

Induction of micronuclei in V79 cells by the anabolic doping steroids tetrahydrogestrinone and trenbolone

Susanne B. Dorn · Hermann M. Bolt · Mario Thevis ·
Patrick Diel · Gisela H. Degen

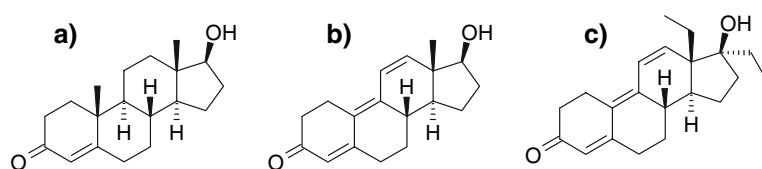
Received: 20 June 2007 / Accepted: 16 August 2007 / Published online: 1 September 2007
© Springer-Verlag 2007

Abstract The synthetic steroid tetrahydrogestrinone is a new “designer drug” and was recently detected to be illegally used in sports. It is chemically closely related to trenbolone that is known as an animal growth promoter. The potencies of trenbolone, tetrahydrogestrinone and testosterone to induce micronuclei in V79 cells *in vitro* were determined. CREST analysis was employed to differentiate between aneugenic or clastogenic mechanisms. Cytotoxicity and an influence on the cell cycle were assessed in parallel. Incubations with testosterone, at concentrations between 3 and 300 µM, failed to induce micronuclei. By contrast, tetrahydrogestrinone and trenbolone increased the rate of micronuclei significantly, up to a doubling of the micronuclei rate of untreated controls. Tetrahydrogestrinone and trenbolone displayed a bell-shaped dose-response curve, with maximal effects observed at 3 and 30 µM, respectively. The micronuclei induced by tetrahydrogestrinone and trenbolone were predominantly kinetochor (CREST) positive, pointing to an aneugenic mode of action. This may be related to the specific structure of both molecules with a system of activated double bonds. As the genotoxic effect of tetrahydrogestrinone at a chromosomal level appears at a low concentration range, it cannot be ruled out that tetrahydrogestrinone presents a

genotoxic hazard on a chromosomal level under conditions of its current misuse in sports.

Keywords Trenbolone · Tetrahydrogestrinone · Testosterone · Anabolic steroids · Doping · Sport · Genotoxicity · Micronucleus assay

Introduction


Anabolic steroids are used as growth promoters in animal husbandry (Anonymous 1987; WHO 1988), and their current misuse by athletes for doping raises political concern (Deftos 2006). Aside from the hormonal activity of steroids, there is a possibility of genotoxic effects (Joosten et al. 2004). The synthetic androgenic/anabolic steroid tetrahydrogestrinone (THG) is a new “designer drug” that was recently detected to be illegally used in sports (Catlin et al. 2004; Friedel et al. 2006; Thevis et al. 2005). Its chemical structure is closely related to that of trenbolone (TB) that has been used as an animal growth promoter for almost 20 years (Anonymous 1987; WHO 1988) and also misused by bodybuilders (Daniels et al. 2006). The structural formulae of these compounds, compared to the physiological androgen testosterone (T), are depicted in Fig. 1.

As an animal growth promoter, the genotoxicity of TB has been evaluated using different endpoints *in vitro* and *in vivo*. The database gives an inconsistent picture (Marzin 1991; Metzler and Pfeiffer 2001): although TB appears to bind to DNA to a very limited extent (Barraud et al. 1984; Lutz et al. 1988), it appears negative in most bacterial and mammalian cell mutagenicity and DNA repair assays. Equivocal or contradictory results were obtained for morphological cell transformation (Schiffmann et al. 1985; Tsutsui et al. 1995), and in assays reflecting genotoxicity at

S. B. Dorn · H. M. Bolt (✉) · G. H. Degen
Leibniz Research Centre for Working
Environment and Human Factors,
Institut für Arbeitsphysiologie an der
Universität Dortmund (IfADo),
Ardeystr. 67, 44139 Dortmund, Germany
e-mail: bolt@ifado.de

M. Thevis · P. Diel
Deutsche Sporthochschule Köln,
Carl-Diem-Weg 6, 50933 Köln, Germany

Fig. 1 Chemical structure of **a** testosterone (T), **b** trenbolone (TB) and **c** tetrahydrogestrinone (THG)

a chromosomal level, namely the mouse lymphoma assay, the chromosomal aberration test, and micronucleus (MN) induction *in vitro* in different cell types (Richold 1988). However, a strong irreversible binding of TB and/or its metabolites to tissue proteins has been reported, most likely connected with its activated system of conjugated double bonds (Ryan and Hoffmann 1978). This, in principle, raises concern of an interaction with proteins involved in karyokinesis (Bonacker et al. 2004a).

