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Abstract

The liver X receptors (LXRs) are nuclear receptors that are activated by endogenous
oxysterols, oxidized derivatives of cholesterol. There are two isoforms of LXR,
LXRa (NR1H3) and LXRB (NR1H2). Both LXRa and LXR[ regulate gene
expression by binding to DNA sequences associated with target genes as heterodimers
with isoforms of the retinoid X receptor (RXR), RXRa (NR2B1), RXR[3 (NR2B2)
and RXRy (NR2B3). LXRs act as cholesterol sensors: when cellular oxysterols
accumulate as a result of increasing concentrations of cholesterol, LXR induces the
transcription of genes that protect cells from cholesterol overload. In this review, we
summarize the roles of LXRs in controlling cholesterol homoeostasis, including their
roles in bile acid synthesis and metabolism/excretion, reverse cholesterol transport
(RCT), cholesterol biosynthesis and uptake, and cholesterol absorption/excretion in
the intestine. The overlapping and distinct roles of the LXRa and LXR[3 isoforms,
and the potential use of LXRs as attractive targets for treatment of cardiovascular

disease are also discussed.
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Liver X receptor (LXR)

The liver X receptors (LXRs), LXRa (NR1H3) and LXRJ (NR1H2), belong to the
nuclear receptor superfamily of ligand-activated transcription factors (Janowski et al.
1996). LXRa was initially isolated from a rat liver cDNA library (Apfel ef al. 1994)
as a novel orphan nuclear receptor, i.e. receptors with no known physiological
ligands, hence the name liver X receptor. Several groups identified the LXR[3 isoform
by screening of different cDNA libraries (Shinar et al. 1994, Song et al. 1994, Teboul
et al. 1995). The human LXRa gene is located on chromosome 11p11.2, while the
human LXR} gene is located on chromosome 19q13.3. LXRa expression
predominates in metabolically active tissues such as the liver, small intestine, kidney,
macrophages and adipose tissue, whereas LXR[} is more ubiquitously expressed with
particularly high levels in the developing brain (Fan et al. 2008), suggesting
regulation of different physiological functions for the two receptors. Human LXRa
and LXR[ share almost 80% amino acid identity in their DNA-binding domain and
ligand-binding domain. The LXR paralogues are highly conserved between rodents
and humans. Human LXRa and rat LXRa show close to 100 % homology in amino

acid sequence in their DNA-binding domain and ligand-binding domain (Lee ef al.

2008).

With the discovery of oxysterols (Janowski et al. 1999, Janowski et al. 1996) as
endogenous ligands for LXRs, these receptors were included in the group of
“adopted” nuclear receptors, i.e. receptors where a physiological ligand has been

identified subsequent to the identification of the receptor.
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Oxysterols, oxidized derivatives of cholesterol including 22(R)-hydroxycholesterol,
24(S)-hydroxycholesterol, 24(S),25-epoxycholesterol, 20(S)-hydroxycholesterol and
27-hydroxycholesterol, are ligands for LXRs. Among them, 24(S5),25-
epoxycholesterol is the most potent agonist. It has been demonstrated that these
oxysterols bind directly to the LXRs with K4 values ranging from 0.1 to 0.4 uM.
LXRa and LXRf show similar affinities for these compounds (Janowski et al. 1999).
However, cholesterol itself is not a ligand for LXRs (Janowski ef al. 1999). Recently,
high concentrations of D-glucose and phytosterols, particularly (3-sitosterol, were
reported to be activators of LXRs (Mitro et al. 2007a, Plat et al. 2005). A subset of
natural bile acids has been reported to selectively activate LXRa (Song et al. 2000),
whereas N-acylthiadiazolines have selectivity for LXRf, however with modest
potency (Molteni et al. 2007). Recently, a phenethylphenyl phthalimide derivative has
been shown to be a potent LXRa-selective antagonist (Motoshima et al. 2009). As
regulators of metabolism, LXRs have been considered as potential drug targets by the
pharmaceutical industry and synthetic LXR ligands have been developed that are
widely used as tools in biomedical research. Synthetic LXR ligands include T0901317
(Schultz et al. 2000) and GW3965 (Collins et al. 2002). In general, these synthetic
ligands show poor LXR subtype selectivity. The use of T0901317 as an LXR ligand is
limited by its agonistic effect on farnesoid X receptor (FXR) (Houck et al. 2004) and

pregnane X receptor (PXR) (Mitro et al. 2007b).

