2000) and the Wechsler Intelligence Scale for Children-Revised (WISC-R; Wechsler,
1974) (Fernandez-Ballesteros, Juan Espinosa, Colom, & Calero, 1997; Skuy et al., 2001;
Zindi, 1994a). Lynn's choice of studies with the Wechsler scales is rather awkward. First, he
uses data from Nell, who argued strongly that the use of WAIS-R and WISC-R among
South African Blacks can lead to underestimations of ability (Nell, 2000). Nell provides the
results of the Avenant study and of one of his own studies to illustrate his point, and Lynn
subsequently presented the results obtained in these two samples in support of a low 1Q
among sub-Saharan Africans. Nell concludes on the basis of these studies that "the
Wechsler tests lack validity for these subjects" (p. 27). Lynn has every right to disagree with
Nell’s assessment of the unsuitability of the Wechsler scales for African test takers.
However, in the WAIS-R# subtests used by Avenant some items were changed, and it is
uncertain whether this has changed the difficulty of items. It is also noteworthy that these
samples cannot be considered population samples.

One study often referred to in the literature (Lynn, 2006; Rushton & Jensen, 2005a)
is that by Zindi (1994a). This particular study was concerned with the suitability of the US
version of the WISC-R for Zimbabwean high school children. Zindi clearly indicated that
the WISC-R needed adaptation to remove language difficulties, and he stressed that some
instructions and items in the WISC-R may not be appropriate for Zimbabwean children. In
a subsequent study, Zindi (1994b) eventually found that some small alterations in the
WISC-R greatly enhanced average 1Q in Zimbabwean children, a fact neither discussed nor
mentioned by those who attach value to the average IQ found by Zindi in his first study.

In yet another study with the WISC-R, Skuy and colleagues indicate that “language
has a considerable effect on test performance” (Skuy et al., 2001, p. 1422). In fact, in this
sample average 1Q is lowered because of the low performance on the vocabulary subtest
and other verbal subtests. For most Black Africans, English is not the native language, and
it is well known that the Wechlser scales have a strong English language component. In
addition, several of the non-verbal (performance) subtests in the Wechsler scales have
items displaying typically western objects and situation that may be less familiar to African

46 Lynn reports that the WISC-R was given, but these subjects completed the WAIS-R.
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test-takers. Thus, cultural bias in the Wechsler scales cannot simply be ignored.
Unfortunately, in none of the studies with the WAIS-R or WISC-R mentioned by Lynn,
reliability, inter-subtest correlations, or validity were reported. Besides, we are not familiar
with any factor analyses on western Wechsler scales among Africans. The WISC-R data
from Zindi (1994a) and Skuy et al. (2001) were submitted to analyses with the method of
correlated vectors (Rushton, 2001; Rushton & Jensen, 2003). However, these analyses did
not test whether the factorial structure the WISC-R of both these African samples was
comparable to that of western samples. Moreover, the method of correlated vectors is not a
suitable method to study measurement invariance (Dolan, 2000; Dolan et al., 2004; Lubke
et al., 2001). Moreover, we were unable to locate a single study into the measurement
invariance of Wechsler tests between western samples and samples of Africans.

In the last study with the WISC-R in Africa that Lynn reports to substantiate his
claim of low African IQ, the IQ of a sample of forty-eight 10-14 year-old children was
found to be 63 (which Lynn corrected downwards because of the Flynn Effect). This small
sample was used to estimate the average IQ of the entire population of Equatorial Guinea,
resulting in an IQ estimate of 59 for this country (Lynn & Vanhanen, 2002). Unfortunately,
the use of this particular sample cannot possibly be more inaccurate. The average 1Q of the
people of Equatorial Guinea is based on a lengthy book chapter (Fernandez-Ballesteros et
al., 1997). Although this chapter reports research conducted on an illiterate tribe in
Equatorial Guinea, the WISC-R was not administered to these African subjects. The forty-
eight children who were administered the WISC (not the WISC-R) were not from
Equatorial Guinea, and not even from Africa. In fact, the sample in question solely
contains Spanish children who attended a Spanish school for handicapped children. Half of
these subjects were mentally handicapped; the other half attended the school because of
their low IQ. Clearly, Lynn has made a mistake in using this sample to estimate African
1Q4

In addition to ignoring explicit statements on the inappropriateness of the WISC-R
and WAIS-R by original authors who provided Wechsler data, Lynn also missed other
Wechsler data from sub-Saharan Africa. These additional data on Wechsler 1QQ of Black
South-Africans provided higher 1Qs than those Lynn reported. In one study, 40 educated
adults scored an average 1Q of 94 on the US WAIS-III (Shuttleworth Edwards et al., 2004).
In yet another study, the average WISC-R 1Q of 21 Black children with learning difficulties was
found to be 84 (Skuy et al., 2000).#8 To conclude, data from the Wechsler scales in Africa
provided by Lynn does not lend much credibility to his claim that average IQ in Africa is
below 70. In addition, there is a need for more research into the appropriateness of the

47 It is rather disconcerting that Lynn makes a bold statement to the effect that the majority of the people in this
West-African country are mentally retarded, yet has not read his source more carefully. The chapter clearly indicates
that this experimental study with 48 subjects was conducted in Spain. The mean 1Q is mentioned two times, the first
time as follows: "A similar design was used in our second experiment with forty-eight subjects, 10 to 14-year-olds,
attending a school for handicapped children (63.025 IQ mean)" (Fernindez-Ballesteros et al., 1997, p. 253). Indeed,
this is the only IQQ mean mentioned in the entire chapter, and there are no other samples of size 48 of this age range
in the chapter. In a later part of the chapter, the same sample and the same mean IQ are again mentioned. There, the
text clearly states that half of the subjects were diagnosed as having brain organic disorders. Moreover, judging by the
reference list, the test at hand was the Spanish WISC, and not the US WISC-R.

48 This is the same sample of 21 Black South African children who completed the K-ABC.
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Wechsler scales in Africa. Without such research it is unclear what low Wechsler 1Q scores
in Africa mean.

Remaining Tests

We now discuss the additional data sets used by Lynn to support his claim that
average 1Q in Africa lies below 70. One of these studies was concerned with the effects of
coaching on test performance (Lloyd & Pidgeon, 1961). In this study, a “fairly
representative sample” (p. 147) of South African Zulu children were administered the Non-
Verbal Test, a test normed among English children and published in 1951 (Buros, 1959).
The Zulu children (N = 275) had an average 1Q of 87 on the pretest (i.e., without
coaching). Lynn (2006) does not discuss how he atrived at his estimate of an 1Q of 74 for
this sample, but his estimate is clearly off the mark (in his 1978 review he correctly reported
a value of 87).

In another study, Buj (1981) provided the results of the administration of the
Culture Fair Intelligence Test to 225 adults in the Ghanaian capital of Accra. This sample,
which was stratified for gender, age (6 groups), and Socio-Economic Status (3 levels), was
assigned an average 1Q of 80 by Lynn. The original source provides an average 1Q of 82,
but Lynn lowered this IQ estimate by two points because he aims to use an IQ of 100 for
Britain as calibration. The 2-point correction was based on the fact that in the same study
British adults from London scored an average 1Q of 102. Lynn (2000) claimed that the
average 1Q of 80 for the inhabitants of Accra is "exceptionally high for sub-Saharan Africa"
(p- 30). He explains this "high" average 1Q by the fact that "the [Ghanaian] sample came
from the capital city [and] people in capital cities typically have higher IQs than those in the
rest of the country" (p. 30). However, average 1Q scores of sub-Saharan Africans on the
Culture Fair Test may be considerably higher than the average scores found by Buj in
Ghana’s capital. Namely, Nenty and Dinero (1981) administered this test to 803 students in
seven secondary schools in both urban and rural areas in Nigeria. Interestingly, they found
that these Nigerian adolescents scored on a par with a sample of 600 high school students
from four schools in Portage County, Ohio. The average 1Q) on the Culture Fair Test in
this large Nigerian sample was 98. In contrast to studies considered thus far, this study
actually considered the possibility of measurement bias, which was studied using
contemporary item response theory modeling. Some evidence for DIF was found, although
the effects were not large and not necessarily in one direction. Lynn did not consider these
data in any of his reviews of IQ in Africa.

Besides the DAM test, Fahmy (1964) administered additional tests to his sample of
Sudanese children. The average I1Q on these three tests was 94, 76.5, and 73.5, respectively.
It appears that the average 1Q of this sample given by Lynn was considerably lowered
because of the unfamiliarity of these children with drawing, resulting in their low
performance on the DAM test. Note also that the unweighted average 1Q on the four tests
should be 74, not the 69 that Lynn (2000) provides (in Lynn & Vanhanen, 2002 an 1Q of
73.5 was given). As said, Fahmy considered the DAM test unsuitable for these children, so
a fair estimate of IQ in this sample should be the average of the remaining tests (i.e., 81).
This could still probably represent a considerable underestimation of these children’s
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cognitive capacity, because the administration of the remaining tests in Fahmy’s study was
all but successful.

Vernon administered a battery of 1Q) tests to fifty Ugandan boys of above average
SES. On 16 of the 21 tests, mean 1QQ was above 80. The mean of the 21 subtests equals 86
(median 86). This becomes 88 when we leave aside the 1Q of an English vocabulary subtest
on which these boys scored very low (M = 57). Lynn gives an estimate of 80 for this
sample, but provides no rationale for his downward correction. Vernon himself computed
inter-subtest correlations in this sample and found no indication of a g factor comparable
to that in other samples. A later factor analysis over part of Vernon's data by Hakstian and
Vandenberg (1979), corroborated that "the cognitive structure among Ugandan subjects
may be slightly different from that of other cultures" (p. 87). This is an interesting result, if
only because several tests used by Vernon were also used in older studies in Africa.

In one of those old studies, fifty 5-13 year-old children from the Sousou tribe in
rural Guinea were administered the Army Beta Test (Nissen, Machover, & Kinder, 1935).
These unschooled test takers suffered from "inexperience in manipulating a pencil" (p.
325), which can be considered a serious handicap in taking the Army Beta. Moreover, on
some subtests it was clear that most test takers did not understand what was expected from
them. For instance, "[t]he subjects appeared utterly bewildered" (Nissen et al., 1935, p. 331)
when confronted with the Manikin and Feature Profile subtest of the Army Beta. These
difficulties notwithstanding, Lynn assigned this particular sample an 1Q of 63. The Army
Beta was also administered to 293 Black South-African children by Fick (1929). With
respect to representativeness of samples, Fick cleatly stated that "sweeping generalizations
regarding whole groups should be avoided" (p. 904). He also acknowledged that the test
scores may have been lowered due to the fact that "the native does not grow up with
pictures and diagrammatic representations of things" (p. 909). In light of these difficulties,
and because of the absence of any indication of the reliability, validity, or correlational
structure of the Army Beta tests in this sample, we do not adhere to Lynn’s assignment to
this sample of an average 1Q of 65. Another old study on the suitability of western
intelligence tests among Black South Africans is that by Dent (1937). Dent considered his
sample of 80 test takers too small for making any generalizations. With regard to the use of
the Koh's Block test (the predecessor of the Block Design test in the Wechsler scales),
Dent remarks that "all subjects experienced difficulty with this test" (p. 462). Difficulty with
a test may either mean that the subjects did not understand instructions, or that their
cognitive ability is low. Lynn apparently subscribes to the second option, and used the
scores on this particular test to estimate the average IQ of this sample at 68 (which is a
mental age 1Q).

The studies reported in the last paragraph, which represent the dark past of 1Q
testing in Africa, were severely criticized as eatly as the 1940s (Biesheuvel, 1943), and
cannot be taken seriously anno 2006. To begin with, the Army Beta test originates from the
first years of intelligence testing and is now completely obsolete (Jensen, 1982 called this
test "primitive"). More importantly, administering a paper and pencil test with pictures and
diagrammatic representations to persons inexperienced with pencils and unfamiliar with
pictures and diagrammatic representations does #of provide a valid indication of
intelligence. The situation is exacerbated by the fact that the pictures used in the Army Beta
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are likely to be culturally biased because the pictures display typically American objects and
situations. For instance, one item displays a tennis match, and test takers are required to
draw the missing tennis net (Lane, 1994). These old papers are surely an interesting read for
anyone interested in the invalid use of intelligence tests, and for those interested in the
political role of psychology in the pre-apartheid era in South Africa (e.g., Krige, 1997).
However, these old studies cannot be taken seriously by modern psychometric standards,
certainly not to estimate average 1Q of the African population.

Ferron (1965)%, who states that Fick's "work is obviously biased" (p. 50), reports
test results from an unknown IQ test in seven samples of children in Nigeria and Sierra
Leone. Ferron considers this test unsuitable for African children. Despite this, Lynn
included in his review the average 1Qs from the two lowest scoring samples, and briefly
discussed (but did not include in his review table) a third sample with an average 1Q of 80.
Unfortunately, Lynn did not explain why he excluded the scores of the four higher scoring
samples in Ferron’s overview, such as a sample of 100 Sierra Leonean children who scored
an average 1Q of 93.

In several studies, sub-Saharan African children were administered the Wisconsin
Card Sorting Test (WCST; Akande, 2000; Skuy et al., 2001; Sternberg et al., 2002). Note
that this test is not meant to be a measure of general intelligence. In addition, none of these
samples can be considered representative of a particular population. From one paper (Skuy
et al., 2001), Lynn used only WCST data (“IQ of 64”), but did not include additional data
from the DAM (IQ of 83) to estimate IQ. It is a commonly accepted that the use of more
intelligence scores provide a more accurate estimate of general intelligence. Whereas he did
use both the PMA test and the CPM test to estimate 1QQ of Fahrmeier’s sample in his earlier
work (Lynn, 1991), he excluded PMA (IQ=78) data in his later reviews (Lynn, 2003, 20006;
Lynn & Vanhanen, 2002). Moreover, Lynn used WCST data from a study in Tanzania by
Sternberg and colleagues (2002) to argue for a low 1Q among Africans. Additional data of
the WCST of Black South African children showed considerably higher average scores on
this particular test (Akande, 2000), but Lynn did not consider these additional data.

