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Anabolic androgenic steroids (AAS) have been abused for decades by both professional and amateur
athletes in order to improve physical performance or muscle mass. AAS abuse can cause adverse effects,
among which are hepatotoxic effects. These effects include cholestatic icterus and possibly peliosis hep-
atis and hepatocellular carcinoma or adenoma. In particular, 17a-alkylated AAS appear to be hepatotoxic,
whereas nonalkylated AAS appear not to be. The 17a-alkyl substitution retards hepatic metabolism of the
AAS rendering it orally bioavailable. The mechanism responsible for the hepatotoxicity induced by
17a-alkylated AAS remains poorly understood. However, oxidative stress has been repeatedly shown
to be associated with it. In this manuscript we present a hypothesis which describes a potential mecha-
nism responsible for AAS-induced hepatotoxicity, based on several observations from the literature
which suggest oxidative stress being a causal factor.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Anabolic androgenic steroids (AAS) are synthetic derivatives of
the male sex hormone testosterone. Numerous synthetic deriva-
tives have been developed and researched since the initial isolation
and synthesis of testosterone in 1935 in order to dissociate the
unwanted androgenic effects, such as male pattern baldness and
prostate hypertrophy, from the anabolic (muscle building) effects.
Moreover, efforts have been made to increase the oral bioavailabil-
ity of AAS, since they are rapidly metabolized by the liver and
therefore do not exert a pharmacological effect when taken orally.
These efforts successfully lead to the finding that 17a-alkyl substi-
tution (see Fig. 1) of an AAS markedly decreased its rate of degra-
dation in the liver, rendering it orally bioavailable. Unfortunately,
this structural modification appears to be inextricably linked to
hepatotoxicity. As a result, oral administration of AAS in clinical
practice is not commonly used and intramuscular injection or der-
mal application of gel formulations are favored. Obviously, the oral
route of administration is the preferred route by most patients,
especially compared to intramuscular injection.

Nevertheless, contrary to the low frequency of usage in clinical
practice, 17a-alkylated AAS are commonly used to increase physi-
cal performance or enhance muscle mass by athletes. A review by
Sjögvist et al. in 2008 estimates between one and three million
people in the USA to have abused AAS [1]. This prevalence of AAS
usage outside clinical practice is alarming as AAS abuse has been
linked to several adverse effects, including, but not limited to,
cardiomyopathy [2], atherogenic alterations in serum lipid levels
[3], hypogonadism [4], acne vulgaris [5], gynecomastia [6] and
hepatotoxicity [7]. The latter commonly involving cholestatic
icterus [8], as well as peliosis hepatis [9,10], hepatocellular carci-
noma [11] and adenoma [12] in rare cases.

In this manuscript we present a hypothesis which describes the
mechanism behind AAS-induced hepatotoxicity based on several
observations from the literature. Briefly, these observations are
that: (1) AAS-induced hepatotoxicity has been repeatedly shown
to be associated with oxidative stress in hepatic cells; (2) androgen
receptor (AR) activation can lead to an increase in reactive oxygen
species (ROS); (3) AR activation increases mitochondrial
b-oxidation; (4) antioxidants have been found to exhibit a hepato-
protective against AAS-induced hepatotoxicity; (5) metabolic
resistance and androgenic potency appear positively correlated
with the degree of hepatotoxicity. In the following sections we pro-
vide background information and elaborate on these observations
in order to arrive at our hypothesized mechanism of how AAS pos-
sibly induce hepatotoxicity.
Oxidative stress

In 1985 Helmut Sies defined oxidative stress as a disturbance in
the prooxidant-antioxidant balance in favour of the former [14].
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Fig. 1. a-Alkylation at position C-17 allows the compound to have oral bioavail-
ability due to retardation of a major deactivating pathway, namely oxidation of the
17b-hydroxyl group catalyzed by one of the 17-hydroxysteroid dehydrogenase
isozymes to form low active 17-keto steroids [13].
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Intimately involved in oxidative stress are molecules named reac-
tive oxygen species (ROS). ROS include both free radical (e.g. super-
oxide [O2

��]) and non-radical molecules (e.g. hydrogen peroxide
[H2O2]) which participate in radical reactions. These molecules
are highly reactive and can therefore damage other molecules such
as lipids, proteins, carbohydrates and nucleic acids. Subsequently,
ROS are involved in various disease pathologies. Nevertheless, they
also play an important role in many vital physiological processes
[15]. As such, both too high and too low levels of ROS can be detri-
mental to health.