Transcriptional regulation by LXR

LXRs activate target genes by binding to DNA sequences associated with target

genes. LXRs bind to consensus elements (LXRESs) as heterodimers with isoforms of
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the retinoid X receptor (RXR), RXRa (NR2B1), RXRf3 (NR2B2) and RXRy
(NR2B3) (Makishima 2006). LXRE consists of two direct repeats (DR) of the
consensus sequence AGGTCA separated by four nucleotides (DR-4) (Chawla et al.
2001). IR-0 (inverted repeat of the same consensus sequence with no spacer region)
and IR-1 (inverted repeat of the same consensus sequence separated by 1 bp spacer) have
also been shown to mediate LXR transactivation (Mak et al. 2002, Uppal et al. 2007).
LXRs have been shown to regulate gene expression via LXREs in the promoter
regions of LXR target genes such as UGT1A3 (UDP glucuronosyltransferase 1
family, polypeptide A3) (Verreault et al. 2006), fatty acid synthase (FAS) (Joseph et
al. 2002a), carbohydrate response element binding protein (ChREBP) (Cha and Repa
2007), phospholipid transfer protein (PLTP) (Mak et al. 2002) and sterol regulatory
element binding protein (SREBP) 1c (Repa et al. 2000a, Yoshikawa et al. 2001).
LXREs have also been reported to be present in introns of target genes such as the
ATP binding cassette transporter G1 (ABCG1) (Kennedy et al. 2001, Sabol et al.
2005). LXRs have been shown to activate gene expression via the IR-1 sequence for
genes such as the human ileal bile acid-binding protein (I-BABP) and the organic
solute transporter (Ost) (Landrier et al. 2003, Okuwaki et al. 2007). LXRs induce
expression of the mouse Sult2a9 gene through binding to an IR-0 sequence in the
promoter (Uppal et al. 2007). Recently, Wang et al. (Wang et al. 2008) have proposed
a novel mode of regulation by LXR in which LXR represses gene expression via

negative LXR DNA response elements (nLXREs) present in the gene promoters.

Cholesterol metabolism

Cholesterol is the essential precursor of steroid hormones (progesterone, estrogen,

testosterone, glucocorticoids and mineralocorticoids), bile acids and vitamin D. It is
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also a vital constituent of cell membranes that modulates the fluidity and permeability
of the membrane. Cholesterol can be derived from the diet as well as from
endogenous biosynthesis, the latter being the major source in humans. Homeostasis of
cholesterol involves the movement of cholesterol between peripheral tissues and the
liver. The liver regulates de novo biosynthesis of cholesterol, the excretion of
cholesterol into bile (directly or after conversion to bile acids), the secretion of
cholesterol into blood as very low-density lipoproteins (VLDL), the modulation of
receptor-mediated cellular cholesterol uptake, the formation of cholesteryl esters,
which are more hydrophobic than cholesterol itself, and the storage of cholesterol.

The intestine regulates cholesterol absorption and excretion into feces.

LXR as cholesterol sensors

LXRs act as cholesterol sensors: when cellular oxysterols accumulate as a result of
increasing concentrations of cholesterol, LXR induces the transcription of genes that
protect cells from cholesterol overload. LXR activation regulates bile acid synthesis
and metabolism/excretion, reverse cholesterol transport (RCT), cholesterol

biosynthesis, and cholesterol absorption/excretion in the intestine (see Fig. 1).