Lynn also mentions data from the JAT in South-African Blacks (Lynn & Owen,
1994). At the level of the subtests, this test is severely biased, as is shown in a study by
Dolan and colleagues (Dolan et al., 2004). In none of the samples considered by Lynn, was
measurement invariance tested. Although we did not search for additional data on all
remaining tests, additional data from the Culture Fair Test and the Wisconsin Card Sorting
Test again shows considerably higher average 1Q scores than the data Lynn has considered.
No sample provided by Lynn in any way adds credibility to his claim that African 1Q is
below 70. Our review suggests strongly that additional tests show average 1Q around or
above 80 among African test takers. However, this still cannot be taken to mean that 1Q
scores are valid and free of measurement bias.

Differential Item Functioning
The question of measurement invariance is central to the question of the meaning
of sub-Saharan 1Q. Measurement invariance assures that the test measutres the same

4 This study is referred to by Lynn as Farron, 1966.
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construct across groups. Measurement invariance is a starting point to understand the
nature of group differences in test scores.

In a series of studies, Rushton and coworkers (Rushton, 2002; Rushton & Skuy,
2000; Rushton et al., 2004; Rushton et al., 2002, 2003) studied whether the Raven tests have
similar item characteristics for Whites and Blacks in South Africa (cf. Owen, 1992).
Rushton claims that these studies establish the construct validity for IQ tests among
Africans (Rushton et al., 2004). Unfortunately, in none of these studies was DIF studied
across groups. Instead, studies employed two straightforward methods to study biasedness
of Raven's items. Central to the methodology employed by Rushton and Owen is the rank-
order correlation between item p-values across groups (see also Mpofu & Watkins, 1994).
This method is a simple method to study group differences in scale characteristics, which
dates back to the 1920s (L. L. Thurstone, 1925). However, this method, and more refined
methods based on it (e.g.,, the Delta-Plot method; Angoff & Ford, 1972) have been
criticized extensively in the psychometric literature for not being sensitive to item bias. On
the basis of their simulation study of the merits of various methods to detect bias,
Shephard and colleagues conclude concerning the Delta-plot method that: "It should not
be used for bias detection" (Shepard, Camilli, & Williams, 1985, p. 103). This method is
simply incorrect when groups differ markedly in latent ability, and when items differ in
discrimination parameter (Angoff, 1982; Ironson, Homan, Willis, & Signer, 1984; Lord,
1977, 1980; Shepard et al., 1985). In the comparison of African samples to western
samples, group differences in test scores are generally large. Moreover, item analyses of the
SPM and its advanced version (i.e., the Advanced Progressive Matrices or APM) have
generally shown that items show considerable differences in discrimination parameter
(Abad, Colom, Rebollo, & Escorial, 2004; J. C. Raven et al., 1996). Another method often
employed in testing the suitability of Raven’s tests in Africa employs the (point) biserial
correlations.? This method is also shown to be rather suboptimal. "Using the classical
point biserial item statistic and taking the discrimination differences between groups as a
measure of bias appeats to be inadequate" (Ironson & Subkoviak, 1979, p. 222).

Rushton uses yet another method (Rushton, 2002; Rushton & Skuy, 2000; Rushton
et al., 2002, 2003), which may be seen as a combination of these two methods. In this third
method, Rushton correlates the vector of group differences in item difficulty (i.e., group
differences in p-values) with the vector of item-total correlations (i.e., point-biserial or
biserial item-total correlations). In fact, this new method is an item-level equivalent of the
method of correlated vectors (Jensen, 1998). This method has been shown to be
problematic in factor analytic work (Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke et
al., 2001). Until this new item-level method is spelled out formally and investigated

50 Rushton and Jensen (2005a) claim that the “item—total score correlations for Africans, Whites, and East Indians
were also similar, indicating that the items measured similar psychometric constructs in all three groups” (p. 243).
This statement is false both logically and empirically. The vectors of item-total score correlations in Whites, Blacks
and East Indians will not be similar when groups differ in ability (Gulliksen, 1950). More importantly, in none of the
studies mentioned, these vectors were similar across groups. For instance, the correlation between the vector of
Whites and the vector of Blacks in Rushton’s (Rushton et al., 2003) study of the APM among South African students
equals 0.105 (pmcc) or 0.099 (tho). This means neither that the items measure similar constructs, nor that they
measure something else. In fact, a comparison of item-total correlations does not adequately address the issue of
measurement properties.
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propetly, we cannot tell whether or not it actually works to detect DIF. However, ingenious
though it may seem, in the presence of group differences in latent ability and under most
common IRT models, this method does not appear to work. First, in the presence of group
differences in latent ability, the item-total correlations will #of be equal across groups
(excluding some special conditions under highly restrictive assumptions, which will
certainly not hold in the SPM or APM; see, e.g., van der Ven & Ellis, 2000). Second, in all
but a few special cases, the vector of these item-total correlations (that will differ across
groups) will have a non-linear relation with the vector of group differences in item
difficulty.>! Even if a test is fully measurement invariant across groups, and the IRT model
fits perfectly, this correlation between vectors will not equal one. Because we do not know
how this correlation works under ideal conditions (i.e., equal item response functions
across groups), we have no idea of how it will work in cases in which the test is severely
biased across groups. Thus, the merits of this new method are unclear, but it does not show
much promise.

The field of psychometrics>? has provided a host of methods to detect DIF with
crystal clear underlying assumptions and with well-established sensitivity to detect DIF
(Holland & Wainer, 1993; Millsap & Everson, 1993). Unfortunately, none of these have
been applied to the issue of African IQ (but see Nenty & Dinero, 1981). It is about time
that rigorous methods to detect DIF were applied to shed some light on the meaning of 1Q
test scores in Africa. One cannot employ outdated or non-established methods that appear
insensitive to bias, and reasonably conclude that bias does not exist. Such would be
equivalent to claiming that a Petri dish is sterile, because no microorganisms are visible
through a magnifying glass. The claim that IQ) tests are unbiased with respect to Africans is
simply baseless. Clearly, more research is needed to clear up the present obscure meaning
of IQ) test scores in Africa.

More on Validity

Lynn has estimated the average IQ of countries over the world and set out to
validate his estimates of national IQ) using data from several internationally comparable
surveys of school achievement, in which representative samples of primary and secondary
students were given Math and Science tests. In his latest book, he uses a combination of
such studies given by Hanushek and Kimko (2000), in which the average 1Qs of Nigeria
(IQ according to Lynn 69), Swaziland (IQ according to Lynn 68), and Mozambique (IQ
according to Lynn 64) appear alongside that of 34 other countries>? (Lynn, 2006). In Figure
5.2, we display the results of his validity study, which is typical of Lynn’s validity studies.
Lynn reports a correlation of 0.81 between these two variables and claims that this result

51 Some preliminary computations using a scenario with established SPM item parameters in a 3 parameter logistic
model and a large group difference in ability indicated that this relation has the shape of an inverted U. The results of
Rushton’s method depended greatly on the choice of group from which the item-total correlations were drawn. This
is also apparent in the results of these studies (Rushton, 2002; Rushton et al., 2002, 2003).

52 We are referring to rigorous psychometrics here (e.g., Hambleton & Swaminathan, 1985; Lord & Novick, 1968;
Van der Linden & Hambleton, 1996).

53 The original source also reports data from South-Affica, but Lynn did not include South Africa in this analysis.
The data from South Africa would nevertheless also represent a bivariate outlier. Inclusion of South Africa lowers
the correlation further to 0.77.
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validates the estimates of national 1Qs. However, a look at the scatterplot suggests
otherwise. In fact, this scatterplot shows clearly the presence of three outliers, which are the
three data points on the low-left side. In the absence of these three data points, the
correlation is 0.804. Incidentally, these three outliers correspond to the three countries
from sub-Saharan Africa. These outliers have large negative residuals of over 13 1Q points,
indicating that in the regression of IQ on Math and Science scores, the estimated 1Qs of
these African countries is much higher than the I1Qs reported by Lynn. Lynn argues that
the correlation of 0.81 is lowered by measurement error of the educational measures
(begging the question of how an average score of several thousand test takers in each
country would be affected by random measurement error). There is a more straightforward
explanation for this result, namely that Lynn’s estimates of national 1Q in Africa are
consistently too low. In fact, if anything can be learned from Lynn’s validity study, it would
be that the average IQ in these countries is around 80 or higher.
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Figure 5.2 Regression lines of Lynn’s national 1Q estimates on average Math and Science scores of

international studies of student achievement (Hanushek & Kintko, 2000).

African 1Q Conclusion

Based on published data of the CPM and SPM, average IQ in Africa lies
somewhere around 78 or 79, when compared to British norms. When compared to US
norms, average 1Q in Africa equals 80 or 81. There are several large samples in which IQ is
considerably higher (Lloyd & Pidgeon, 1961; MacArthur et al., 1964; Nenty & Dinero,
1981). Despite the many measurement difficulties with the DAM, and the inaccuracy of its
norms, the IQs on this test are higher than the IQs based on the CPM and SPM. We must
again stress the importance of caution in the interpretation of these I1Q scores. There have
been no published IRT analyses that studied item bias of the SPM, CPM, and the DAM. It
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is quite likely that these IQs represent an underestimation of ability, because with these
tests even a few biased items can decrease 1Q scores considerably.

The bulk of the data on which Lynn based his claim of low average IQ in Africa, is
based on the following nine tests: K-ABC, WISC, WAIS, DAM, CPM, SPM, WCST,
Culture Fair Test, and the IQ test discussed by Ferron. For all these tests, we came across
additional African samples that showed markedly higher average IQs than the samples that
were considered by Lynn. In none of the samples that were not included in Lynn’s
overviews, the average 1QQ was below 70. The literature missed by Lynn appears not to be
missing completely at random (in the sense of Little & Rubin, 1986). In fact, the 31 samples
in Tables 5.1-5.3 that Lynn considered in his latest review show significantly lower average
IQs than the 27 samples he did not consider: #56) = 2.44, p < .05. Lynn presented his
review as a “fully comprehensive review” of the literature on African IQ. However,
because he missed a sizeable portion of the relevant literature, his estimate of average IQ of
Africans is too low.

The most serious omissions in the literature are rigorous tests of measurement
invariance. In none of the samples used by Lynn 1Q, measurement invariance was tested
and found to be tenable, so the degree to which measurement bias has lowered 1Q levels in
African samples is unclear. The conclusion that the average IQ in sub-Saharan Africa is
lower than average IQ) in western countries is warranted, but the degree to which these low
scores reflect lower general intelligence is unknown. These low scores might not reflect an
accurate or valid assessment of general intelligence.

We found a clear indication of a Flynn Effect among adults on the SPM. Besides
two studies (Daley et al.,, 2003; Richter et al., 1989), there is no clear indication of a
comparable Flynn Effect among African children. The various samples are not ideal to
study the Flynn Effect. The absence of gains among children may be due to the fact that
the older samples are primarily of school-going children in times when school attendance in
Africa was mainly restricted to higher SES levels. Hence, differences in sampling may be an
issue. More comparable samples are required to shed some light on the Flynn Effect
among African children.

In what follows, we are going to leave aside the measurement problems with 1Q.
The reason is that we would like to understand more fully the implications of these low
scores if they would eventually prove to be accurate and valid. The main question we are
left with is as follows: Suppose that an average IQ of 80 would be valid, would they lend
credence to the idea that low African I1Qs are impervious to environmental variables?

5.6 Nature versus Nature & Nurture

In his most recent book, Lynn (2000) claims, as did Rushton (2000b), that racial
differences in general intelligence have evolutionary causes (cf. Jensen, 1998). Rushton's
(2000b) evolutionary theory supposes that the races differ in their reproductive strategies,
causing racial differences in intelligence. Lynn's theory states that ancestors of Europeans
(i.e., Whites) and Asians have developed higher genetic intelligence during their
evolutionary struggle to survive in colder and therefore more demanding climates outside
of Africa. According to Lynn, people from European and Asian descent are more
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intelligent than people from Africa because the latter group did not encounter a similar
evolutionary pressure towards high intelligence in the relatively warm climates of Africa.
The theories by Lynn and Rushton stand in stark contrast with archeological evidence that
clearly shows that people in sub-Saharan Africa have been as advanced as Eurasians
(MacEachern, 2006). In a recent study that was criticized by Hunt and Sternberg (2000),
Templer and Arikawa (2000) set out to substantiate Lynn’s evolutionary theory. To that
end, Templer and Arikawa correlated Lynn and Vanhanen's estimates of average 1Q in 81
countries all over the world to the average temperature in these countries and to an
estimate of national skin color.>* They found a correlational structure that, according to
them, substantiated Lynn’s theory. However, any claim to causality using correlational data
requires the consideration of confounding variables. There exist a host of alternative
explanations for national differences in IQ. To these, we turn next.

Ecological Correlations

In this section we correlate Lynn & Vanhanen's (2002) national 1Q estimates with
several environmental variables that are suggested to play a role in the Flynn Effect.
Various studies have shown that these national 1Q estimates correlate with national wealth
as expressed in Gross Domestic Product (GDP) per capita (Dickerson, 2006; Jones &
Schneider, 2006; Lynn & Vanhanen, 2002; Morse, 2006; Weede & Kampf, 2002; Whetzel &
McDaniel, 20006). It is noteworthy that several authors have claimed that the relation
between national 1Q and GDP is nonlinear (Dickerson, 2006; Morse, 2006; Whetzel &
McDaniel, 2006). This nonlinearity may be partly due to the fact that IQ of African
countries is underestimated considerably by Lynn and Vanhanen. This results in
(impossible) negative predictions of GDP on the basis 1Q, which, in turn, results in a non-
linear relation between these two variables. Nevertheless, it is clear that mean 1Q levels
across the world are related to economic development.