The genotoxicity of the structurally similar “designer drug” THG (Death et al. 2004) has not been investigated at all. In order to investigate the chromosomal genotoxicity of TB and THG we determined their potencies of micronuclei induction in V79 cells and compared these with that of the natural androgen testosterone (T). A CREST analysis was employed to differentiate between aneugenic or clastogenic mechanisms. Cytotoxicity and influence on the cell cycle were assessed in parallel.

Materials and methods

Chemicals and biochemicals

T was purchased from Sigma-Aldrich (Taufkirchen, Germany). TB was obtained through Organon, Department of Toxicology and Drug Disposition (Oss, The Netherlands). THG was originally synthesized by Thevis et al. (2005) and also characterized for hormonal activity as described by Friedel et al. (2006).

Vincristine (VCR), methylmethane sulfonate (MMS), acridine orange, propidium iodide (PI), 4',6'-diamidino-2-phenyl-indole (DAPI), HBSS (Hanks' balanced salt solution), spermine tetrahydrochloride, Na₂EDTA, mercaptoethanol, and RNase were purchased from Sigma-Aldrich (Taufkirchen, Germany); KCl and Triton-X-100 from Fluka (Buchs, Switzerland).

CellTiter Blue™ was from Promega (Mannheim, Germany). The primary antibody for the CREST analysis, so-called “positive control serum”, was obtained from DPC Biermann (Bad Nauheim, Germany); the secondary antibody, FITC conjugated anti-Human IgG, was from Sigma. Dimethylsulfoxide (DMSO), methanol, acetone, acetic acid, TRIS, NaCl, and Tween 20 were products of Merck (Darmstadt, Germany). Cell culture medium (RPMI 1640), trypsin-EDTA, and PBS (phosphate buffered saline 10×) were obtained from Invitrogen (Karlsruhe, Germany) and

fetal calf serum (FCS) from Biochrom KG (Berlin, Germany). “Acridine orange working solution” was prepared as follows: 5 ml acridine orange stock solution (1 mg/ml dist. water) were mixed with 7 ml 0.3 M KH₂PO₄, 7 ml 0.3 M Na₂HPO₄ and 80 ml dist. water.

Cytotoxicity assay

Cytotoxicity of the test compounds was determined in V79 hamster lung fibroblast cells (DSMZ, Braunschweig, Germany) by means of the CellTiter Blue™/Alamar Blue assay (Nociari et al. 1998; O'Brien et al. 2000) to indicate the range of concentrations (close to and below cytotoxicity) suitable to examine the chemicals in the micronucleus assay.

The CellTiter Blue™ assay, a fluorometric method, uses the indicator dye resazurin to measure the metabolic capacity of cells as an indicator of cell viability. Viable cells retain the ability to reduce resazurin into resorufin, which is highly fluorescent. Non-viable cells rapidly lose their metabolic capacity, do not reduce the indicator dye, and do not generate a fluorescence signal.

Briefly, 5×10^3 V79 cells per well were plated in black 96-well tissue-culture plates with clear bottom (Costar from VWR International, Bruchsal, Germany), allowed to attach for 24 h and treated with the test substances, added as DMSO solutions, in the culture medium for 18 h. Final concentration of DMSO was 0.1%. Cells were washed twice with warm HBSS and subsequently incubated with 20% CellTiter Blue™ (Promega) in HBSS for 3 h (Goegan et al. 1995). The fluorescence intensity was read at 540 and 595 nm using a SpectraFluor Plus microplate reader (Tecan, Crailsheim, Germany).

The IC_{20} and IC_{50} values were taken from the concentration response curves.

Micronucleus (MN) assay

The MN assay was performed *in vitro* according to Matsuoka et al. (1992) with slight modifications described elsewhere (Bonacker et al. 2004a; Dorn et al. 2007). Initially, 2×10^5 V79 cells were seeded into 25 cm² flasks (Greiner) and cultured for 48 h at 37°C. The medium was changed, and the cells were exposed to graded concentrations of the test substances, negative and positive control items. Positive controls were methylmethane sulfonate (227 µM) and vincristine (10 nM); negative controls were

cultures treated with medium alone and 0.1% DMSO, respectively. Concentrations of the test compounds examined in the MN assay were generally below the limit of cytotoxicity.