LXR and bile acid synthesis, metabolism and excretion

Bile acid synthesis and secretion constitute the major route for elimination of
cholesterol from the body. Oxysterols, natural ligands for LXRs, are generated when
cholesterol levels are high. The classical pathway of bile acid synthesis is initiated by
7oa-hydroxylation of cholesterol catalyzed by the cytochrome P450 cholesterol 7a.-
hydroxylase (CYP7A1), which encodes the rate-limiting enzyme of this pathway

(Russell and Setchell 1992). In rodents, LXRa stimulates the expression of CYP7A1
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via binding to an LXRE present in the CYP7A1 promoter. Thus rats and mice have
the capacity to convert dietary cholesterol to bile acids (Peet ef al. 1998). As a
consequence, these species quickly adapt to a diet rich in cholesterol by increasing its
conversion to bile acids. The importance of LXRa activated CYP7A1 in regulating
cholesterol balance in the rodent liver became evident from studies of LXR knockout
mice (Peet et al. 1998). LXRa, but not LXR[ (Alberti et al. 2001), knockout mice
accumulate large amounts of cholesterol esters in the liver after being fed a high-fat

cholesterol diet due to failure of inducing expression of the CYP7A1 gene.

In contrast to observations in rats and mice, LXRa agonist treatment suppresses
expression of CYP7A1 in primary human hepatocytes (Goodwin et al. 2003). This
repression is, at least in part, due to the direct induction of small heterodimer partner
(SHP), a gene that has a repressive effect on CYP7A1 via liver receptor homologue
1(LRH1; also called FIF in rat and CPF in humans) (Goodwin et al. 2000). These
results suggest that different species may employ distinct molecular strategies to
regulate cholesterol homeostasis, emphasizing the importance of valid experimental

models for the development of pharmaceuticals for human use.

In addition to its role in controlling bile acid anabolism, LXR also plays a role in
regulating bile acid catabolism. Recent reports indicate that ligand-activated LXRa
up-regulates human UGT1A3 gene expression through binding to an LXRE-like
sequence in the promoter (Barbier et al. 2009). UGT1A3 is one of the most active
enzymes for glucuronide conjugation of bile acid. Bile acid glucuronidation allows

their conversion into urinary excretable metabolites. Based on these observations, it
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was proposed that LXRa activation may facilitate definitive cholesterol elimination in

the form of urinary bile acid glucuronides.

Most bile acids are N-acyl amidates with glycine or taurine to decrease toxicity and
increase solubility for secretion into bile (Hofmann 1999). Taurine occurs naturally in
many foods and is known to lower cholesterol profiles (Chen et al. 2004, Zhang et al.
2004). Additionally, taurine has been shown to induce CYP7A1 activity thereby
increasing bile acid synthesis (Yokogoshi ef al. 1999). Interestingly, it has been
shown that taurohyodeoxycholic acid can activates the LXRE in the CYP7A1
promoter via LXRa, suggesting that activation of LXR signaling is one mechanism

by which taurine activates CYP7A1 activity (Song et al. 2000).

Excretion of free cholesterol into the bile is another major route for eliminating excess
cholesterol from the liver. In the liver, ABCGS5 and ABCGS8 have been proposed to
transport cholesterol from hepatocytes to the bile canaliculi. ABCGS5 and ABCGS are
half transporters that form obligate heterodimers, and are both regulated by LXR
activation (Berge et al. 2000, Repa et al. 2002). ABCGS and ABCGS are expressed in
the apical membrane of enterocytes and at the canalicular membrane of hepatocytes.
These transport proteins promote secretion of hepatic cholesterol into bile. Mice
lacking ABCGS or ABCG8 exhibit profound reduction in biliary cholesterol levels
and an accumulation of cholesterol in the liver after cholesterol feeding (Yu et al.
2002). Mutations in the genes encoding either ABCG5 or ABCGS result in 3-
sitosterolemia, an autosomal recessive disorder characterized by an increased risk of
atherosclerosis and elevated plasma levels of phytosterols (Lee ef al. 2001, Lu et al.