In several studies, the correlation between national IQ as estimated by Lynn and
Vanhanen and adult literacy rate was found to be around .70 (Barber, 2005; Meisenberg,
2004; Morse, 2000), suggesting that national differences in school attendance are related to
national 1Q levels. The relation of IQ levels to health variables at the national level is less
clear. Barber (2005) found moderate correlations between national IQs and several health
variables, but his analysis suffered from missing data. In addition, Whetzel and McDaniel
(20006) found a correlation of 0.56 between Lynn and Vanhanen’s estimates of national 1Q
and health expenditure per person. The many variables related to social and economic
development are probably not only related with national IQ, but will also show strong
intercorrelations. Therefore, it is worthwhile to integrate several variables in one analysis.
Because we are mainly concerned with the Flynn Effect, we focus on variables that have
been proposed to have caused the Flynn Effect.

54 The study by Templer and Arikawa is concerned with the evolution of intelligence, yet uses contemporary data on
temperature to study this. Moreover, the measurements of skin color and temperature in that study do not stand up
to scientific scrutiny. The temperature estimates are based on a weather guide for travelers, which is unsuitable for
estimating national temperature. The skin color estimates are based on students' judgments of a 65-year old skin
color world map of 10 by 5 inches (Biasutti, 1959). This outdated (Robins, 1991) and inaccurate (Coon, 1966) map
was based on a subjective method to measure skin color, which has been in scientific disrepute since the 1950s
(Jablonski, 2004).
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Method

The results provided below are based on analyses not weighted by size of
populations of countries. Although such an N-weighted analysis has a small effect on the
some of the correlations, this alternative analysis does not alter our main conclusion. We
now discuss our choice of variables to consider, and we provide descriptions of the data
employed.

National 1Q. We employ Lynn and Vanhanen's estimates of national I1Q in 81
countries over the world, excluding Equatorial Guinea (for obvious reasons given above)
and Taiwan because of missing data. To enable a comparison to the literature, we used
Lynn and Vanhanen's original IQ estimates. We also computed more accurate 1Qs for
African countries based on 1Qs in Tables 5.1, 5.2, and 5.3, which we corrected for the
Flynn Effect in a way similar to that employed by Lynn and Vanhanen (cf. Footnote 32).
For instance, in the case of Nigeria we used a weighted average based on eleven studies
which results in an 1Q of 76 for this country. For countries not included in Tables 5.1-5.3,
we added 10 IQ points to Lynn and Vanhanen’s estimates, because this is approximately
the underestimation of IQ in African countries in Lynn and Vanhanen’s list.

Nutrition. Poor nutrition during childhood is generally considered to lower adult 1Q
(e.g., Sigman & Whaley, 1998). An improvement in nutrition has been suggested as one of
the prime reasons for the Flynn Effect (Lynn, 1989, 1990). The data on nutrition were
retrieved from the Food and Agriculture Organization (FAO), an agency of the United
Nations. We use three nutrition variables that are averages per capita of calories per day,
proteins in kg per day, and fat in kg per day. We averaged the numbers over the years 1985-
2000, but the use of data from alternative or separate years does not greatly alter the results
provided below.

Health. Poor health is generally considered to have a negative effect on 1Q (e.g.,
Mackintosh, 1998), and improvements in health have been proposed as an important
contributor to the Flynn Effect (W. M. Williams, 1998). We used three indicators of a
countries' health status. These are under five mortality rate, maternal mortality rate, and
neonatal mortality rate. The under five mortality rate was estimated by UNICEF for the
years 1990-2003. The neonatal and maternal mortality rates are estimates from the WHO
for the year 2003. The use of data of alternative years does not have a large effect on the
correlations we provide below.

Education. Education has been suggested to be an important factor in the Flynn
Effect (Barber, 2005; Ceci, 1991; Husén & Tuijnman, 1991; Tuddenham, 1948). We use
data from UNESCO of gross enrollment ratio in primary and secondary education, as well
as estimates of teacher-to-student ratio within each country. All educational variables are
averages over the period 1970-2003, but the use of data from alternative or separate years
does not greatly alter the results provided below.

Computers. The introduction of computers and computer games may have enhanced
test-specific skills, contributing to the Flynn Effect (Greenfield, 1998). We use estimates of
the number of computers per 1000 inhabitants over the period 1998-2002, provided by the
International Telecommunication Union (ITU) and retrieved from the World Bank
database.
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Family size. 1t has been suggested that the trend towards smaller families has also
been partly responsible for the Flynn Effect (Zajonc & Mullally, 1997). Fertility rate per
country was retrieved from the World Development Index. We took the averages over
years 1970-2003, but the use of data from separate years does greatly not alter the results
provided below.

Urbanization. The transition from a rural to a (sub)urban society has also been
suggested as a cause of the Flynn Effect, because of a decrease in inbreeding depression
(Mingroni, 2004) and an increase in environmental complexity (Dickens & Flynn, 2001;
Schooler, 1998). Urbanization estimates for 2005 were retrieved from World Health
Organization tables, but the results provided below are robust to the use of data from
alternative years.

Water quality. The lack of improved drinking water and sanitation may have a
negative effect on health, which may negatively affect cognitive development through the
effects of intestinal parasites (Boivin et al., 1993). Because increases in improved drinking
water and sanitation in the developing world are both part of the millennium goals of the
UN, the UNICEF has estimated these variables for 2002. We used the data for that year.
Results

The ecological correlations between Lynn & Vanhanen’s (2002) IQ estimates
(excluding Equatorial Guinea and Taiwan) with the environmental Flynn Effect variables
are given in Table 5.4. Because data did not exist for all countries on some variables
(particularly water quality variables), missing values (6.3 % of all data points) were imputed
by using multiple imputation with the program PRELIS (Joreskog & Sérbom, 2003). The
correlations based on the imputed data are however similar to those computed using pair-
wise deletion. The correlations in Table 5.4 are a textbook example of multicolinearity. All
environmental variables correlate highly and significantly (p < 0.001) with 1Q, and (with
one exception) significantly (p < 0.005) with each other. As a matter of fact, a principal
components analysis on these 15 variables results in one highly dominant principle
component, as can be seen by the scree plot in Figure 5.3. This first principle component
explains 74 % of the variance. This dominant component is nothing more than
developmental status of countries. The loadings on this component are given in the last
row of Table 5.4. Viewed in this light, IQ is just another indicator of development. On a//
the variables in Table 5.4, sub-Saharan African countries fall on the negative side of the
world wide distribution. It is also apparent from Table 5.4 that the use of more accurate
estimates of national 1QQs does not have a large effect on the correlations between 1Q and
the exploratory variables.5>

55 The correlation between our adjusted estimates of 1QQ and the estimates of GDP for the year 1998 (from Lynn &
Vanhanen, 2002) for the 79 countries equals 0.77 (p < .01). This is slightly higher than the correlation between GDP
and Lynn and Vanhanen’s estimates of national IQ (r = 0.75). The exponential relation between our estimates of
national 1Q and GDP does not add much to the linear relation (i.e., 12 increases by .08) indicating that the nonlinear
relation between GDP and national 1Q (Dickerson, 2006; Morse, 2006; Whetzel & McDaniel, 20006) is indeed partly
due to the underestimation of African IQs by Lynn and Vanhanen. Note also that GDP correlates highly with all the
variables in Table 4.



Table 5.4

Correlations between estimates of national 1O with explanatory variables (N=79)

1Q Prim.  Sec. Pupil-  PCs Fer- Urba- % %o Ch. Neona Mat. Cal. Prot. Fat.

educ.  educ.  teach.  per tility  niza- impr.  impr. mott. tmott.  mort. /day  g/day g/day

enroll.  enroll. ratio 1000 tion sanit.  water  rate rate rate cap. cap. cap.
1Q 1 426 737 -.665 700 -817  .630  .658 607 -.699 =721 -.626 .688 730 731
Prim.educ.enrollment 518 1 540 376 A24% -492 454 555 610 -.667 =572 -.617 450 304 372
Sec. educ.enrollment 784 540 1 -765 682 -846  .659  .801 757 -817 -827  -759 757 791 827
Pupil-teacher ratio -719  -376  -765 1 =522 764  -575 -850 @ -741 731 718 677 -734 -743 0 -T767
PCs per 1000 persons 656 124¢ 682 -522 1 -617 573 516 482 -472 -559  -.382 .538 621 675
Fertility -860 -492 -840 764 -617 1 -628  -761 =729 853 .868 759 -711 -745  -734
Utbanization 666 454 659 =575 573 -.628 1 .654 611 -.626 -025  -.588 .609 588 .604
% Improved sanitation ~ .727  .555 .801 -.850 516 -761 654 1 879 -827 -815  -750 713 714 764
% Improved water 702,610 757 0 -T741 482 =729 611 879 1 -.831 =771 -719 747 715 699
Child mortality rate -811  -.667  -817 731 -472 853 -.626 -827  -.831 1 932 916 -694  -705  -.676
Neonatal mortality rate  -790 -572  -.827 718 -559 868  -.0625 -815  -771 932 1 .818 -677 =700  -714
Maternal mortality rate  -763  -.617 -759 677 -382 759  -588  -.750 =719 916 818 1 -094  -.670 -.617
Calories/day per cap. 728 450 757 0 -734 538 -711 .609 713 T47  -.694 -677  -.694 1 935 872
Proteins g/day per cap.  .757 364 791 -743 621 -745 588 714 715 -705 -700  -.670 935 1 .875
Fat g/day per cap. 712 372 827 767 675 =734 604 764 699 -.676 -714 =617 872 875 1
Loading on 15t PC 884 560 926 -.891 701 -944 776 904 839 -929 -933  -.865 837 867 872

Note: Correlations below diagonal are based on Lynn & Vanhanen’s IQ estimates, cortelations above diagonal adjusted 1Qs; All correlations p < .005, except *p > .05
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Figure 5.3 Scree plot of principal components analysis of variables in Table 5.4.

Conclusion

These correlations indicate that of countries across the globe, environmental
variables that have been proposed to have caused the Flynn Effect are also the variables
that have yet to show improvements in Africa. Because of the strong relation between
these environmental variables and average national 1Q), the claim that low levels of I1Q in
Africa are due to genetic factors (Lynn, 2006; Rushton, 2000b; Templer & Arikawa, 2000)
is hard to maintain.

As is the case with any cross-sectional study employing ecological correlations, we
can not claim to have established any causal relation of the variables in Table 5.4. It is
certainly the case that these data are consistent with a host of environmental explanations
of why average 1Q in Africa is around 80, as opposed to 100 in developed countries. The
comparison of African countries to developed countries is fraught with confounds. In light
of all these confounding variables, any claim to causality needs to be made very carefully.
Unfortunately, such caution is all but absent in Lynn and Vanhanen’s claim that the wealth
of nations is caused by intelligence levels of a population. In view of Table 5.4, one could
equally claim that insufficient computers, insufficient food, an unhealthy population, poor
schooling, etc. are responsible for the fact that some countries are poorly developed
economically. Such variables have generally been ignored or dismissed as irrelevant in
studies claiming that there are evolutionary reasons related to climate that cause lower 1Q
in countries in Africa (Lynn, 2006; Templer & Arikawa, 2000).
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Because on all variables in Table 5.4, Africa is on the negative end, it is safe to
assume that these variables might have a depressing effect on 1Q levels. Schooling, health,
nutrition, and urbanization are serious confounds in the comparison of IQs across the
world. When viewed in this light, national IQ does not appear to be anymore than just
another indicator of the development of a country.

5.7 General Discussion

Several conclusions can be drawn on the basis of our review of the literature on
African 1Q. First, the proposition that Africans have an average IQ of 67 is untenable. It
appears to lie somewhere around 80, and it is likely to be even higher. Second, the claim
that African IQ scores are comparable to western IQ scores in terms of the construct of
general intelligence or g has to date not been substantiated by rigorous data analyses. Third,
low 1Q levels in Africa are not surprising in light of the fact that environmental variables
that are believed to suppress IQ levels are omnipresent in Africa. Fourth, the Flynn Effect
has occurred in Africa among adults on the SPM. Fifth, as the environmental effects on 1Q
will continue to improve, they will almost certainly raise IQ levels in Africa in the years to
come. Sixth, our results do not sit well with the genetic theory of race differences in
intelligence as put forth by Lynn. We will now focus on each of these conclusions more
closely.

The Dark Past of African 1Q

There has been a long history of IQ) testing in Africa. In some instances IQ tests
were administered under non-standard circumstances to test takers that were so unfamiliar
with IQ tests and the material in it (Dent, 1937; Fick, 1929; Nissen et al., 1935), that their
scores cannot and should not be used to claim anything concerning latent cognitive ability
(Biesheuvel, 1943). It is about time we leave that dark past of IQ testing in Africa behind
us.

It is apparent that average 1Q in Africa is lower than average 1Q in western
countries. However, average 1Q in Africa does not appear to be as low as Lynn maintains.
The majority of studies on African IQ not taken into account by Lynn showed considerably
higher 1Qs than the studies he reviewed over the years. Lynn's reviews of I1Q in sub-
Saharan Africa are skewed, and have resulted in an underestimation of average IQ in
Atfrica. Clearly, Lynn has missed a large part of the literature on African IQ. However, in
several cases (Crawford Nutt, 1976; Ferron, 1965; Irvine, 1969b; MacArthur et al., 1964;
Pons, 1974; Skuy et al.,, 2001), he must have been familiar with additional data, for the
simple reason that he used these sources in his own work. It is unfortunate that Lynn did
not discuss his reasons to exclude these additional data. Without knowing his reasons, it
would not be fair to jump to conclusions with respect to Lynn’s scientific integrity (e.g.,
Kamin, 1995). For instance, in some cases, tests were administered with additional
instruction (Crawford Nutt, 1976; Pons, 1974). We felt it reasonable to include these data
because this instruction is highly similar to an instruction as described in the test manual (.
C. Raven et al., 1996), but some have argued that this instruction artificially heightens test
performance (cf. Rushton & Skuy, 2000). Nonetheless, it is safe to say that Lynn’s
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conclusion that average IQ in Africa is around 67 is based on unsound reviews of the
literature.