Cells were harvested by disaggregation with trypsin/EDTA (0.25% trypsin in PBS with 0.02% EDTA), suspended in complete medium with 20% FCS and centrifuged at 200g for 8 min. The cells were then subjected to hypotonic conditions with 0.4% KCl, and to fixation with methanol/acetic acid (4:1) (4 cycles and centrifugation in between). Cells were mounted onto slides, air-dried at $\sim 55^{\circ}\text{C}$ and stained with a solution of Acridine Orange (50 $\mu\text{g}/\text{ml}$) and immediately examined using a Leitz DM LB fluorescence microscope (Leica, Wetzlar, Germany) at 400-fold magnification and a filter setting providing blue excitation at 440–490 nm and emission of 520 nm.

MN were scored according to the criteria of Countryman and Heddle (1976) and Fenech (1993): structures surrounded by a nuclear membrane, having an area of less than one third of that of the main nucleus, being located within the cytoplasm of the intact cell and not linked to the main nucleus via nucleoplasmic bridges. Multinucleated cells and cells with more than six MN were not scored to avoid a mix-up with apoptotic cells.

Per culture, $2 \times 1,000$ cells with well-preserved cytoplasm were examined and analyzed for micronuclei. The number of MN scored was recorded and micronucleus rate calculated as number of MN per 1,000 cells for each condition/concentration. Each compound was assayed at least in two independent experiments.

CREST analysis

A distinction between aneugens and clastogens was achieved by the CREST analysis according to Renzi et al. (1996) and Russo et al. (1992), with some modifications (Bonacker et al. 2004b). Vincristine (VCR, 10 nM) and methylmethane sulfonate (MMS, 227 μM) served as aneugenic and clastogenic positive controls, respectively. The test conditions were those used in the standard MN assay, except that the cells were seeded directly onto sterile slides (2.5×10^4 cells/slide) and treated in Quadriperm® dishes (Viva Science, Hannover, Germany). After incubation with the compounds for 18 h (at 37°C under 5% CO_2) the cells were rinsed 2 min with 1× PBS, treated with 0.075 M KCl for swelling (15 min, 37°C), fixed with ice-cold (-20°C) methanol (30 min) and acetone (10 min), and permeabilized with PBS plus 0.1% Tween 20.

Then cells were incubated with 50 μl of the primary antibody (CREST serum 1:50 in PBS/0.2% Tween 20) for 24 h (37°C , 5% CO_2), washed with PBS/0.1% Tween 20 to eliminate the excess of primary antibody and again incu-

bated with the second antibody (FITC-conjugated goat anti-human antibody, 1:100 in PBS/0.5% Tween 20) for 1 h. The cells were rehydrated in Soerensen buffer, counterstained with 100 μl DAPI/PI staining solution (1 $\mu\text{g}/\text{ml}$ DAPI + 0.1 mg/ml propidium iodide (PI), mixed 3:1 v/v), mounted with antifade and analysed by fluorescence microscopy.

The induction of MN was evaluated by scoring a total of 1,000 cells per slide with a Leitz DM LB fluorescence microscope (Leica, Wetzlar, Germany) at a 400-fold or 1,000-fold magnification. MN were located by fluorescence light (UV excitation, 340–380 nm, emission 425 nm), checked with a PI filter (excitation 515–560 nm, emission 590 nm), and finally classified using the FITC filter (blue excitation, 450–490 nm, emission 525 nm).

MN were classified as “CREST-positive” when bright spots were clearly observed, “CREST-negative” when no spots were observed, or “unclear” when either opaque spots or bright background were observed. A positive CREST reaction reveals that the MN consists of one or more complete chromosomes and indicates primarily aneugenic effects (Miller and Adler 1990; Schuler et al. 1997).

Cell cycle analysis

The distribution of untreated and substance-treated V79 cells in the different cell cycle phases was determined using propidium iodide DNA staining and analysis of DNA content by flow cytometry (Dolezel et al. 1989; Krishan 1975). The background of this method is the DNA content of cells in G_0/G_1 phase being 2n, its increase during S phase up to 4n, which resembles cells in G_2/M phases.

Briefly, 8×10^4 cells were seeded in 6-well-dishes (Costar from VWR International, Bruchsal, Germany) and cultured for about 48 h before treatment. The medium was changed, and the cells were exposed to the test substances as DMSO solutions or to control conditions (medium only or 0.1% DMSO) for 18 h.