Intracellular ROS can originate from various enzyme-catalyzed
reactions such as cellular respiration and other metabolic pro-
cesses, but also from radiation. The primary source of intracellular
ROS is derived from cellular respiration and localized to the mito-
chondrion [16]. Specifically, superoxide is produced as a result of a
slight electron leakage from the electron transport chain directly
onto O2

� Although superoxide itself is not a strong oxidant, it is a
precursor to most other ROS and is involved in the propagation
of oxidative chain reactions [17]. Since ROS are inherently linked
to aerobic metabolism, cells have evolved defense mechanisms to
regulate their levels. Superoxide is rapidly converted into oxygen
and hydrogen peroxide by the superoxide dismutases. Following
this conversion, catalase converts hydrogen peroxide to water in
the cytosol, whereas the glutathione peroxidases are responsible
for this conversion in the mitochondria as they lack catalase [18].
The subsequent conversion of hydrogen peroxide to water is
important as hydrogen peroxide is the precursor of the highly reac-
tive hydroxyl radical (�OH).

Given that ROS mainly arise as a by-product of metabolic pro-
cesses, the liver’s central role in food, hormone and drug metabo-
lism makes it no surprise that various liver pathologies are
(causally) involved with oxidative stress. Some examples include
metal-induced hepatotoxicity [19], NSAID-induced hepatotoxicity
[20], alcohol-induced hepatotoxicity [21], and possibly AAS-
induced hepatotoxicity [22].
A role for ROS and CPT1 in AAS-induced hepatotoxicity?

AAS-induced hepatotoxicity has been repeatedly shown to be
associated with oxidative stress in hepatic cells [23–26] as well
as in other cell types [22]. Of particular interest are ROS. Research-
ers have linked AR activation in a human prostate carcinoma
epithelial cell line (22Rv1) to an increase in basal ROS [27]. This
increase might be the result of an AR-mediated effect on the outer
membrane carnitine palmitoyltransferase I (CPT1). CPT1 is the
rate-limiting enzyme in the process of mitochondrial fatty acid
(FA) b-oxidation [28]. The researchers observed this increase in
basal ROS after addition of the synthetic 17a-alkylated AAS
methyltrienolone (R1881) [27]. Further addition of the AR antago-
nist bicalutamide significantly reduced this effect, thus suggesting
an AR-mediated effect. Later research by the same group applying
a similar study design confirmed these results and also demon-
strated that the increase in ROS is due to an AAS-induced increase
in mitochondrial FA b-oxidation of fatty acids (FA) [29]. Notably,
they found an increase in CPT1 mRNA levels. Moreover, the 17a-
alkylated AAS fluoxymesterone and methylandrostanolone have
been shown to increase CPT1 activity in rat liver [30]. An AAS-
induced increase in CPT1 with a subsequent increase in mitochon-
drial b-oxidation might also underlie its beneficial effects in a
non-alcoholic fatty liver disease rat model [31]. Additionally, ultra-
structural alterations of rat hepatocytes being treated with the
17a-alkylated AAS fluoxymesterone and methylandrostanolone
showed clear signs of mitochondrial degeneration as evidenced
by swelling of the mitochondria and only slightly defined cristae
[32]. Oxidative stress has been reported to induce inner membrane
remodeling of the mitochondria [33], thus supporting the idea that
the observed mitochondrial degeneration might be the result of
oxidative stress. In sum, androgens might induce hepatotoxicity
due to an increase in ROS which can result from an increase in
CPT1 activity and subsequent augmented mitochondrial FA
b-oxidation. As such, the commonly observed oxidative stress in
hepatic cells might be casually involved.

It is also interesting to note that some antioxidants have been
found to exhibit a hepatoprotective effect against AAS-induced
hepatotoxicity. In an observational cohort study of 320 athletes,
a positive effect on hepatic markers of liver damage was found in
AAS users who used a multivitamin and phospholipid complex
(compound N) when compared to AAS users who did not use com-
pound N [34]. Compound N contains polyenylphosphatidylcholine
(a mixture of polyunsaturated phosphatidylcholine [PC]), a sub-
stance which has been found to attenuate lipid peroxidation and
liver fibrosis [35]. Additionally, compound N contains a vitamin B
complex which might potentiate the antioxidative effect of PC.
Moreover, silymarin (a mixture of various flavonoids extracted
from silybum marianum) showed hepatoprotective effects in rats
treated with the 17a-alkylated steroid methandienone [36]. Sily-
marin also is known for its antioxidant activity [37]. These obser-
vations further strengthen the view that oxidative stress might
play a causative role in AAS-induced hepatotoxicity.
Is AR activation involved?