The Obscure Present of African 1Q

An IQ score should never be equated uncritically with a particular level of general
intelligence because IQ) tests are fallible instruments, particularly for test takers less familiar
with western culture as reflected in these 1Q tests. IQ testing in Africa is a complicated
issue (MacArthur et al., 1964; Nell, 2000). Based on our reading of the literature, validity
studies of the DAM, SPM, or CPM in Africa provide little support that these tests provide
accurate assessments of g. More importantly, the degree to which 1Q differences between
countries in any way reflect national differences in general intelligence is unknown. The
reason is that the comparison of test scores across such various groups as westerners and
Africans requires standardized testing conditions and measurement invariance across
groups. The testing conditions in Africa are not always ideal. More importantly,
measurement invariance between western and African samples has not been studied using
contemporary methods such as multi-group confirmatory factor analysis (with mean
structure) or DIF analyses based on IRT models. Where it has been studied rigorously,
results have shown that measurement invariance is rejected (Dolan et al., 2004; Nenty &
Dinero, 1981). Therefore, there is a real possibility that IQQ averages in sub-Saharan African
samples are an underestimate of latent cognitive ability.

The average 1Q scores of Africans that we documented in our review are nothing
more than average transformed scores on measurement instruments that we call 1Q tests.
These tests may be well-validated in developed countries, but they are not well-validated in
African countries. Further research should shed light on what these test scores may or may
not mean. The true meaning of 1QQ scores differences between western samples and African
samples only becomes clear after thorough psychometric modeling. What is required is a
study in which testing conditions across groups are controlled and in which it is ascertained
that test instructions are crystal clear to all test-takers. This study should involve a battery
of tests each of which can be studied for DIF. After that, one can establish that between
group mean differences are on the (higher order) latent factor called g, by employing multi-
group factor analysis with mean structure (Dolan, 2000; Dolan & Hamaker, 2001; Lubke et
al., 2003a). Suppose we would establish that tests are fully measurement invariant, and that
between-group differences are mainly (or entirely) due to between-group differences in g
All we know then is that we have tackled the enormous measurement problem. This opens
the door to study of why groups differ in this latent variable we call g, and we can study
which reasons may lie behind the group difference in g Until that day, we do not know
what group differences in IQ scores mean, and evolutionary, genetic, and environmental
theories with respect to race differences in intelligence only have a very weak empirical
foundation. In addition, evolutionary and genetic theories also should take into account the
fact that global differences in national IQ are strongly correlated with a vast number of
environmental variables that are known or at least suspected to be responsible for the
Flynn Effect.
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The Bright Future of African 1Q

An average 1Q of 80 among Africans may appear to be low, but from a historical
perspective this average is not low at all. That is, when we compare the SPM scores of a
representative sample of British adults in 1948 to British norms collected in 1992 (J. C.
Raven, 1960; J. C. Raven et al, 1996), average adult British I1Q in 1948 would be
approximately 81. Likewise, compared to the test performance of Dutch 18-year-olds in
1982, a sample containing 79% of all 18-year-old Dutch males in 1952 has an average 1Q of
80 (Flynn, 1987). Despite the supposedly “low average 1QQ” of their populations around
1950, Great Britain and The Netherlands developed fairly well economically, scientifically,
and culturally in the last five decades. In fact, the average 1Qs (based on more recent
norms) of samples around 1950 turned out so low becanse these countries developed since
1950! Therefore, the average 1Q of Africans would be close to 100 if we would have
compared SPM and CPM performance to British norms of around 1950. This is evident in
Figure 5.1, where we compared SPM scores of Africans to older norms. In this figure, the
average 1Q of several African samples is clearly above 100. Note that in terms of societal
development, contemporary African countries are more similar to developed countries in
1950 than in 2006.

The rise in average intelligence test scores over the years has been shown to occur
in most developing countries over the world (Flynn, 1984, 1987, 1999¢; Neisser, 1998). The
fate of intelligence test scores in Africa should not be cause for pessimism, because there is
much room for improvement of IQ levels in Africa. Whethzel and MacDaniel (2006)
indicated that countries (with low average 1Q) could improve their 1Q levels by
encouraging high IQ individuals to procreate and discouraging low IQ individuals from
procreation. That appears to be a very slow and highly inefficient way to improve 1Q levels
in countries like Sierra Leone, where more than 25% of children die before the age of five,
because of malnutrition and disease. Improving education, health care, sanitation, and
nutrition would seem to be a better idea. Luckily, these are also variables that the UN aims
to have improved before the year 2015, as formulated in the so-called Millennium Goals
(United Nations, 2005). As we saw, it is safe to say that there has also been a rise in 1Q
scores in sub-Saharan Africa. There is a lot of empirical support for the claim that
malnutrition (Sigman & Whaley, 1998), health (W. M. Williams, 1998), sanitation (Boivin et
al., 1993), and schooling (Ceci, 1991) have an effect on IQ. When the Millennium Goals
will be accomplished, 1Q levels in Africa will surely go up.

What, in terms of the exploratory variables we studied, is the potential of the Flynn
Effect in Africa? The average infant mortality rate in current day sub-Saharan Africa is
about 84. This is comparable to the infant mortality rate in 1920 in the US. Urbanization in
Africa is about 40%, which is comparable to urbanization in the US around 1900. Fertility
rate in Africa is comparable to the fertility rate in the US in 1870. The average pupil-to-
teacher ratio in primary schools in current-day sub-Saharan Affrica roughly equals that in
the US before 1910. Thus, in terms of the variables that have been proposed as causes of
the Flynn Effect, people in sub-Saharan Africa grow up under circumstances that are
comparable to a western civilization before the First World War. Future will tell whether
average 1Q in sub-Saharan Africa will show gains similar to those found in western
countries. Either way, given that the Flynn Effect has stood at about 3 points rise in IQ per
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decade in the developed world, the Flynn Effect has a potential of at least 27 IQ points
(.e., 90 years worth of Flynn Effect) in sub-Saharan Africa. Anyone who claims that
African 1Q) is low because of genetic or evolutionary factors, should take this simple fact
into account.

Admixture

The results of our study do not sit well with theories that assign a substantial role
to genes in racial differences in intelligence. It has been argued that because most African
Americans are admixtures of European and African genes, that the 1Q of "pure blacks" in
Africa should be much lower than the average IQ among African Americans (Lynn, 1991;
Rushton & Jensen, 2005a). This appears not to be the case. The average 1Q of African
Americans has been around 85 for quite a long time (Gottfredson, 2005; Jensen, 1998;
Rushton & Jensen, 2005a), although it appears to have changed upwards to approximately
89 in recent years (Dickens & Flynn, 2006). Based on our extensive review of studies,
average 1Q of the African population lies somewhere in the neighborhood of 80, when
compared to a mean IQ of 100 for the US. We are left with a mean difference somewhere
from 5 to 9 IQ points between Africans and African Americans. If we take into account
the real possibility that African IQ represents an underestimation of ability because of
measurement bias and sub-optimal testing conditions, this difference is likely to be smaller.
Were one to correct for the large differences in environmental circumstances (e.g.,
education, nutrition, health) between those two groups, this difference could easily drop to
zero. This would falsify the genetic theory of racial differences in intelligence, as put forth
by Lynn (20006). In light of our results, the admixture argument in favor of the genetic
theory of race differences in intelligence is unconvincing,

Concluding Remarks

Controversial topics such as group differences in IQ should not deter researchers,
but should encourage better research (Hunt & Carlson, 2006). Group differences in 1Q
exist, whether one likes it or not. The fact remains that science has an important role to
play in understanding these group differences. One does not learn much by claiming that
IQ tests are simply unsuitable for Africans (e.g., Berry, 1974), or that race differences in IQ
are not worthy of study (Sternberg, 2005). Some have argued that 1Q tests are suitable for
Africans (Lynn, 2006; Rushton & Jensen, 2005a), and particular social and political
conclusions are drawn on the basis of (incorrect) IQ levels in Africa (e.g., Herrnstein &
Murray, 1994; Lynn & Vanhanen, 2002; Rushton & Jensen, 2005a). Scientists do not
contribute to knowledge by claiming that certain persons are racist (Kamin, 1995), or that
people are being too politically correct to see the truth (Rushton, 1996). Scientists
contribute to knowledge by doing what they are good at, namely conducting rigorous, fair,
and open research. Besides, the exposure of erroneous claims (e.g., that Africans have an
average 1Q of 67) is an empirical issue, not a matter of a priori belief. We certainly hope
that our study has shed some more light on the complicated issue of IQ scores in sub-
Saharan Africa. Regardless of what these scores may eventually turn out to mean.
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Discussion

6.1 Introduction
“Does 1Q have a future? The short answer is: no” (Bartholomew, 2004, p. 33).

The study of cognitive abilities requires the use of measurement models. In this
chapter, I will highlight the merits of using such models by focusing on an idealized
(measurement) model of intelligence. Practical issues often hinder the implementation of
this idealized model. I will argue that the analysis of 1Q) test scores in the absence of an
explicit measurement model cannot add much to our understanding of group differences in
cognitive ability. In addition, I will discuss the results of the approaches employed in the
studies of this thesis, as well as the results of other approaches, in light of this idealized
model.

6.2 Idealized Model of Cognitive Abilities

Figure 6.1 displays a simplified hierarchical model of cognitive abilities, on which
there is considerable consensus in the literature (e.g., Carroll, 1993; Jensen, 1998; McGrew,
2005). On the top or apex of this model is the second order factor called g or general
intelligence. Below g is a particular first order factor, which is influenced by g, and by other
factors independent of g This first order factor influences the two narrowly defined latent
traits, both of which again are also subject to other factors, independent of the first order
factor. The two narrow latent traits are each measured by a collection of items composing a
scale (i.e., subtest). The item characteristic curves of these items are displayed on the
bottom of the figure. Suppose that g, the first order factor, and the narrow traits are all
linearly related, and suppose that the dichotomous item scores conform to an
unidimensional>® Rasch model. The model is far from complete. As Carroll (1993) has
shown, there might be an intermediate level between the first order and second order
factor, and there exist several first order factors (e.g., crystallized intelligence, processing
speed, long term retrieval, etc.). Despite the incompleteness of this model, Figure 6.1
illustrates how complicated the accepted inter-individual structure of human cognitive
abilities actually is. Things are further complicated by the fact that none of the depicted
variables in Figure 6.1 are directly observable; they are latent traits. Even the item
characteristic curves require estimation by fitting an Item Response Theory (IRT) model on
dichotomous item scores, which are the only observed variables.

56 Note that the hierarchical model might be inconsistent with the unidimensional IRT model. This may be solved by
employing multidimensional IRT models.
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Figure 6.1 Ldealized model of cognitive abilities and different effects of 1 ariable X

As any model, the model in Figure 6.1 requires empirical verification, which can be
accomplished by first fitting the Rasch model on item scores of a sufficiently large sample
of test takers. This results in item parameter estimates and ability estimates. Subsequently,
these ability estimates (or the sufficient statistics in case of a multivariate normally
distribution) can be used as input in a confirmatory factor analysis.5” With the program M-
Plus (Muthen & Muthen, 2003) this analysis can be conducted in one run. Fitting of the
model can shed light on the dimensions of inter-individual differences, and on the merits of
the measurement model. Fitting the entire model is not always feasible for practical
reasons. For instance the IRT model is often not fitted, but the item scores are summed to
arrive at scale scores. This was the approach employed in the studies in the current thesis,
where we focused on the factorial structure of subtest scores. Note that the summation of
item scores is not ideal, but may provide a reasonable approximation, provided that the
number of items is sufficiently large.

57 More 15t order factors and indicators are required to identify the factor model, but this is immaterial to the current

discussion.
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Now consider the exogenous Variable X, upon which the variables in the model
are regressed. X may be a continuous variable, like the amount of intellectual stimulation
during childhood, test sophistication, or the additive influence of a large number of genes.
X may also represent group membership (e.g., race, cohort, sex), although in this case it
might be more appropriate to not speak of a causal effect, but rather of a correlation
between X and the variables in the model. As depicted in Figure 6.1, Variable X can affect
(or be related to) the variables in the model at four levels: (I) The higher order factor called
g (II) the first order factor, (III) a particular narrow trait represented by a subtest, and (IV)
the location of individual item characteristic curves. Suppose that the regression on X of
the variables at Levels I, II, and III is linear, and that the regression on the dichotomous
item is suitably linearized (e.g., probit or logit regression). Thus, a Level IV effect is such
that it affects the difficulty parameter of particular items. The difference between these four
levels is highly relevant to the understanding of the (causal) relation between X and
cognitive abilities. For instance, if X affects item parameters, this amounts to uniform bias
(Mellenbergh, 1982) or Differential Item Functioning (DIF) with respect to X in the Rasch
model. In that case X is related to the measurement of cognitive ability, but not to any of
these abilities themselves. Hence, an effect on Level IV may be considered a measurement
artifact. If X affects the narrow trait (i.e., Level III effect), this would mean that the effect
of X is limited to the unique ability tapped by a subtest. If X represents group membership,
such an effect at Level III implies the presence of an intercept difference across groups (cf.
Chapter 2). Such an effect may be seen as a measurement artifact, but it may also be
interesting in its own right (cf. Chapter 3 and 4). In addition, it makes quite a difference,
both theoretically and practically, whether X affects the first order factor (i.e., Level II
effect) or the second order g factor (i.e.,, Level I effect). For instance, if intellectual
stimulation during childhood affects the first order factor (e.g., crystallized intelligence), this
would imply that intellectual stimulation has an effect limited to this particular first order
cognitive ability. On the other hand, if intellectual stimulation during childhood affects g,
this effect generalizes to other first order factors and narrow abilities, which are affected
directly or indirectly by g.