2001). The human ABCGS5 and ABCGS8 genes are oriented in a head-to-head
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configuration separated by a 374-bp intergenic region. No LXREs have been
identified in the promoters of ABCGS or ABCGS, but the intergenic region was found
to act as a bidirectional promoter and be partially responsive to treatment with LXR

agonists (Remaley et al. 2002).

LXR and reverse cholesterol transport (RCT)

RCT is a pathway by which accumulated cholesterol is transported from peripheral
tissues to the liver followed by biliary secretion and subsequent disposal via the feces.
High-density lipoprotein (HDL) cholesterol is believed to play a key role in the
process of RCT, as it promotes the efflux of excess cholesterol from peripheral tissues
and returns it to the liver for biliary excretion. Accumulation of cholesterol in
macrophages in the vessel wall is considered a primary event in the development of
atherosclerosis and, therefore, removal of excess of cholesterol from these cells is

important for prevention and /or treatment of atherosclerotic cardiovascular diseases.

LXR, by regulating expression of several genes, including ABCA1, ABCG1, ApoE
and PLTP plays a critical role in RCT. LXR activation increases cholesterol efflux
important for RCT from peripheral tissues and has antiatherogenic potential by
inhibiting the progression of and even promoting the regression of atherosclerosis in
mice (Joseph et al. 2002b, Levin et al. 2005, Naik et al. 2006). Consequently, the
development of pathway-selective LXR agonists represents an attractive therapeutic

approach for atherosclerosis.

ABCAT1 was initially found to be induced by pharmacological activation of LXR with

T0901317 (Repa et al. 2000b), and later an LXRE was identified in this gene (Costet
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et al. 2000). ABCAL is expressed at the basolateral membrane of the enterocyte, in
hepatocytes and in macrophages. ABCA1 mediates transport of phospholipids and
cholesterol to lipid-poor apolipoproteins such as apo-Al, which stabilizes the HDL
particle and is thus responsible for the initial step of RCT. Accordingly,
overexpression of hepatic ABCA1 raises HDL cholesterol levels (Basso et al. 2003,
Wellington et al. 2003). Studies in mice with tissue-specific knockout of ABCAL1
revealed that hepatic and intestinal ABCA1 contribute ~80% and ~20%, respectively,
to HDL biogenesis in mice (Brunham et al. 2006, Timmins et al. 2005). ABCA1 is
important for macrophages to regulate sterol homeostasis. In support of this, ABCA1
knockout mice show evidence of cholesterol accumulation in a variety of
macrophage-rich tissues including lung, spleen, lymph nodes, thymus, and skin
(Christiansen-Weber et al. 2000, McNeish et al. 2000). Recently, macrophage-
specific knockout of ABCA1 in mice was shown to lead to an increase in free and
esterified cholesterol in macrophages, and enhanced inflammatory responses (Zhu et
al. 2008). Overexpression of ABCAI in macrophages in low-density lipoprotein
receptor knockout (LDLR™") mice inhibits atherosclerotic lesion progression and
exerts a protective role against atherosclerosis with minimal effects on plasma HDL

(Van Eck et al. 2006).

ABCG1 expression is also induced by LXR activation and LXREs have been

identified in the promoter region of this gene (Kennedy et al. 2001, Sabol et al. 2005).

Studies in ABCG1 knockout mice revealed that ABCG] is primarily expressed in

macrophages, endothelial cells and lymphocytes. However, it is also found in Kupffer

cells and hepatocytes (Kennedy et al. 2005). Based on the observation that ABCG1

knockout mice fed a high-fat and high-cholesterol diet accumulate considerable
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amounts of cholesterol and neutral lipids in macrophages and liver, it was proposed
that ABCG1 plays an important role in cholesterol efflux (Kennedy ez al. 2005). In
contrast to ABCAL1 that transports cholesterol to lipid-poor apolipoproteins, ABCG1
transports cholesterol to phospholipid-containing acceptors such as HDL. A
synergistic relationship between ABCA1 and ABCGI has been proposed. ABCA1
promotes lipidation of lipid-poor particles and generates acceptors for ABCG1

mediated cholesterol efflux (Gelissen et al. 2006).