Already in 1964, Marquardt et al. demonstrated failure of non-
17a-alkylated AAS to produce abnormal liver function tests [38].
While 17a-alkylated AAS-induced hepatotoxicity has been
observed in multiple controlled clinical trials [39–41], it has not
been observed for non-17a-alkylated AAS [42], not even with sup-
raphysiological dosages (up to 600 mg weekly) of testosterone
[43]. Consequently, it is appealing to speculate a structure-
toxicity relationship based on the observation that hepatotoxicity
is restricted to 17a-alkylated AAS. Besides 17a-alkylation, two
other structural alterations have been associated with varying
degrees of hepatotoxicity: in combination with 17a-alkylation, a
3-keto group is thought to be more hepatotoxic than a hydroxyl
group at the same position. Additionally, saturation of the A-ring
is thought to reduce its ability to cause hepatic dysfunction [44].

Notably, the 3-keto group plays a pivotal role in AR binding
[45]. The oxygen atom has two free pairs of electrons and can
therefore act as a hydrogen bond acceptor for two polar residues
in the ligand-binding domain (LBD) of the AR [46]. Not
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surprisingly, 3a/b reduction of the group to a hydroxyl group (an
important pathway in AAS deactivation [13]) dramatically
decreases AR binding formultiple AAS [47]. Furthermore, an impor-
tant (and rate-limiting) step prior to reduction of the 3-keto group
of 3-keto-4-ene AAS, such as testosterone, is reduction of the 4,5
double bond [13]. AAS with a saturated A-ring do not require this
step, thus facilitating their metabolism. Therefore, to prevent satu-
ration of the A-ring, AAS have been synthesized with an alkyl group
substituent at C-1 (e.g. mesterolone) or an introduction of a 1,2
double bond (e.g. methandienone) to retard their metabolism.

If AR activation is involved in AAS-induced hepatotoxicity, it is
to be expected that both resistance to metabolism, as well as
potency to induce AR transactivation in hepatic cells, primarily
determine the gradation of hepatotoxicity. Various AAS seem to
support this line of thinking. R1881, having both a very high affin-
ity for the AR and exhibiting strong resistance to metabolism, has
made it an ideal compound for an assay of androgen binding sites
[48]. A mammalian reporter gene bioassay also demonstrated its
high potency in terms of AR transactivation [49]. Indeed, a clinical
trial demonstrated that very low dosages of R1881 (61 mg daily)
were enough to markedly increase hepatic markers of liver damage
within two weeks [50]. This led the authors to state that the com-
pound was the most hepatotoxic AAS at the time. Methandienone,
a potent 17a-alkylated AAS which also contains a 1,2 double bond
to further resist metabolism, also confers notable hepatotoxicity at
low dosages [51]. However, the 17a-alkylated AAS oxandrolone
exhibits very weak hepatotoxicity, even at high dosages (80 mg
daily) [52]. Oxandrolone is fairly resistant to hepatic metabolism
since approximately 28% is excreted unchanged and unconjugated
in the urine after oral administration in man [53], but it has low
affinity for the AR [54] and shows a relative potency in terms of
AR transactivation nearly 100 times lower than that of R1881 in
the same mammalian reporter gene bioassay mentioned earlier
[49]. Its resistance to metabolism therefore lends itself to be hep-
atotoxic as it can lead to high exposure of hepatic cells to the com-
pound, but its relatively weak potency of AR transactivation makes
it so that high dosages are required. Additionally, oxymetholone
also has a very low affinity for the AR [55], exhibiting a relative
potency similar to that of oxandrolone in the same bioassay [49]
and displays hepatotoxicity in a minority of patients, despite high
dosages (100–150 mg every day) [56,57].

Conclusion

In sum, we propose that AR-transactivation in hepatic cells
leads to upregulation of CPT1, the rate-limiting enzyme in the pro-
cess of mitochondrial FA b-oxidation. This, in turn, leads to an
increase in ROS which leads to mitochondrial degeneration of hep-
atic cells, ultimately advancing to the clinical signs of hepatotoxi-
city observed with the usage of 17a-alkylated AAS. This
hypothesis helps to explain why resistance to hepatic metabolic
deactivation, as well as androgenic potency, appear so strongly
linked to hepatotoxicity. Moreover, it clarifies why some antioxi-
dants have been found to exhibit a hepatoprotective effect against
AAS-induced hepatotoxicity. It is appealing to speculate that
antagonistic targeting of the AR specifically in hepatic cells might
relieve 17a-alkylated AAS from their hepatotoxic effects. Based
on the limited clinical data and animal models, the effects of
antioxidants in AAS-induced hepatotoxicity warrant further explo-
ration, as they might be a cheap and safe strategy to ameliorate the
hepatotoxic effects of AAS.
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