6.3 The IQ approach

Figure 6.2 displays an approach to study cognitive ability denoted the 1Q approach.
In this approach, IQ is used as a proxy for g. The I1Q approach looks neat and tidy, but
looks can be deceiving. In fact, in the IQQ approach, all test score information is wiped onto
a big pile (i.e., the summation of item scores), and denoted by the catchall term IQ. In
reality IQ is a hodgepodge of first order factors, narrow traits, item scores, and g.
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Figure 6.2 The 1Q approach and the effect of Variable X on cognitive ability.

The use of IQ in the study of cognitive ability is quite common. For instance IQ is
used to study intelligence in Africa (Lynn, 2006; cf. Chapter 5), sex differences in
intelligence (Jackson & Rushton, 2006), the relation between intelligence and brain size
(Thoma et al., 2005), and the Flynn Effect (Dickens & Flynn, 2001). In addition, a variant
of the IQ approach is the dominant approach in experimental research, where summed
item scores are generally treated as if they were latent variables. The IQ approach has led to
much misunderstanding. For instance, the lay public generally sees 1QQ as synonymous with
g Bven intelligence researchers sometimes make such mistakes. For example, the following
sentence appears to confuse directions of causality. “IQ determines the efficiency of
learning and comprehension of all cognitive tasks” (Lynn & Vanhanen, 2002, p. 39).

The IQ approach does not do justice to the complexity of human cognitive
abilities, nor is the IQ approach appropriate for the difficult task of measuring these. This
concept of 1Q ignores the fact that first order factors and subtests invariably measure
additional traits besides g, and that IQQ may not be a good indicator of g. ¢ may make a large
contribution to the variance of IQ scores, but g is certainly not the whole story. For
instance, a(2003) confirmatory factor analysis (Carroll, 2003) of the US standardization
sample of the 29 cognitive ability tests of the Woodcock-Johnson-Revised (WJ-R;
Woodcock & Johnson, 1989) showed that of the total test score variance, 33 % could be
attributed to g, 22 % to nine first order factors, and 45 % to subtest specific factors and
measurement error.

The use of the IQ does not contribute very much to our understanding of the
nature and causes of cognitive abilities (see also Bartholomew, 2004), or to our
understanding of the nature of group differences in intelligence test scores. That is, the
(causal) relation between Variable X and IQ can be due to the effect of X on g (i.e., Level
I), the effect of X on the first order factors (i.e., Level II), direct effects of X on subtest
specific ability (i.e., Level III), or DIF with respect to X (i.e., Level IV). In other words,
Level I, II, III, and IV effects are all confounded in the IQ approach. For instance, the
relation between intelligence and educational attainment appears to be rather more
complicated (Dolan et al., 2006) than expected on the basis of previous research that used
IQ. Even when a particular IQ test (e.g., Raven’s Progressive Matrices) has a high loading
on g, this does not mean that the effects of X on other levels are irrelevant. Group
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differences in IQ) cannot be simply dubbed group differences in g, just because IQ is based
on IQ test scores (cf. Chapter 5).

6.4 Analytical Approaches

Given the hierarchical model, an appropriate approach to the study of cognitive
abilities is based on statistical techniques from item response theory and/or Structural
Equation Modeling (SEM) approaches, like Confirmatory Factor Analysis (CFA). These
approaches are not always employed in the study of cognitive abilities. There exist several
approaches to study intelligence that are intermediate to the idealized modeling approach
described above (cf. Figure 6.1) and the 1Q approach (cf. Figure 6.2). Most of these
intermediate approaches are applied for practical reasons, although in many instances the
use of less sophisticated models is not warranted. For instance, consider the widely used
Method of Correlated Vectors (MCV; Jensen, 1998). In this method, subtests’ factor
loadings on g are estimated by means of Exploratory Factor Analysis (EFA), Principal
Components Analysis (PCA), or principal axis factor analysis (i.e., a variant of PCA).
Subsequently, the subtests’ g loadings are correlated with subtests’ correlations with
Variable X. In the model underlying MCV, two variables of cognitive ability remain: a
causal effect of (or a group difference in) Variable X is either on g (i.e., Level I), or on all
other variables in the model (i.e., Levels 1I, III, and IV). In other words, a g-or-not-g
conceptualization underlies the method of correlated vectors. If the correlation that forms
the crux of this method is close to one (i.e., a "Jensen Effect"; Rushton, 1998), this is
interpreted as an indication that X is related to g Any correlation larger than 0.50 is
generally seen as an indication of the rather vague notion that Variable X is mostly related
to g (e.g., Lynn & Owen, 1994). Likewise, a correlation of zero between g loadings and a
subtests’ correlations with Variable X are interpreted as if g is not correlated with X at all
(e.g., Rushton, 1999). This, however, is not necessarily the case (Ashton & Lee, 2005).
There are several reasons that the method of correlated vectors is suboptimal, the most
important being a lack in specificity (Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al.,
2004; Lubke et al., 2001; Lubke et al., 2003a). Specifically, with MCV it is not possible to
disentangle effects on the different levels in which X can be related to cognitive ability
and/or test scores. Whenever feasible, the use of SEM approaches with latent variables
(Bollen, 1989) is preferred. With SEM Xs relation to the different levels in Figure 6.1 can
be studied from a statistically sound perspective. If X represents group membership, Multi-
Group Confirmatory Factor Analysis or MGCFA is preferred, for the simple reason that
MGCFA models approach the idealized model much more closely. If the factorial structure
of a battery of subtests is unclear, Multi-Group Exploratory Factor Analysis (MGEFA) can
be employed (Hessen et al., 2006). In most applications of the method of correlated
vectors, the presence of sufficient statistics and sufficiently large sample sizes allow for the
use of MGCFA or MGEFA. Hence, in such cases, there is no reason to use the method of
correlated vectors, as this method is suboptimal.

There are many more approaches that are intermediate to the I1Q) approach and the
idealized model, such as Principal Components Analysis (PCA), multiple linear regression,
and equivalent techniques such as analysis of variance (ANOVA). However, the application
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of these techniques does not do justice to the fact that cognitive abilities are latent variables
that underlie test scores (e.g., PCA). When group differences in intelligence test scores are
studied, MANOVA approaches can be used, but these are only related to mean differences.
Most importantly, MANOVA, PCA, and regression analyses do not comprise a
measurement model. For example, Camarata and Woodcock (Camarata & Woodcock,
2000) recently used ANOVA to study sex differences on a large battery of cognitive ability
tests. However, this approach does not identify the exact level on which group differences
lie. The use of MGCFA or MGEFA allows for a more parsimonious approach, which may
shed light on the nature of sex differences at the level of common factors (Dolan et al.,

2006; Van der Sluis et al., 2000).
6.5 MGCFA

In the studies in Chapters 2, 3, and 4, we employed multi-group confirmatory
factor analysis, but we did not consider item level data. Therefore, in the approach used in
these studies, the effects of X on Level IV and Level III were confounded. Variable X
represented ethnic groups and cohorts in Chapters 2 and 4, respectively. In Chapter 3, X
represented ethnic groups/sex groups and experimental conditions. In these applications of
MGCFA, we were mainly interested in the degree to which group differences in subtest
scores could be attributed to group differences at the level of the common factors (i.e.,
Levels I and II). This also requires that measurement parameters are invariant with respect
to X.

When we came across mean effects that could not be accounted for by the
common factors in the model, measurement invariance with respect to X was said to be
violated in an uniform manner (Mellenbergh, 1982). Because of the confounding of Levels
III and IV, the uniform measurement bias we came across in these studies may have been
due either to DIF or to group differences in ability unique to subtests. Level I and II effects
were also not always distinguishable in the data sets we analyzed in this thesis, for the
simple reason that the number of subtests and factors did not always suffice to estimate the
higher order factor structure. Nevertheless, in the first study of Chapter 4, the second order
factor was modeled in the comparison of two cohorts of test-takers. That particular study
showed, like other studies (Dolan, 2000; Dolan et al., 2006; Dolan & Hamaker, 2001; Van
der Sluis et al., 2000) that the disentanglement of Level I and Level II effects is not always
straightforward empirically. This is due to insufficient power, i.e., the difficulty to detect
differences in mean structures at Level I and II. On the other hand, the results of our
applications of MGCFA suggested that effects on Level III/IV effects can be readily
distinguished from effects on Levels I and II. That is, we came across Level III and IV
effects in most of the data sets in this thesis. These effects are called intercept differences.

6.6 Intercept Differences
Chapter 2 focused on the disentanglement of Level I/1I from Level III/IV effects

when X represents group membership. In our overview of MGCFA studies published in
2005, we found that it is quite common that between-group difference in test scores are not
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solely related to the level of the (first order) common factors. This is a requirement for
group comparisons at Levels I and II, because the model is a bottom-up model, at least in
an empirical sense (i.e., in terms of estimation). In Chapter 2, we argued that within
MGCFA, the absence of intercept differences is a necessary condition for measurement
invariance. Measurement invariance is central to the understanding of group differences in
test scores. Therefore, it is rather surprising that in many studies with MGCFA, the
possibility of intercept differences is simply ignored, even in cases where the mean
structure was modeled explicitly (e.g., Chirkov et al., 2005; Corwyn & Bradley, 2005;
Hagger et al., 2005; Mclnerney et al., 2005).

As we saw in the illustrative re-analysis of a published study of the suitability of an
IQ test for ethnic minority children in The Netherlands (Te Nijenhuis, Tolboom et al.,
2004), ignoring Level III/IV effects may have serious practical consequences. It is
noteworthy that Te Nijenhuis and colleagues also studied DIF of several subtests of this 1Q
test (i.e., they did study Level IV effects). Interestingly, the subtest that showed the largest
intercept difference in our factor analyses (cf. Figure 2.5), did #of show item level bias in
their DIF analyses. This indicates that Level III effects may indeed be present in the
absence of Level IV effects. The effect of ethnicity on this subtest, which measured
knowledge of Dutch vocabulary, is a clear example of a Level III effect. One of the two
other subtests (i.e., Learning Names) that showed an intercept difference did display DIF
(the third biased subtest was not suitable for DIF analyses), which suggests that the
intercept difference on this subtest was probably due to a Level IV effect. DIF in this
subtest may have been due to the fact that it contained Dutch names from various fairy
tales, with which the ethnic minority children may have been less familiar. Yet another
subtest of this IQ test showed considerable DIF with respect to ethnicity, but did not
display an intercept difference. Combined, these results indicate that Level IV and Level 111
effects are distinct, and that Level IV effects may or may not show up as intercept
differences at the subtest level. Therefore, both analyses at the item level and analyses on
the level of subtests are required to fully establish measurement invariance across groups.

The RAKIT test appears to be biased with respect to ethnic minority children in
The Netherlands. Other research has shown that the GAT-B in the Netherlands was also
biased with respect to minorities at Levels III/IV (Dolan et al., 2004), and the WAIS-III in
Spain and The Netherlands was biased with respect to females at this level (Dolan et al.,
2006; Van der Sluis et al., 2006). In IQ test development, the use of MGCFA (if applied at
all; see, e.g., Wechsler, 2000) is mostly restricted to testing group differences in factor
loadings, but these tests do not provide reassurance whether tests are measurement
invariant across groups. Considering the apparent omnipresence of intercept differences,
and the likelihood of DIF, there is a strong need for more research on measurement
invariance of IQ tests across demographic groups. The claim that “the issue of test bias is
scientifically dead” (Hunter & Schmidt, 2000, p. 151) seems to be divorced from reality.

Ideally, studies of group differences should include data on a large battery of tests
with a clear theoretically based underlying factorial structure (e.g., WJ-III test battery;
Woodcock, McGrew, & Mather, 2001), item level data, and covariates that could help
explain the possible group differences on different levels. Several important unresolved
issues in the study of intercept difference are (1) the disentanglement of Level 11T and Level
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IV effects, (2) power to detect intercept differences when more than one indicator of a
factor are affected by a biasing variable, and (3) effects of nonlinearity.

6.7 Stereotype Threat

The effects of stereotype threat on test performance are generally seen as
measurement artifacts (Steele, 1997). Stereotype threat theory (Steele et al., 2002) states that
the performance lowering effects of stereotype threat are mainly restricted to items and
subtests that are sufficiently difficult to be stereotype threatening. That is, on an easy task
one does not run the risk to conform to the stereotype of low performance. Furthermore,
the performance on easy tasks is not likely to be strongly affected by decreases in working
memory capacity, which is considered an important mediator of stereotype threat effects
(Schmader & Johns, 2003).58 Within the model in Figure 6.1, the effects of stereotype
threat may be seen as Level III and Level IV effects on the most cognitively demanding
subtests and items, respectively.

In the studies into the effect of stereotype threat on test performance in Chapter 3,
we employed basic one-factor models with subtest scores as indicators. The theory of
stereotype threat allowed for quite specific predictions of the effect of stereotype threat
(.e., Variable X in Figure 6.1) on test performance. We predicted and found that the
experimentally induced effects of stereotype threat were most pronounced on the most
cognitively demanding subtests. Most, but not all, effects of stereotype threat we found
were linear and resulted in intercept differences.

In the first study of Chapter 3, stereotype threat had a non-linear effect on test
performance. In many (albeit not all; Lubke et al., 2003b) circumstances, such non-linear
effects can also be detected readily by means of MGCFA. Note, that the factor models
employed in Chapter 3 were quite small. In such models it is not always possible to
pinpoint exactly the subtests that display uniform or non-uniform bias. Suppose that in a
one factor model with three indicators, the first subtest shows misfit after a particular
between-group restriction is implemented. This effect could be due either to bias in this
first subtest, or to biasing effects on the other two subtests. Ultimately, theoretical
arguments guide the identification of biased subtests, not solely indicators of model misfit.
Ideally, one would incorporate in the model covariates that could explain the bias.