Apolipoprotein E (ApoE) has been shown to be up-regulated by LXR activation
through its direct interaction with LXREs present in the enhancers of this gene
(Laffitte et al. 2001). Secretion of ApoE promotes incorporation of cholesterol into
the lipid-poor HDL particles. In agreement with this, a massive accumulation of
lipoproteins and lipoprotein remnants have been observed in the plasma of both
humans and mice lacking functional ApoE (Plump et al. 1992, Zhang et al. 1992).
ApoE is also an important modulator of atherogenesis. This is supported by findings
that ApoE—/— mice develop atherosclerosis on a normal chow diet (Reddick et al.
1994), and that selective re-expression of ApoE in macrophages of ApoE—/— mice
through bone marrow transplantation or transgenic expression decreases

atherosclerosis (Zhu et al. 1998).

PLTP is a target for LXR activation in the liver and in macrophages (Laffitte et al.
2003). It has been proposed that plasma PLTP facilitates the transfer of phospholipids
and cholesterol from triglyceride-rich lipoproteins (TRL) into HDL. PLTP is capable
of generating prep-HDL through HDL conversion. The generation of pref-HDL

particles, a very efficient acceptor of peripheral cell cholesterol, enhances cholesterol

11
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efflux from peripheral cells (Lee et al. 2003). These results suggest that PLTP is
important for the prevention of atherosclerosis. Consistent with the proposed role for
PLTP in lipoprotein metabolism, the plasma of PLTP knockout mice showed a
complete inability to transfer phospholipids from TRL into HDL both in vitro and in
vivo (Jiang et al. 1999). In a transgenic mouse model engineered to overexpress
human PLTP, there is a 30%-40% decrease in plasma levels of HDL cholesterol
compared to wild-type mice. In addition, these mice showed an increased capacity to
produce pre B-HDL (van Haperen et al. 2000). Moreover, plasma from these animals
prevents accumulation of intracellular cholesterol in macrophages more efficiently
than plasma from wild-type mice. These results suggest that PLTP is mediating an

increase in cholesterol efflux.

LXR and cholesterol biosynthesis

Recently, Wang et al. (Wang et al. 2008) demonstrated that LXRa negatively
regulated two genes, squalene synthase (FDFTI) and lanosterol 14a-demethylase
(CYP51A1), that encode key enzymes in the cholesterol biosynthesis pathway. LXREs
that confer LXR mediated repression were identified in these two genes. Based on
these observations, it was proposed that LXRa plays an important role in suppression

of cholesterol biosynthesis.

LXR and cholesterol uptake

The major part of cholesterol in human blood is transported within low-density
lipoproteins (LDL-C). The LDLR mediates the removal of LDL and remnant
lipoproteins from circulation by binding to apolipoprotein B-100 (ApoB-100) and

ApoE It also plays a major role in regulation of plasma cholesterol levels in humans

12



Page 13 of 32

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308

(Brown and Goldstein 1986). Recently, Zelcer et al. demonstrated that LXR decreases
LDLR-dependent cholesterol uptake through a LXR-Idol (Inducible Degrader of the
LDLR) pathway. LXR induces the expression of Idol, which in turn catalyzes the
ubiquitination of the LDLR, thereby targeting it for degradation (Zelcer et al. 2009).
On the contrary, induction of LDLR expression via an LXRE by LXR agonist has
been reported by Ishimoto et al. (Ishimoto ef al. 2006). The use of different cell lines
and different LXR agonists in the two studies may account for the contradictory
results. Clearly, the exact role of LXR in regulation of LDLR expression and

subsequent cholesterol uptake needs to be further exploited.