Cells were harvested by disaggregation with trypsin/EDTA (0.25% trypsin in PBS with 0.02% EDTA), suspended in medium with 20% FCS and centrifuged at 200g for 8 min. They were re-suspended in PBS, and cell density was adjusted at 1×10^6 . After being centrifuged again, the cells were re-suspended in 500 μl lysis buffer (15 mM Tris, 2 mM Na₂EDTA, 0.5 mM spermine tetrahydrochloride, 80 mM KCl, 20 mM NaCl, 0.1% (v/v) Triton X-100, 15 mM mercaptoethanol, pH 7.5). 5 μl RNase (10 mg/ml) for RNA digestion and 5 μl PI (1.5 mM) for DNA staining were added, and the samples were incubated for 1 h at 4°C in the dark. Cells were finally analyzed by flow cytometry (FACSCalibur™, Becton Dickinson, Heidelberg, Germany).

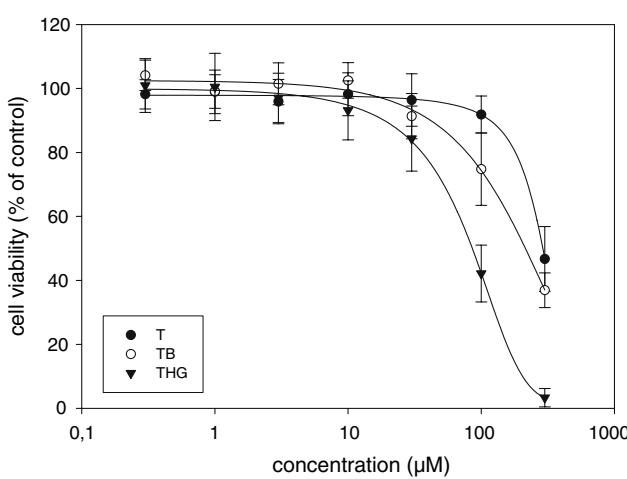
Statistical analysis

The results obtained for the compound-treated samples were compared with the concurrent negative solvent control using the Student's two-tailed *t* test. Probability values of $P \leq 0.05$ were accepted as being significant.

Results

Cytotoxicity

Cytotoxicity of the test compounds has been determined by means of the CellTiter Blue™ assay; the results are depicted in Fig. 2. As apparent from the concentration-response curves, THG was the most and T the least cytotoxic of the three steroids. The IC_{20} values were 40, 75 and 155 μ M for THG, TB and T, respectively. More pronounced cytotoxicity (IC_{50} values) was reached at 90, 230 and 285 μ M for THG, TB and T, respectively.


Expression of genotoxicity in the micronucleus assay may be compromised by interfering cytotoxic or cytostatic effects (cell cycle arrest). Therefore, based on the cytotoxicity results a permissible range of concentrations was derived for the MN test, i.e., concentrations that do not result in an overt inhibition of cell division.

Micronucleus (MN) assay

Treatment with the physiological androgen T, at concentrations between 3 and 300 μ M, failed to induce MN in V79 cells. By contrast, THG and TB increased the rate of MN significantly, compared to controls (Table 1). Interestingly, both THG and TB displayed a bell-shaped dose-response curve, with maximal effects observed at 3 and 30 μ M,

Table 1 Micronucleus (MN) assay results of T, TB, THG, and controls ($n = 4$ each)