The modeling approach in Chapter 3 showed the usefulness of MGCFA in
experimental settings. The experimental paradigm in psychology focuses strongly on mean
effects, while covariance effects are often ignored (but see Baron & Kenny, 1986). In
addition, in experimental psychology manifest test scores are generally viewed as latent
variables, and individual differences are usually not modeled (i.e., they act as error terms in
ANOVA; Cronbach, 1957). As we showed in Appendix C of Chapter 3, the use of analysis
of covariance (ANCOVA) to accommodate individual differences in experiments does not
always sit well with predictions derived from theories that relate to individual differences
(e.g., stereotype threat theory). The use of MGCFA in experiments allows for the use of a

58 It would be interesting to study the effects of stereotype threat on working memory capacity from a modelling
perspective. Note that when the effect of stereotype threat is related to a common factor representing working
memorty, this effect represents a Level II effect.
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measurement model of both the mean and covariance structure. With this approach
measurement artifacts on Level III/IV can be disentangled from effects on the level of
common factors (i.e., Levels I and II). In addition, the use of MGCFA allows for a test of
measurement invariance across design cells. Therefore, the use of measurement models in
experimental settings could greatly enhance the construct validity of experiments (Shadish,
Cook, & Campbell, 2002). Not only would the use of such measurement models allow for
the detection and correction of many methodological artifacts (e.g., demand characteristics
in self-report questionnaires), it would also shed more light on the exact nature of the latent
dependent variables and of the nature of causal effects on these variables.

The studies in Chapter 3 illustrated the usefulness of rigorous modeling in
experimental settings and in our understanding of stereotype threat. Future work on
stereotype threat could look at item level effects (e.g., Stricker & Bejar, 2004). Also, it
would be interesting to employ more elaborate factor models, and to include covariates that
can shed light on mediating and moderating variables. Stereotype threat theory states that
not all test-takers are equally susceptible to the effects of stereotype threat, but this theory
(like many psychological theories) is not very explicit in whether stereotype threat
susceptibility is a latent class or a latent trait. If stereotype threat susceptibility turns out to
be a latent class, an analytical approach to study stereotype threat effects on test
performance would be to use factor mixture analyses (Lubke & Muthen, 2005), which
could be used in both experimental and non-experimental settings.

6.8 The Flynn Effect

Chapter 4 was concerned with the Flynn Effect. The large gain in IQ test scores is
quite remarkable given its size and consistency over time and over populations. However,
the apparent consistency of the effect over the developed world is mostly a function of the
use of I1Q to document the effect. The fact that the summed scores of a battery of tests
(i.e., IQ) increase over the years can be due to different causes raising scores on different
levels of the idealized model. It is quite conceivable that a large portion of the gain is
caused by Level III effects on different narrow abilities. Only with rigorous modeling, can
we hope to understand the nature of this phenomenon.

The continued use of 1Q in the study of the Flynn Effect is remarkable, because
early on it was noted that the gains were dependent on the type of subtest (Flynn, 1987).
Differential increases have raised the question whether the gains can be related to an
increase in g (Colom & Garcia-Lopez, 2003; Colom et al., 2001; Flynn, 1999a, 1999b,
2000a; Jensen, 1998; Must et al., 2003; Rushton, 1999, 2000a). This discussion revolved
mainly around the method of correlated vectors, which does a poor job in disentangling the
effects on the different levels of the idealized model.

The results from the studies in Chapter 4 shed some light on the level at which the
Flynn Effect appears to be operating. It became clear that Level III/IV effects (both
positive and negative) were present in the comparison across cohorts, although the gain
was also related to Levels I and II.

Proposed causes for the Flynn Effect differ in the level of effects within the
idealized model. Gains in test sophistication (Brand, 1987) and improvements in test
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specific skills (Greenfield, 1998) may be seen as Level 111 and Level IV effects. Such causes
are consistent with the results of Studies 1, 2, and 4 in Chapter 4. Urbanization (Barber,
2005), greater environmental complexity (Schooler, 1998), improvements in health care (W.
M. Williams, 1998), a trend towards smaller families (Zajonc & Mullally, 1997) are most
likely Level I and Level II effects. Increases in educational attainment (Husén & Tuijnman,
1991; Tuddenham, 1948), betterment of educational practice (Blair et al., 2005), are likely to
be effects on Level II (e.g., crystallized ability) and Level III (e.g., math ability). The
working of gene by environment correlation in the increasing presence of more intelligent
others (Dickens & Flynn, 2001), the genetic effect of heterosis (Mingroni, 2004), and
improvements in nutrition (Lynn, 1989, 1990), are Level I effects. If the absence of
measurement invariance across cohorts proves to be robust, it follows that variables related
to Levels I and II cannot be the sole causes of the Flynn Effect.

Measurement invariance in the studies in Chapter 4 was rejected mostly due to the
presence of intercept differences across groups. If we consider the arguments put forth in
Chapter 2 and in Appendix B of Chapter 3, these intercept differences would imply that at
least part of the Flynn Effect is related to uniform effects on Levels III and IV. The
uniformity means that whichever variable has caused the gain at this level, it does not
interact (strongly) with latent ability and it does not correlate strongly with latent ability.
What kind of variable could this be? Likely variables are variables that large portions of the
population encounter, such as the introduction of the television, computer games, and toys
(Greenfield, 1998).

Figure 6.3 displays two examples of children’s toys, which strongly resemble, and
might even have been copied from, particular subtests in the Wechsler Adult Intelligence
Scale (WAIS) and the Wechsler Intelligence Scale for Children (WISC). The toy on the left
resembles the Block Design test, the toy on the right is almost identical to the Object
Assembly test. Note that such toys are disseminated widely since the 1960s. In fact, most
primary schools in the Netherlands have toys like these. Such “educational” toys may have
provided excellent test coaching that may have contributed to the Flynn Effect on the
WAIS and WISC. Note that in the US both these subtests have shown consistent and
relatively strong gains from 1947 to 2002 (Flynn, 20006).5?

A DA S E D

Figure 6.3 Two smart types of t0ys.

5 Note that these two subtests showed only moderate gains in the Dutch data we analyzed in Chapter 4. In addition,
these subtests did not show intercept differences in these analyses.
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The Flynn Effect may in large part be due to increases in the specific ability tapped
by such subtests, which would constitute a Level III effect. Level IV effects are equally
likely. For instance, the Vocabulary subtest of the US WAIS contained an item asking for
the meaning of the word “terminate”. It is quite conceivable that since Schwarzenegger’s
1984 film The Terminator, this item has become considerably easier.® A study of DIF could
shed light on this issue. Note that the changes over time in item parameters is well-known
in educational measurement, where the effect is known as item parameter drift (Chan,
Drasgow, & Sawin, 1999). With one notable exception (Flieller, 1988), DIF analyses have
not been used to study the nature of the Flynn Effect. The results of Fliellet’s study cleatly
showed DIF over time.

Future work on the Flynn Effect should focus on data at both the scale and item
level. In addition, modeling of covariates that could explain the gain, may shed light on the
causes of the Flynn Effect. Unfortunately, existing raw data sets, particularly those
including item scores, are often difficult to acquire (Wicherts, Borsboom, Kats, &
Molenaar, 20006). Nevertheless, measurement models are the key to our understanding of
this fascinating phenomenon. Although there is an indication that the Flynn Effect appears
to have stopped in some western countries (Teasdale & Owen, 2005; Wicherts, 2005a), the
Flynn Effect will in all likelithood continue in the developing world, such as in Africa.

6.9 I1Q in Africa

In Chapter 5, we were guilty of the use of IQ scores for the simple reason that item
level data and multivariate test scores were not available. In light of the lack of results from
rigorous psychometric modeling, it is unclear what IQ scores in African samples mean
psychometrically. The mean IQ difference between western samples and African samples in
scores on an intelligence test such as Raven’s Progressive Matrices may be on Level I, II,
III, and/or IV. Given the likelihood of measurement bias (see, e.g., Dolan et al., 2004),
caution needs to be entertained in the interpretation of IQ scores in Africa. Rushton and
Lynn (Lynn, 2006; Rushton et al., 2004) maintain that the difference in IQ scores between
western samples and African samples lie on g (ie, Level I). However, this is mere
speculation. The analyses employed by Rushton and coworkers (Rushton, 2002; Rushton &
Skuy, 2000; Rushton et al., 2004; Rushton et al., 2002, 2003) do not establish the level at
which these groups differ. A rigorous study of DIF with well-established methods would
be a good starting point in the study of the psychometric meaning of IQ test scores in
Africa. To gain insight into the factorial nature of these test scores, analyses using MGCFA
or MGEFA are also needed.

There exist a host of variables that could account for the relatively low
performance of Africans on the Raven’s tests. Considering the many cultural differences
between Africans and westerners, several of these variables are likely to be on Levels 11, III,
and IV. For instance, relatively low test sophistication (Irvine, 1966) and misunderstanding

®Popular film titles could also have a negative effect on WAIS performance. The WAIS-III Information subtest
contains an item asking for information on The Kremlin. In a sample of 416 Psychology freshmen from the
University of Amsterdam, no less than 15 students indicated that this is a small, cute, furty creature that turns into a
vicious monster at midnight. This error is clearly caused by Spielberg’s 1984 film The Gremlins.
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of test directions (MacArthur et al., 1964) among African test takers could both result in
performance lowering effects on Level IIL¢! Individual items could display DIF (i.e., a
Level IV effect) because these items contain figures that are less familiar to Africans
(Bakare, 1972). It is also conceivable that the Raven’s test measure spatial abilities in
addition to g (Irvine, 1969b), and that spatial abilities among Africans are less well
developed by televisions and computer games (Greenfield, 1998).

The genetic or evolutionary theories of race differences in intelligence test scores
invariably relate to Level I effects. However, group differences in g are not likely to fully
explain the relatively low IQ scores of Africans. Besides, as we saw, there are many
variables related to the Flynn Effect that have not shown gains in Africa comparable to
those that occurred in the developed wotld. A large part of these environmental variables
are related to Level I, and could also help explain the reasons for lower 1QQ among Africans.

In conclusion, the genetic or evolutionary explanations of low average 1QQ in Africa
have a weak empirical basis, because these theories relate to a group difference in g which
has not been established, and because they are based on correlational evidence in the
presence of many highly relevant confounding variables.

6.10 The Nature of Latent Traits

In basically all theories on cognitive ability, cognitive abilities, including g, are
conceptualized as normally distributed latent variables. Although latent cognitive variables
are interesting and valuable in their own right, more research is required to shed light on
the exact psychological nature of these variables. The presence of latent dimensions of
inter-individual differences in cognitive ability may or may not be a reflection of latent
cognitive processes (Borsboom, Mellenbergh, & van Heerden, 2003). For instance, van der
Maas and colleagues (2006), recently proposed a dynamic model of cognitive abilities that
could account for the positive manifold (i.e., the phenomenon that cognitive ability test
scores universally intercorrelate positively) in the absence of a single cognitive quantitative
biological process or capacity. Their model provides an interesting view on the nature of
cognitive abilities, and could explain many phenomena such as the Flynn Effect. Dynamic
models like that presented by van der Maas et al. illustrate the usefulness of formal models
in the study of cognitive abilities.

The cognitive processes underlying inter-individual differences in intelligence test
performance can also be studied from an experimental perspective. Unfortunately,
experimental cognitive psychology and the study of individual differences in cognitive
ability appear to be as mutually isolated as they were fifty years ago (Cronbach, 1957).
Nonetheless, work on individual differences in working memory capacity (e.g., Engle, 2002;
Engle, Tuholski, Laughlin, & Conway, 1999) does appear to show some promise. The
continued use of ANOVAs by experimental psychologists, and the continued use of basic
correlational techniques by differential psychologists will not help in bringing the two
disciplines of psychology together. Bridging the gap between the experimental approach

1 The effect of such misunderstanding on item performance could also depend on the nature of particular items. In
that case, misunderstanding may result in a Level IV effect.
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and the individual differences approach to study human cognition rests ultimately on the
use of rigorous statistical models (Embretson & Schmidt McCollam, 2000; Lohman, 2000),
which should be well grounded in psychological theory.

6.11 Conclusion

Measuring latent variables by means of 1Q) tests is not an easy task, but the field of
psychometrics has provided many tools to study the relation between test scores and the
latent traits that are supposed to underlie those test scores. The aim of this thesis was to
use one such psychometric tool (i.e., MGCFA) to gain a better understanding of group
differences in intelligence test scores. Measurement models should be an integral part of
theorizing in all psychological theories that are related to latent traits. However, theories are
not always explicit concerning the level at which the effect of exploratory variables lie. If
our ultimate aim is to understand human cognitive abilities, and their determinants, the
approaches based on IQ do not take us very far. The more approaches are based on
explicit statistical and psychometric models, the closer we get in understanding cognitive
abilities, their antecedents, and group differences in intelligence test performance. Cognitive
abilities are complex phenomena that we will never fully understand by using approaches
based on IQ, or by using simple heuristics such as the g-or-non-g conceptualization
underlying the method of correlated vectors. In the study of cognitive abilities, simplistic
analytical approaches are best abandoned.
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Appendix:

A cautionary note on the use of information fit
indices in covariance structure modeling with
means

Information fit indices such as AIC, CAIC, BIC and ECVT can be valuable in
assessing the relative fit of structural equation models that differ with respect to
restrictiveness. In cases where models without mean restrictions (i.e., saturated mean
Structure) are compared to models with restricted (i.e., modeled) means, one should take
account of the presence of means, even if the model is saturated with respect to the means.
The failure to do this can result in an incorrect rank order of models in terms of the
information indices. We demonstrate this point by an analysis of measurement invariance
in a multi-group confirmatory factor model.