LXR and intestinal cholesterol absorption

Intestinal cholesterol absorption has been shown to be a major determinant of plasma
cholesterol levels. LXR activation results in a reduced absorption of intestinal
cholesterol by regulating expression of several genes such as heterodimeric
ABCGS5/ABCGS and Niemann-Pick C1-Like 1 (NPCI1L1) involved in this process.
LXR activation increases the expression of both ABCGS and ABCGS, which
transport absorbed cholesterol back to the lumen of the intestine. Consistent with this
finding, administration of LXR agonists substantially decrease intestinal net

cholesterol absorption in mice.

NPCILI is expressed in the small intestine, most likely in the brush border membrane
of enterocytes, and it is required for intestinal cholesterol absorption (Altmann ef al.
2004). It was recently reported that LXR activation downregulates NPC1L1

expression both in mice and in a human enterocyte cell line (Duval et al. 2006).

13
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LXR and fecal neutral sterol excretion via intestine

Activation of LXR in mice leads to enhanced fecal neutral sterol loss (Plosch et al.
2002). Recent studies have revealed a major contribution of the intestine in excretion
of cholesterol. In a study by Kruit ef al. (Kruit ef al. 2005), increased fecal neutral
sterol excretion by LXR activation was observed in both wild-type mice and in Mdr2
” mice, which are unable to secrete cholesterol into bile. These results suggest that an
important part of excess cholesterol is excreted directly via the intestine. In addition,
recent studies by van der Veen et al. (van der Veen et al. 2009) have revealed that
trans-intestinal cholesterol excretion is a major route for removal of blood-derived
free cholesterol in mice and this process is stimulated by activation of LXR upon
treatment with T0O901317. Moreover, ABCGS5 knockout mice show evidence of
impaired trans-intestinal cholesterol excretion, suggesting that ABCG5/ABCG8

heterodimers are involved in this pathway.

LXRs as therapeutic targets

As described above, LXRs function as cholesterol sensors with important roles in
regulating cholesterol homeostasis, and thus there is a widespread interest in the
development of synthetic LXR ligands as therapeutic agents. Indeed, the abundant
expression of the LXRa protein in macrophages present in human atherosclerotic
lesions supports the hypothesis that LXRa agonists could have a beneficial effect

against development of atherosclerosis (Watanabe et al. 2005).

Recently, synthetic LXR ligands have been characterized in several animal models for

the treatment of atherosclerosis. In a study by Joseph and co-workers (Joseph et al.

14
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2002b), the influence of a nonsteroidal LXR agonist GW3965 on the development of
atherosclerosis was investigated in both LDLR" and ApoE™ mice. The results showed
that GW3965 inhibits the development of atherosclerotic lesions in both murine
models, providing direct evidence for an atheroprotective effect of LXR agonists. In
the study by Terasaka et al. (Terasaka et al. 2003), T0901317, a synthetic LXR
ligand, was administered to LDLR" mice. T0901317 significantly reduced the
atherosclerotic lesions in LDLR™ mice without affecting total plasma cholesterol
levels. Moreover, an agonist for RXR, the obligate heterodimeric partner of LXRs,
has been shown to be effective in reducing atherosclerosis (Claudel et al. 2001).
These results suggest that LXR ligands may be useful therapeutic agents for the
treatment of atherosclerosis. However, this therapeutic strategy needs to address that
LXR activation is associated with stimulation of lipogenesis resulting in increased
plasma triglyceride (TG) levels and hepatic steatosis. Several in vivo studies have
shown that rodents treated with TO901317 have massive TG accumulation in the liver
and increased plasma TG levels (Grefthorst et al. 2002, Repa et al. 2000a, Schultz et
al. 2000). The LXR agonist, GW3963, also increases hepatic TG levels in mice
(Grefthorst et al. 2005). Interestingly, a potent synthetic steroidal LXR activator,
DMHCA (N,N-dimethyl-3b-hydroxy-cholenamide), has recently been demonstrated
to reduce atherosclerosis in ApoE-deficient mice, without inducing hepatic and
plasma TG levels. Based on these observations, DMHCA could be a candidate for
further development as a therapeutic agent for treatment of atherosclerosis (Kratzer et

al. 2009).