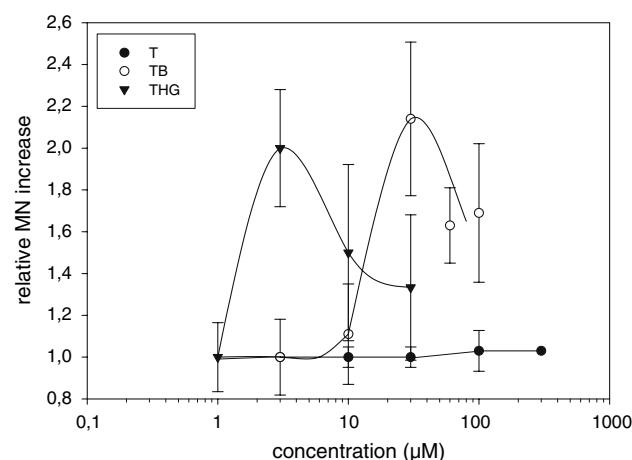

Compound	Concentration (μ M)	MN/1,000 cells (SD)	MN increase relative to control (SD)
T	3	14.50 (± 0.71)	1.00 (± 0.05)
	10	14.50 (± 0.58)	1.00 (± 0.04)
	30	14.50 (± 1.91)	1.00 (± 0.13)
	100	15.00 (± 1.41)	1.03 (± 0.10)
	300	15.00 (± 0.00)	1.03 (± 0.00)
	Medium	14.50 (± 1.00)	
0.1%DMSO		15.50 (± 1.00)	1 (± 0.07)
TB	3	9.00 (± 1.63)	1.00 (± 0.18)
	10	10.00 (± 2.16)	1.11 (± 0.24)
	30	19.25 (± 3.30)	2.14 (± 0.37)
	60	13.00 (± 1.41)	1.63 (± 0.18)
	100	15.25 (± 2.99)	1.69 (± 0.33)
	Medium	9.75 (± 1.26)	
0.1%DMSO		8.67 (± 1.21)	1.00 (± 0.16)
THG	1	10.50 (± 1.73)	1.00 (± 0.16)
	3	21.00 (± 2.94)	2.00 (± 0.28)
	10	15.75 (± 4.42)	1.50 (± 0.42)
	30	14.00 (± 3.65)	1.33 (± 0.35)
	Medium	9.75 (± 1.26)	
0.1%DMSO		10.50 (± 1.29)	1.00 (± 0.12)

Fig. 2 Cytotoxicity of testosterone (T), trenbolone (TB) and tetrahydrogestrinone (THG); mean \pm SD

respectively (Fig. 3). These maximal effects of both compounds were close to a doubling of the respective background MN rates.

To differentiate between aneugenic and clastogenic modes of action, CREST analysis was performed for the two synthetic steroids that were tested positive in the MN

Fig. 3 Micronucleus (MN) induction of testosterone (T), trenbolone (TB) and tetrahydrogestrinone (THG) (values relative to solvent controls); mean \pm SD

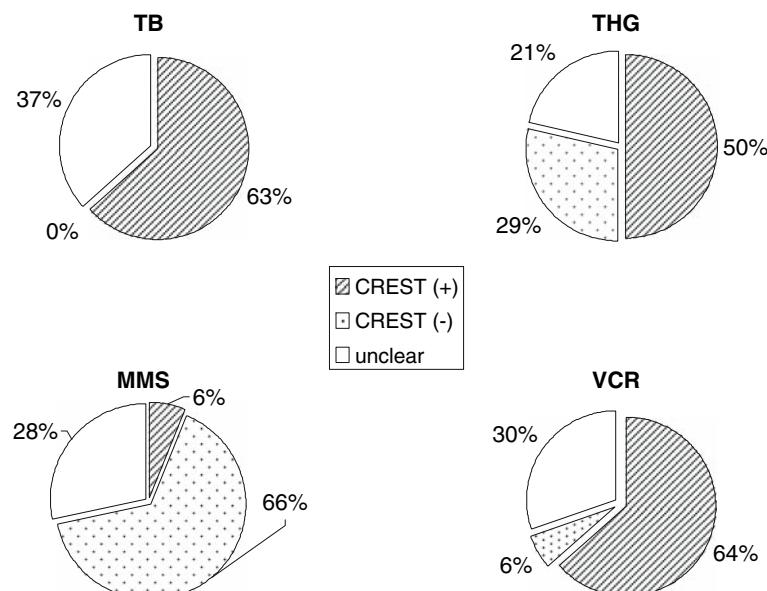
Table 2 CREST analysis: number and characteristics of MN induced by TB, THG and controls ($n = 4$ each)

Compound	Concentration	MN/1,000 cells (SD)		
		CREST-positive	CREST-negative	unclear
TB	30 μ M	6.0 (± 1.7)	2.7 (± 0.6)	4.7 (± 0.6)
THG	3 μ M	4.0 (± 0.0)	6.5 (± 0.7)	3.0 (± 0.0)
Medium		0.0 (± 0.0)	3.0 (± 1.4)	1.5 (± 0.7)
0.1% DMSO		0.5 (± 0.7)	4.5 (± 0.7)	1.5 (± 0.7)
MMS	227 μ M	1.3 (± 1.5)	13.3 (± 3.8)	5.3 (± 3.1)
VCR	10 nM	23.8 (± 4.6)	7.0 (± 1.4)	12.8 (± 3.2)

assay. Numbers and characteristics of MN induced by the steroids and by positive and negative controls are shown in Table 2. After introducing the background corrections for steroids and positive controls (Fig. 4) the compounds were classified regarding their mode of action. The reference compounds methylmethane sulfonate, a typical clastogen, induces mainly CREST-negative MN, the reference aneugen vincristine mainly CREST-positive MN. MN induced by TB and THG were predominantly kinetochor (CREST)-positive, pointing to an aneugenic mode of action in both cases (Fig. 4).

Cell cycle analysis

Effects of steroids on the cell cycle were studied in V79 cells at a range of concentrations. Results are summarized in Table 3. No changes in cell cycle distribution were detected in V79 cells treated with THG up to 30 μ M; at 60 μ M the sub- G_0/G_1 cell population was increased, thus pointing to apoptosis. Testosterone treatment for 18 h at 100 and 300 μ M led to a clear increase in the fraction of cells in G_2/M ; lower concentrations did not show an effect. TB concentrations of 30 μ M and more (100 μ M) led to a


marked increase in the fraction of cells in G_2/M , indicative of a dose-dependent cell cycle arrest.