71 Introduction

Often in structural equation modeling, a sequence of increasingly restrictive models
is fitted. When both means and covariances are modeled, the situation may arise in which
one first fits a series of models to the observed covariance matrix, and one subsequently
adds the model for the means. Such a stepwise approach has the advantage that it provides
information concerning the drop in fit when structured means are added. This is especially
important when the means and the covariance structure are modeled with a common
subset of parameters, i.e., when strong hypotheses are tested concerning the common
causation of individual and mean differences (e.g., Mandys, Dolan, & Molenaar, 1994,
Meredith, 1993). The aim of the present note is to point out that in the calculation of
information criteria and the expected cross validation index (ECVI) in this context one
should take account of the presence of means, ever 7f the model is saturated with respect to
the means. The failure to do this can result in an incorrect rank order of models by AIC
(Akaike, 1974), BIC (Schwarz, 1978), CAIC (Bozdogan, 1987), and ECVI (Browne &
Cudeck, 1989, 1993). Specifically the rank order is incorrect when going from a model in
which the model for the means is saturated to a model in which the means are constrained.
We identify this problem below and demonstrate it in an illustrative analysis.

161
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7.2 Assessment of Relative Fit Using AIC, BIC, CAIC, and ECVI

In assessing the fit of structural equation models, it is advisable to consider several
fit measures, in addition to the y2 index (Bollen & Long, 1993). Information criteria such as
AIC, CAIC, and BIC form a useful class of indices, as they penalize for the number of
parameters, and thus take into consideration the parsimony of models. Although the
information statistics have rather different origins, varying from the concept of entropy
(AIC) to Bayesian statistics (BIC), they all have a similar structure (see Table 7.1), in that
they involve the same information. Lower information index values indicate better fit. We
note that the ECVI (Browne & Cudeck, 1989, 1993) is linearly related to the AIC, and thus
yields the same rank order of competing models as the AIC.

Information statistics are valuable in analyses, where models without restrictions on
the mean® are compared to models with such restrictions. However when means are
unrestricted, one may be inclined to discard the means. Clearly means need not actually be
included in a model, in which the means are not structured. Moreover in certain cases
(exploratory factor analyses), it is difficult to actually include the means. However,
comparing models that do restrict means to models that do not, these implicit mean
parameters have to be considered in the computation of the information indices. If these
parameters are overlooked, the information indices are underestimated. This in turn may
result in the unjustified rejection of restrictions on the means. The underestimation caused
by ignoring the parameters for the means differs for each information criterion, and
depends on the number of manifest variables and the number of cases. Table 7.1 contains
expression for this underestimation for each information criterion. We illustrate our point
by testing for factorial invariance in two groups of children.

Table 7.1
Fit indices and underestimation due to jgnoring saturated means
Fit Index Formula Underestimation due to
ignoring saturated means
AIC =2+ 2t 2*p
CAIC =32+ (1 + 10 N)t (1 +1n N)*p
BIC =y + (In N)t (InN)p
ECVI = (42/n) + 2(t/n) 2%(p/n)

Note: t=number of parameters; p=number of manifest means; N=number of cases; n=N-number of groups.
7.3 IMustration: Factorial Invariance

The psychometric theory concerning the definition and meaning of measurement
invariance within the context of the common factor model (i.e., factorial invariance) is well
developed (Meredith, 1993). This theory gives rise to multi-group confirmatory factor
models, in which covariance and mean structures are restricted over groups. Here we

02 T.e., a saturated mean structure in which a parameter is estimated for each observed mean.
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compare two groups. Let # and 2; denote the implied mean vector and covariance matrix in
group i. These are modeled as follows:

vi=1u+tNa D

Zi=N¥N + 6, @)
where the (p x q) matrix /l; contains factor loadings, and the p-dimensional vector 7
contains measurement intercepts. The (p x p)-diagonal matrix & contains unique/error-
variances, and % is the (q x g)-covariance-matrix of the q common factors. Finally, a; is a
g-dimensional vector of factor means. For reasons of identification (see S6rbom, 1974) this
vector is fixed to zero in an arbitrary group, so that latent differences in means are
modeled. Factorial invariance can be tested by fitting a series of increasingly restricted
models. These are presented in Table 7.2.

Table 7.2
Summary of models in case of two Groups 1 and 2
No. Description 2= 2= I
0 Exploratory NN /+0O, NN/+6, 7 7
1 Configural invariance N, PN/ +06, N, YN/ +0O, 7 7,
2 Metric invariance NYN+O, NYN+0O, 7 7,
3 Equal etror/unique vatiances NYN+O NYN+O 7 7
4a Strict factorial invariance NYN+O NYN+O 7 4+ /a,
4b Strong factorial invariance NYN+O, NYN+O, T +/a,

Note: 1"/ denotes that all elements are estimated. Except for Step 4b (nested under 2) each model is nested under
the previous one.

In addition to an exploratory factor analysis, we fit three models without mean
restrictions, namely configural invariance (equal pattern of factor loadings), metric
invariance (equal factor loadings; Horn, McArdle, & Mason, 1983), and a model with
group-invariant error/unique variances. Furthermore, we fit two models with structured
means, denoted strong factorial invariance and strict factorial invariance (Meredith, 1993).
Meredith (1993) has shown that, within the factor model, strict factorial invariance is
required to demonstrate measurement invariance (i.e., unbiasedness) with respect to
groups. To illustrate our point we fit these models and calculate the indices with and
without taking the means into account.

The models are fitted on a subset of data published in Naglieri and Jensen (1987),
which comprise the K-ABC and WISC-R scores of 86 Black and 86 White children. We
first carried out an exploratory factor analysis (EFA) on selected 16 subscales (see Dolan &
Hamaker, 2001, for similar analyses of the complete dataset). This resulted in a simple
structure with three common factors relating to verbal abilities (V), spatial abilities (S) and
memory (M). The scales are: Information (loading on the factor V), Similarities (V),
Vocabulary (V), Comprehension (V), Picture Completion (S), Picture Arrangement (S),
Block Design (S), Object Assembly (S), and Digit Span (M) from the WISC-R, and Faces
and Places (V), Riddles (V), Reading/Understanding (V), Triangles (S), Hand Movement
(M), Number Recall (M), and Word Order (M) from the K-ABC. In subsequent
confirmatory analyses, we use this simple structure. We fix one factor loading per factor at



164 CHAPTER 7

1 for scaling purposes. Furthermore, we assume multivariate normality and estimate
parameters by Maximum Likelihood (ML).

Table 7.3
Fit indices of models with or without means
means excluded in 0-3 means included in 0-3

model DF x? p RMSEA ECVI AIC CAIC BIC ECVI AIC CAIC BIC
0 150 177.5 062 0.032 2.39 407 913 791 277 471 1110 956
1 202 233.4 064 0.020 2.05 349 639 569 2.43 413 836 734
2 215 250.5 049 0.028 2.02 344 580 523 2.40 408 777 688
3 231 2941 003 0.044 2.06 350 520 479 2.44 414 717 644
4a 244 311.3 002 0.041 2.35 399 648 588 2.35 399 648 588
4b 228 267.4 .038  0.026 2.31 393 708 632 231 393 708 632

Note: The 2 reported here is the minimum fit 2, whereas the slightly different Normal Theory Weighted Least
Squares 2 is used here (like it is in LISREL) for computation of the information indices.

The fit indices of the models are presented in Table 7.3. For comparison we also
report the y2's and RMSEA fit indices, which are unaffected by the presence or absence of
means in saturated mean models (i.e., models 0-3). We first consider the y2 indices. Given
the nesting of the models, we employ y2 differences as a significance test for each
restriction (Joreskog, 1971). This would lead us to conclude that the equality of
unique/error variances over groups is not tenable, but that the other between-group
restrictions do not lead to a significant increase (p< .05) in y2. Based on the y2, we
therefore conclude that strong factorial invariance holds. Note that the RMSEA does not
really help in selecting models. Given the rule of thumb that RMSEA< 0.05 represents a
reasonable approximation (Browne & Cudeck, 1993), all models are judged to be
acceptable. In view of the equivocality of RMSEA, and given the recommendation to
consider a variety of indices (Bollen & Long, 1993), we now turn to the information
criteria.

Here we first look at the case in which means are 7of incorporated in the model, i.e.,
models 0-3. Based on both the ECVI and the AIC, we would conclude the equality over
groups of error/unique variances is not tenable and, more importantly, that intercepts
cannot be equated across groups. The latter also applies to BIC and CAIC, although these
two indices indicate that error/unique variances are invariant across groups. Thus, when
the saturated mean structure is ignored, ECVI, AIC, CAIC and BIC lead to the incorrect
conclusion that both strong and strict factorial invariance should be rejected. Only when
the parameters for the means are taken into account (even though they are unconstrained),
do we draw the correct conclusion. Here strong factorial invariance does hold, whereas
strict factorial invariance would be rejected (e.g., compare the ECVI and AIC in Model 4a
and Model 4b).63

03 However, note that the BIC and CAIC suggest that strict factorial invariance is tenable.
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7.4 Conclusion

The use of information criteria such as AIC, BIC, and CAIC, and the ECVI is
valuable in the comparison of structural equation models that differ with respect to
restrictiveness. However, when mean structure is analyzed in addition to the covariance
structure this mean structure should be incorporated in the models at all stages of model
fitting, even when the mean structure is saturated (unrestricted). Failure to do so may result
in an incorrect rank order of models, and incorrect conclusions. Happily the correct value
of the criteria can be obtained by including the means in the input and model
specification.®* In situations where this may not be possible (e.g. exploratory factor analysis)
the correct value can be calculated readily by hand (see Table 7.1). Although we have
focused on factorial invariance in our illustration, this conclusion applies to other models
including structured means such as the latent growth curve model or (quasi-)simplex
models with structured means (e.g., Mandys et al., 1994). Finally we note other fit indices
(e.g., the various comparative fit indices, such as the non-normed fit index) and related
information (standardized residuals, modification indices) are invariant whether saturated
means are or are not included in the model.

64 In Lisrel, the ty vector can be used to this end.
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Samenvatting

Groepsverschillen in prestaties op intelligentie tests

Groepsverschillen in de scores op intelligentie tests behoren tot de meest
controversiéle onderwerpen van de psychologie. Dit proefschrift gaat over dergelijke
groepsverschillen en benadert deze vooral vanuit de context van het lineaire confirmatieve
factor model. Dit psychometrische model is uitermate goed geschikt om groepsverschillen
in multivariate intelligentie test scores mee te onderzoeken, omdat ermee kan worden
nagegaan of met tests in verschillende groepen dezelfde latente variabelen (of factoren)
worden gemeten. Meer specifiek kan ermee worden onderzocht of groepsverschillen in
waargenomen test scores kunnen worden toegewezen aan groepsverschillen op de
onderliggende latente variabelen die dergelijke tests beogen te meten (Meredith, 1993). Een
dergelijke situatie wordt ook wel meetinvariantie ten opzichte van groepen genoemd

(Mellenbergh, 1989).

Verschillende Soorten Psychometrie

In het eerste hoofdstuk wordt opgemerkt dat er in de loop der tijd een schisma lijkt
te zijn ontstaan tussen de meer technische psychometrie die gericht is op het modelleren
van test scores aan de ene kant, en een psychometrie die gericht is op het begrijpen van
cognitieve capaciteiten (of intelligentic) aan de andere kant. Daar waar vroeger veel
onderzoekers een interesse aan de dag legden voor beide deelaspecten van intelligentie test
scores, lijken de technische psychometrische ontwikkelingen en de inhoudelijke
ontwikkelingen op het gebied van intelligentieconderzoek tegenwoordig steeds meer uit
elkaar te zijn gelopen. Zo worden moderne analytische technieken niet ten volle benut om
licht te werpen op de variabelen die gemeten worden aan de hand van cognitieve tests. Het
doel van dit proefschrift is om relatief moderne psychometrische technieken toe te passen
op groepsverschillen in intelligentie test prestaties, zoals die gevonden worden tussen
bijvoorbeeld etnische groepen (Hoofdstuk 2), groepen waarover wel of geen negatieve
stereotypen bestaan m.b.t. test prestaties (Hoofdstuk 3) en verschillende cohorten
(Hoofdstuk 4). Hoofdstuk 5 is gewijd aan de interpretatic van 1Q test scores van personen
uit Afrika. In Hoofdstuk 6 wordt betoogd dat gezien de structuur van individuele
verschillen in intelligentie, het gebruik van eenvoudige analysetechniecken nauwelijks
bijdraagt aan het begrip van effecten van bepaalde variabelen op, of groepsverschillen in,
intelligentie test scores.

Meetinvariantie en Groepsverschillen in Meetintercepten
Hoofdstuk 2 heeft betrekking op meetinvariantie van tests en in het bijzonder op
eerlijkheid van IQ) tests ten opzichte van bestaande groepen. Mellenbergh (1989) stelde een
eenvoudige en algemeen geldende definitie op van meetinvariantie ten opzichte van
groepen. Volgens zijn definitie zijn testscores meetinvariant ten opzichte van groepen
wanneer geldt dat, gegeven een bepaalde waarde op de latente trek, de verwachte waarde op
de test onathankelijk is van groepslidmaatschap. Een schending van meetinvariantie (ook
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wel meetonzuiverheid genoemd) betekent dat groepsverschillen in test scores niet
eenvoudigweg kunnen worden geinterpreteerd als groepsverschillen in de latente trek(ken)
die de test beoogt te meten.