Specific roles of LXR isoforms in cholesterol metabolism

15
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Isoform specific knockouts have yielded valuable information on individual
physiological roles of the LXRa and LXRf isoforms. LXRa” mice challenged with
high-cholesterol diets fail to induce CYP7A1 expression, and as a result, accumulate
large amounts of cholesterol esters in the liver (Alberti ef al. 2001, Peet et al. 1998).
Moreover, a recent report demonstrates that on a high fat diet, more cholesterol was
accumulated in the liver of LXRo”” and LXRa/f” mice than in wild-type and LXRB™
mice (Korach-Andre et al. 2009). These studies suggest that in the liver conversion of
cholesterol to bile acids is controlled by LXRa.. Although LXR} is also expressed in
the liver, its presence does not rescue the loss of LXRa in these mice. This is in line
with literature showing that hepatic CYP7A1 and several genes involved in
cholesterol metabolism were not induced in the liver of LXRa”™ mice treated with

LXR ligands (Quinet et al. 2006).

Several studies have addressed specific roles of the LXRa and LXR[3 isoforms in
atherosclerosis. The work from Schuster et al. (Schuster et al. 2002) demonstrates that
either receptor can play an atheroprotective role in macrophages and that the
combined deficiency of both LXRa and LXR} is required for foam cell-lipid
accumulation in aortic lesions. Lund et al. (Lund et al. 2006) found that a synthetic
compound, which actives both LXRa and LXRf3, induced ABCA1 expression and
stimulated cholesterol efflux in macrophages from both LXRo” and LXRB'/ " mice.
Moreover, treatment with an LXR agonist reduced atherosclerosis in ApoE”"/LXRa”"
mice suggesting that LXR[ alone is sufficient to mediate the anti-atherogenic
functions of LXR activation (Bradley et al. 2007). One potential problem with
LXRo/P agonists for treatment of atherosclerosis is their detrimental lipogenic effects

dominated by LXRa. The overlapping and differential roles of LXRa and LXRf3

16
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imply that LXR[-selective targeting may separate the antiatherogenic and

hypertriglyceridemic effects of the current dual agonists.

Conclusions

Studies in recent years have significantly enhanced our understanding of the
molecular mechanisms of LXR signaling as an important global regulator of
cholesterol homeostasis. The recent progress in the development of novel LXR
ligands that reduce atherosclerosis, without displaying induction of non-desired
effects observed by previous generations of LXR agonists, such as liver lipogenesis,
show therapeutic promise for treatment of cardiovascular diseases. The future
development of LXR subtype-specific ligands would provide critical tools for
defining the mechanisms of distinct roles of LXRa and LXR[3, and might provide
drug candidates with improved therapeutic profiles. Additionally, the development of
novel ligands that possess tissue-specific agonist/antagonist properties provides

another promising avenue for drug discovery.
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722 Legends to Figures

723

724  Figure 1. Role of LXR in cholesterol metabolism. In the liver, cholesterol

725  biosynthesis/efflux and bile acid metabolism/excretion are all regulated by LXR. LXR
726  increases efflux in the peripheral tissues, and in the intestine, LXR decreases

727  absorption and increases fecal excretion. See text for details. Yellow boxes represent
728  LXR target genes. HDL-C — high density lipoprotein cholesterol, ABC — ATP-

729  binding cassette transporters, ApoE - apolipoprotein E, PLTP - phospholipid transfer
730  protein, UGT1A3 - UDP glucuronosyltransferase 1 family, polypeptide A3, CYP7A1
731 - cholesterol 7a-hydroxylase, FDFT1 - farnesyl-diphosphate farnesyltransferase 1,
732 CYP51A1 - cytochrome P450, family 51, subfamily A, polypeptide 1, NPCI1LI1 -

733 Niemann-Pick C1-Like 1.
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