Discussion

The present study on the dose-dependent induction of MN by THG, TB and T was carried out in V79 cells, a cell line that has been widely used to assess the genotoxic potential of chemicals, including hormonal steroids (Dorn et al. 2007).

Both TB (Anonymous 1987) and THG (Death et al. 2004; Friedel et al. 2006; Labrie et al. 2006) present themselves as potent androgenic and anabolic steroids. According to the present data, they reach the level of a doubling of the MN background rate in V79 cells within a relatively narrow concentration window (Fig. 3). The resulting “bell-shaped” dose-response is likely to be caused by cytotoxicity at higher concentrations (Fig. 2). The narrow window also explains the heretofore-inconsistent data on chromosomal genotoxicity of trenbolone (Metzler and Pfeiffer 2001), because in routine studies larger spaces between experimental concentrations are chosen.

Fig. 4 CREST analysis of MN induced by trenbolone (TB) and tetrahydrogestrinone (THG). Controls: methylmethane sulfonate (MMS, 25 μ g/ml); vincristine (VCR, 10 nM). Percentual distribution of CREST-positive, CREST-negative and unclear MN, corrected for background

Table 3 Cell cycle analysis: results for T, TB and THG (minimum 3 independent tests; mean \pm SD)

	Compound (μ M)	G_0/G_1	Cell cycle phases (%)		
			S	G_2/M	Sub G_0
T	0	58.88 (\pm 5.28)	20.74 (\pm 3.53)	20.38 (\pm 3.91)	
	10	57.15 (\pm 3.03)	22.49 (\pm 3.43)	20.35 (\pm 1.59)	
	30	56.07 (\pm 3.84)	21.87 (\pm 1.76)	22.07 (\pm 4.27)	
	100	50.50 (\pm 6.18)	20.63 (\pm 5.68)	28.87 (\pm 10.59)	
	300	47.23 (\pm 6.29)*	18.59 (\pm 3.45)	34.18 (\pm 2.94)*	
TB	0	61.37 (\pm 4.16)	19.88 (\pm 4.04)	18.74 (\pm 0.97)	
	3	58.87 (\pm 1.92)	21.48 (\pm 2.87)	19.65 (\pm 0.99)	
	10	53.10 (\pm 7.98)	22.68 (\pm 3.41)	24.22 (\pm 9.46)	
	30	36.29 (\pm 7.22)*	18.58 (\pm 4.76)	45.13 (\pm 11.79)*	
	100	39.57 (\pm 9.59)*	21.45 (\pm 1.56)	38.98 (\pm 10.70)*	
THG	0	61.37 (\pm 4.16)	19.88 (\pm 4.04)	18.74 (\pm 0.97)	
	3	62.28 (\pm 0.99)	20.06 (\pm 0.61)	17.66 (\pm 1.10)	
	10	60.18 (\pm 5.00)	21.45 (\pm 3.21)	18.37 (\pm 1.84)	
	30	61.97 (\pm 2.77)	19.29 (\pm 1.72)	18.74 (\pm 1.32)	
	60	35.93 (\pm 5.39)*	17.50 (\pm 0.69)	21.13 (\pm 4.06)	25.44 (\pm 4.57)

* Statistically significant, $P \leq 0.05$

By contrast, the physiological hormone T did not induce MN, even at high concentrations of up to 0.3 mM (Fig. 3). This shows that the MN induction by TB and THG is independent of the hormonal effect. It is known that mutational effects of TB and T on the DNA level are almost negligible (Marzin 1991; Metzler and Pfeiffer 2001), which is paralleled by very low covalent DNA binding of both compounds in rat liver *in vivo* (Barraud et al. 1984; Lutz et al. 1988).

In essence, the chromosomal genotoxicity of both TB and THG, although weak, appears clear-cut and predominantly based on an aneugenic effect, according to the present data (Fig. 4). A long-known molecular feature of TB is its covalent binding to protein structures (Ryan and Hoffmann 1978; Hoffmann et al. 1984). *In vitro*, this is small in magnitude, but definite. This contrasts to conditions *in vivo* where covalent protein binding of TB is quite pronounced (Ryan and Hoffmann 1978). Chemical reduction of a pepsin/trypsin hydrolysate of TB-adducted protein with Raney nickel again liberated TB, rendering it very likely that protein sulphydryl (SH) groups of cysteine had reacted with the activated double bond system of TB (Ryan and Hoffmann 1978). For karyokinesis, free sulphydryl groups play a predominant role in protein interactions. An outstanding example is the aggregation (and de-aggregation) of tubulin. Almost 20 cysteine residues are accessible with disulfide reagents in the tubulin dimer, but only 4 in taxol-stabilized microtubules, and a loss of free SH-groups of tubulin is also closely associated with a loss in polymerisation competence (Britto et al. 2005).