In Hoofdstuk 2 wordt binnen het kader van het lineaire factormodel inzichtelijk
gemaakt dat er geen sprake kan zijn van meetinvariantie ten opzichte van groepen als er
bepaalde toetsen op de gemiddeldestructuur van test scores niet zijn uitgevoerd. Binnen dit
model wordt dit aspect gemodelleerd aan de hand van meetintercepten. Voor een zinvolle
groepsvergelijking dienen deze meetintercepten gelijk te zijn over groepen. Uit een
overzicht van de recente literatuur blijkt dat in veel onderzoek naar meetinvariantie aan de
hand van het confirmatieve factor model dit centrale aspect van meetinvariantie niet
nadrukkelijk is getoetst. In Hoofdstuk 2 wordt beargumenteerd dat zonder deze toets niet
geconcludeerd kan worden dat een test meetinvariant is ten opzichte van groepen.

De consequenties van het negeren van meetintercepten in de vergelijking van
groepen wordt geillustreerd aan de hand van een heranalyse van een gepubliceerde studie
naar de bruikbaarheid bij allochtone kinderen van een veel gebruikte Nederlandse
intelligentietest, te weten de Revisie Amsterdamse Kinder Intelligentie Test (RAKIT).
Hoewel er in de oorspronkelijke studie door Te Nijenhuis, Tolboom, Resing en Bleichrodt
(2004) gebruik gemaakt is van verschillende methoden om meetinvariantie te toetsen, is er
door deze auteurs geen toets uitgevoerd op de gelijkheid van meetintercepten in het
factormodel. Daar waar deze auteurs op grond van hun eigen analyses concluderen dat de
RAKIT in sterke mate meetinvariant is voor allochtone kinderen, laat de heranalyse in
Hoofdstuk 2 zien dat de RAKIT niet meetinvariant is ten opzichte van etnische groepen en
dat de RAKIT de latente vaardigheden bij van oorsprong Marokkaanse en Turkse kinderen
met ten minste 7 IQ punten onderschat. Dit impliceert dat de RAKIT alleen met grote
voorzichtigheid kan worden gebruikt bij het meten van intelligentie bij allochtone kinderen.
Dit resultaat laat tevens zien dat er meer behoefte is naar het bepalen van eetlijkheid van
veel gebruikte intelligentietests.

Stereotype Bedreiging en Groepsverschillen in Test Scores

Hoofdstuk 3 gaat over de effecten van stereotype bedreiging op test prestaties.
Stereotype bedreiging is de angst om onbedoeld te voldoen aan een negatieve stereotype
die betrekking heeft op de prestaties van de eigen groep (Steele & Aronson, 1995). Zo
kunnen vrouwen angst hebben om laag te scoren op een wiskundetest, omdat er een
stereotype bestaat dat vrouwen minder goed zijn in wiskunde. Uit veel experimenteel
laboratoriumonderzoek is gebleken dat wanneer personen uit gestigmatiseerde groepen op
meer of minder subtiele wijze worden herinnerd aan hun lidmaatschap van die groep, dit
een negatief effect kan hebben op hun test prestaties. Omdat een dergelijk effect sterke
maatschappelijke gevolgen hebben voor leden van die groepen, is het van belang om na te
gaan in hoeverre dit effect optreedt in echte testsituaties. In dergelijke testsituaties is het
echter vaak onethisch of onmogelik om de effecten van stereotype bedreiging te
onderzoeken.

In Hoofdstuk 3 wordt beargumenteerd dat het effect van stereotype bedreiging op
test prestaties kan worden gezien als een meetartefact dat leidt tot een schending van
meetinvariantie ten opzichte van groepen die wel of geen last hebben van het relevante
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negatieve stereotype. In drie experimenten is met behulp van multigroep confirmatieve
factor analyse nagegaan of de effecten van stereotype bedreiging op test scores inderdaad
dit psychometrische effect hebben. In het eerste experiment is gekeken naar de prestaties
van allochtone en autochtone middelbare scholieren op een kleine intelligentietest. Hierbij
werden scholieren aselect verdeeld over testsituaties die verschilden in de mate waarin deze
stereotype bedreiging opwekken voor allochtone leerlingen. Hoewel het gemiddeldeneffect
in dit experiment afwezig was, wees een toets op meetinvariantie uit dat deze manipulatie
een duidelijke schending van meetinvariantie teweeg heeft gebracht. In het tweede en derde
experiment werd gekeken naar de effecten van experimenteel opgewekte stereotype
bedreiging op de prestaties van vrouwelijke studenten op wiskundetests. Ook hier werd
gevonden dat wanneer stereotype bedreiging een (verlagend) effect heeft op test prestaties,
dit leidt tot een schending van meetinvariantie. Deze resultaten wijzen erop dat de effecten
van stereotype bedreiging in principe, en ongeacht de testsituatie, detecteerbaar zijn aan de
hand van toetsen op meetinvariantie. Dit maakt het mogelijk om deze effecten ook in
“echte” testsituaties te onderzoeken. De modelmatige aanpak in de analyse van
experimentele resultaten in dit hoofdstuk illustreert bovendien het grote voordeel van
dergelijke analyses boven analyses van enkel en alleen gemiddeldeneffecten zoals die in de
experimentele psychologie gebruikelijk zijn.

Aard van het Flynn Effect

Het Flynn Effect is de term voor de stijging van gemiddelde intelligentie test scores
over de jaren heen. Zo liet Flynn (1987) zien dat Nederlandse mannen bij de dienstkeuring
in de tweede helft van de twintigste eeuw steeds hoger zijn gaan scoren op een als
cultuurvrij bekend staande niet-verbale intelligentietest. Van 1952 tot 1982 stegen de
gemiddelde scores van de rekruten met maar liefst 20 IQ) punten. Dergelijke forse trends in
populatiegemiddelde IQ) test scores zijn inmiddels in veel westerse landen en in enkele niet-
westerse landen gedocumenteerd. Dit heeft de vraag opgeworpen wat de aard is van deze
toename in intelligentie test scores. Wordt deze veroorzaakt door een toename in de latente
trek algemene intelligentie of is er sprake van meetartefacten, bijvoorbeeld omdat personen
steeds handiger zijn geworden in het maken van IQ tests?

In Hoofdstuk 4 is onderzocht hoe deze stijging binnen het confirmatieve factor
model moet worden geinterpreteerd. Hiertoe is een vijftal vergelijkingen uitgevoerd van
cohorten die dezelfde IQ) test batterij in verschillende periodes hebben gemaakt. Zo werden
de intelligentietest scores van een steekproef Nederlandse volwassenen uit het eind van de
jaren zestig vergeleken met de scores op dezelfde test van een steekproef Nederlandse
volwassenen uit het eind van de jaren negentig. Uit multigroep confirmatieve factoranalyses
blijkt dat bij alle vijf de vergelijkingen van cohorten de gebruikte intelligentietests niet
meetinvariant zijn over de tijd. Dit impliceert dat de stijging in IQ test scores niet alleen
maar kan worden toegeschreven aan een stijging van de latente variabelen die ten grondslag
liggen aan deze test scores. Met andere woorden, het Flynn Effect lijkt deels te kunnen
worden toegeschreven aan meetartefacten. Toch blijkt een deel van de toename te kunnen
worden toegeschreven aan toenames in latente trekken. Echter, verklaringen voor het
Flynn Effect kunnen niet louter betrekking hebben op effecten op het niveau van (brede)
latente cognitieve vaardigheden.
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10 Scores in Afrika

Op de grond van een aantal uitgebreide literatuuroverzichten heeft Richard Lynn
(2006) geconcludeerd dat het gemiddelde 1Q van zwarte Afrikanen onder de 70 ligt. In
Hoofdstuk 5 wordt er op kritische wijze gekeken naar de gegevens waarop Lynn deze
bewering heeft gebaseerd. Er moet worden opgemerkt dat scores van Afrikanen op
westerse 1Q) tests niet zomaar kunnen worden geinterpreteerd in termen van de latente trek
algemene intelligentie of g zoals Lynn en anderen hebben gedaan. Voor een dergelijke
interpretatie van de relatief lage 1QQ scores van Afrikaanse steekproeven moet aan een groot
aantal methodologische en psychometrische eisen worden voldaan. Zo moet er zekerheid
bestaan over dat alle getesten weten wat er van hen verwacht wordt en moeten tests
worden afgenomen volgens strikte regels zoals geformuleerd in testhandleidingen. Het is
vrij goed denkbaar dat deze ideale testsituaties niet altijd gelden bij afnamen van westerse
IQ tests onder Afrikaanse personen en dat daardoor hun latente cognitieve vaardigheden
door deze 1Q tests worden onderschat.

Uit de resultaten van de literatuurstudie komt naar voren dat van de meest
gebruikte IQ) tests niet is komen vast te staan of deze in Afrikaanse steekproeven een goede
en valide weergave geven van de latente trek algemene intelligentie. Ook is vooralsnog
onduidelijk in hoeverre er bij de vergelijking van test prestaties tussen Afrikanen en
westerlingen sprake is van meetinvariantie. Niettegenstaande komt uit de literatuurstudie
naar voren dat de scores op deze IQ tests in Afrika aanzienlijk hoger liggen dan Lynn doet
voorkomen, vooral omdat Lynn een aanzienlijke portie van de literatuur over het hoofd
heeft gezien of simpelweg niet in zijn overzicht heeft opgenomen. In vergelijking tot
Amerikaanse normen scoren Afrikaanse steekproeven op een tweetal abstracte
intelligentietest gemiddeld rond een IQ van 80. Gezien de re€le mogelijkheid van
psychometrische problemen en de relatief slechte omstandigheden waaronder veel
Afrikanen opgroeien is dit lage gemiddelde niet verwonderlijk. Gemiddelde scores op
dergelijke IQ tests hebben in de meeste westerse landen een aanzienlijke stijging laten zien
die geacht wordt te zijn veroorzaakt door zaken als verbeteringen in gezondheidszorg en
voeding, verbeteringen in onderwijsniveau, urbanisatie, trend naar kleinere gezinnen en
technologische ontwikkelingen. Uit de in Hoofdstuk 5 gerapporteerde correlaties op het
niveau van landen blijkt dat vrijwel alle ontwikkelingen die in de westerse wereld
verantwoordelijk worden gehouden voor het Flynn Effect, in Afrika nog niet of nauwelijks
hebben plaatsgevonden. Dit suggereert dat de relatief lage 1Q) scores van Afrikanen alles
behalve steun bieden aan genetische theorieén over rassenverschillen in intelligentie test
scores zoals geformuleerd door Lynn (2006) en Rushton (2000b).

Discussie
In Hoofdstuk 6 wordt een geidealiseerd model gepresenteerd van de structuur van
individuele verschillen in cognitieve vaardigheden (zie Figuur 6.1). Voorts wordt
beargumenteerd dat gezien deze structuur, groepsverschillen in cognitieve vaardigheden, of
effecten van een bepaalde Variabele X op deze vaardigheden (bijv. cognitieve stimulatie
tijdens de jeugd), op vier verschillende niveaus kunnen plaatsgrijpen. Op Niveau I is er
sprake van een effect van (groep of variabele) X op de hogere orde factor g. Op Niveau 11
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is er sprake van een effect direct op eerste orde factor(en), zoals of Ruimtelijke Vaardigheid
of Verwerkingssnelheid. Op Niveau III is er sprake van een effect direct op de subtest in de
test batterij oftewel op de subtest-specifieke vaardigheid. Op Niveau IV is er sprake van
een direct effect op itemscores, wat kan worden gezien als een schending van
meetinvariantie van items.

Er wordt in Hoofdstuk 6 betoogd dat het gebruik van gesommeerde 1Q scores in
onderzoek naar groepsverschillen in, of naar effecten van een Variabele X op, cognitieve
vaardigheden ons niet veel wijzer maakt, omdat aan de hand van gesommeerde 1Q scores
geen onderscheid kan worden gemaakt tussen de effecten op Niveaus I, II, IIT en IV.
Daarentegen levert het gebruik van multigroep confirmatieve factor analyse in combinatie
met item respons modellen deze informatie wel op. De resultaten van de onderzoeken in
Hoofdstukken 2, 3, 4 en 5 worden geinterpreteerd vanuit dit geidealiseerde model.
Groepsverschillen in meetintercepten die onderwerp waren van Hoofdstuk 2 kunnen
worden gezien als effecten op Niveau III of IV. Nader onderzoek met de meting van deze
eventuele additionele variabelen (zoals test-specifieke vaardigheden) of additionele analyses
aan de hand van Item Respons Theorie (IRT) modellen kan licht werpen op de precieze
aard van deze effecten.

De effecten van stereotype bedreiging (Hoofdstuk 3) worden in de regel gezien als
meetartefacten en vallen onder effecten op Niveau III wanneer sprake is van subtest
gerelateerde effecten en onder Niveau IV wanneer sprake is van effecten die specifiek zijn
voor bepaalde items.

De verschillende variabelen die in de literatuur zijn geopperd ter verklaring van het
Flynn Effect kunnen eveneens worden gezien in termen van de verschillende niveaus. De
studies in het vierde hoofdstuk wezen erop dat het Flynn Effect deels kan worden
toegewezen aan effecten op het derde en vierde niveau. Er is daarom meer onderzoek
nodig om deze effecten in kaart te brengen.

De relatief lage scores van zwarte Afrikanen op westerse 1Q tests kunnen door
effecten op alle niveaus van de hi€rarchie zijn veroorzaakt. Omdat er een gebrek is aan
goede grondige psychometrische analyses in deze context, kan er niet zondermeer
geconcludeerd worden dat deze lage scores een reflectie zijn van lage gemiddelde g, zoals
Lynn wel heeft gedaan. Meer onderzoek in deze context is nodig om de aard van lage 1Q
scores van Afrikanen juist te kunnen interpreteren.

Gezien de structuur van individuele verschillen in cognitieve capaciteiten moet de
voorkeur worden gegeven aan het gebruik van grondige psychometrische modellen die een
weergave zijn van de theorieén die worden onderzocht.
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