Taking these elements together and considering the very close structural similarity between TB and THG (Fig. 1), it

appears at least plausible that the observed aneugenic effects of TB and THG may be related to interactions with partial processes involved in chromosomal segregation, based on a covalent attachment of TB/THG to protein sulphydryl groups.

There is a marked difference in the concentrations of THG and TB needed to reach the maximal effects of MN induction (THG: 3 μ M, TB: 30 μ M). This may reasonably be explained by different lipophilicities. The introduction of the 17α -ethyl substituent that is characteristic of THG into the TB molecule (Fig. 1) leads to a (calculated) log P (octanol–water partitioning) of 3.40 for THG, versus 1.82 for TB. Within lipid microenvironments, this causes a much higher enrichment of THG from an aqueous phase, compared to TB.

Both THG and TB are misused in doping of athletes and body-builders (Catlin et al. 2004; Death et al. 2004; Daniels et al. 2006; Thevis et al. 2005), and TB is also misused in equine sports (Guan et al. 2005). As far as doping is concerned, it must be considered that high doses may be administered. In the study reported here, THG reaches an overt chromosomal genotoxicity (doubling of the MN rate *in vitro*) at a concentration as low as 3 μ M.

After the discovery of norbolethone (Catlin et al. 2002), THG was the second hormonally active steroid identified from use in sports doping that was never developed as a human or veterinary drug (Catlin et al. 2004). As a result, its toxicological profile has not been studied. According to the present data, it cannot be ruled out that THG presents a genotoxic hazard on a chromosomal level under conditions of its current misuse in sports.

Acknowledgments The authors thank Organon BV, Oss/The Netherlands for providing trenbolone as test compound.

References

Anonymous (1987) Scientific report on anabolic agents in animal production. Scientific working group on anabolic agents. *Vet Rec* 127:389–392

Barraud B, Lugnier A, Dirheimer G (1984) Determination of the binding of trenbolone and zeranol to rat-liver DNA in vivo as compared to 17-beta-oestradiol and testosterone. *Food Addit Contam* 1:147–155

Bonacker D, Stoiber T, Böhm KJ, Unger E, Degen GH, Thier R, Bolt HM (2004) Chromosomal genotoxicity of nitrobenzene and benzonitrile. *Arch Toxicol* 78:49–57

Bonacker D, Stoiber T, Wang M, Böhm KJ, Prots I, Unger E, Thier R, Bolt HM, Degen GH (2004) Genotoxicity of inorganic mercury salts based on disturbed microtubule function. *Arch Toxicol* 78:575–583

Britto PJ, Knipling L, McPhie P, Wolff J (2005) Thiol-disulphide interchange in tubulin: kinetics and the effects on polymerization. *Biochem J* 389(Pt 2):549–558

Catlin DH, Ahrens BD, Kucherova Y (2002) Detection of norbolethone, an anabolic steroid never marketed, in athlete's urine. *Rapid Commun Mass Spectrom* 16:1273–1275

Catlin DH, Sekera MH, Ahrens BD, Starcevic B, Chang YC, Hatton CK (2004) Tetrahydrogestrinone: discovery, synthesis, and detection in urine. *Rapid Commun Mass Spectrom* 18:1245–1249

Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. *Mutat Res* 41:321–332

Daniels JM, van Westerloo DJ, de Hon OM, Frissen PH (2006) Rhabdomyolysis in a bodybuilder using steroids. *Ned Tijdschr Geneesk* 150:1077–1080

Death AK, McGrath KY, Kazlauskas R, Handelsman DJ (2004) Tetrahydrogestrinone is a potent androgen and progestin. *J Clin Endocrinol Metab* 89:2498–2500

Deftos LJ (2006) Games of hormones: the para-endocrinology of sport. *Endocr Pract* 12:472–474

Dolezel J, Binarova P, Lucetti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. *Biol Plant* 31:113–121

Dorn SB, Degen GH, Müller T, Bonacker D, Joosten HF, van der Louw J, van Acker FA, Bolt HM (2007) Development of criteria for specific and non-specific chromosomal genotoxicity based on hydrophobic interactions. *Mutat Res* 628:67–75

Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. *Mutat Res* 285:35–44

Friedel A, Geyer H, Kamber M, Laudenbach-Leschowsky U, Schanzer W, Thevis M, Vollmer G, Zierau O, Diel P (2006) Tetrahydrogestrinone is a potent but unselective binding steroid and affects glucocorticoid signalling in the liver. *Toxicol Lett* 164:16–23

Goegan P, Johnson G, Vincent R (1995) Effects of serum protein and colloid on the alamarBlue assay in cell cultures. *Toxicol In Vitro* 9:257–266

Guan F, Uboh CE, Soma LR, Luo Y, Rudy J, Tobin T (2005) Detection, quantification and confirmation of anabolic steroids in equine plasma by liquid chromatography and tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 829:56–68

Hoffmann B, Schopper D, Karg H (1984) Investigations on the occurrence of non-extractable residues of trenbolone acetate in cattle tissues in respect to their bioavailability and immunological reactivity. *Food Addit Contam* 1:253–259

Joosten HF, van Acker FA, van den Dobbelaer DJ, Horbach GJ, Krajnc EI (2004) Genotoxicity of hormonal steroids. *Toxicol Lett* 151(1):113–134

Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. *J Cell Biol* 66:188–193

Labrie F, Luu-The V, Martel C, Chernomorets A, Calvo E, Morissette J, Labrie C (2006) Dehydroepiandrosterone (DHEA) is an anabolic steroid like dihydrotestosterone (DHT), the most potent natural androgen, and tetrahydrogestrinone (THG). *J Steroid Biochem Mol Biol* 100:52–58

Lutz WK, Deuber R, Caviezel M, Sagelsdorff P, Friederich U, Schlatte C (1988) Trenbolone growth promotant: covalent DNA binding in rat liver and in *Salmonella typhimurium*, and mutagenicity in the Ames test. *Arch Toxicol* 62:103–109

Marzin D (1991) Trenbolone: application of the Ames test. Recent data. *Ann Rech Vet* 22:257–262

Matsuoka A, Yamazaki N, Suzuki T, Hayashi M, Sofuni T (1992) Evaluation of the micronucleus test using a Chinese hamster cell line as an alternative to the conventional *in vitro* chromosomal aberration test. *Mutat Res* 272:223–236

Metzler M, Pfeiffer E (2001) Genotoxic potential of xenobiotic growth promoters and their metabolites. *APMIS* 109:89–95

Miller BM, Adler ID (1990) Application of antikinetochore antibody staining (CREST staining) to micronuclei in erythrocytes induced *in vivo*. *Mutagenesis* 5:411–415

Nociari MM, Shalev A, Benias P, Russo C (1998) A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. *J Immunol Methods* 213:157–167

O'Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. *Eur J Biochem* 267:5421–5426

Renzi L, Pacchierotti F, Russo A (1996) The centromere as a target for the induction of chromosome damage in resting and proliferating mammalian cells: assessment of mitomycin C-induced genetic damage at kinetochores and centromeres by a micronucleus test in mouse splenocytes. *Mutagenesis* 11:133–138

Richold M (1988) The genotoxicity of trenbolone, a synthetic steroid. *Arch Toxicol* 61:249–258

Russo A, Stocco A, Renzi L, Bianco N, Majone F (1992) Persistence of chromosomal lesions induced in actively proliferating bone marrow cells of the mouse. *Mutat Res* 269:119–127

Ryan JJ, Hoffmann B (1978) Trenbolone acetate: experience with bound residues in cattle tissues. *J Assoc Off Anal Chem* 61:1274–1279

Schiffmann D, Metzler M, Neudecker T, Henschler D (1985) Morphological transformation of Syrian hamster embryo fibroblasts by the anabolic agent trenbolone. *Arch Toxicol* 58:59–63

Schuler M, Rupa DS, Eastmond DA (1997) A critical evaluation of centromeric labeling to distinguish micronuclei induced by chromosomal loss and breakage *in vitro*. *Mutat Res* 392:81–95

Thevis M, Bommerich U, Opfermann G, Schanzer W (2005) Characterization of chemically modified steroids for doping control purposes by electrospray ionization tandem mass spectrometry. *J Mass Spectrom* 40:494–502

Tsutsui T, Komine A, Huff J, Barrett JC (1995) Effects of testosterone, testosterone propionate and progesterone on cell transformation and mutagenesis in Syrian hamster embryo cells. *Carcinogenesis* 16:1329–1333

WHO (1988) JECFA and joint FAO/WHO expert committee on food additives: toxicological evaluation of certain veterinary drug residues in food. *WHO Food Addit Ser* 23:123–151