MuscleMeat

Leucine houdt spiermassa vast als je niet traint (1 bezoeker)

Bezoekers in dit topic

Japio

Fake natty
Elite Member
10 jaar lid
Lid geworden
9 jul 2009
Berichten
15.778
Waardering
14.211
2 9 - 0 7 - 2 0 1 0
[Afbeelding niet meer beschikbaar] Leucine houdt spiermassa vast als je niet traint (Muscle Nerve. 2010 Jun;41(6):800-8.)

Suppletie met het aminozuur L-leucine remt de afbraak van spiermassa in spieren die niet actief zijn. Dat ontdekten onderzoekers van de Braziliaanse University of Sao Paulo in een dierproef.

Leucine heeft een anabool effect in spiercellen. Dat komt waarschijnlijk doordat de spiercel meer energie investeert in de synthese van spiereiwit naarmate het meer leucinemetabolieten 'ziet'. De onderzoekers vroegen zich af of je leucine kunt gebruiken als spiercellen door inactiviteit katabole mechanismen activeren en versneld spierweefsel afbreken.

De onderzoekers gaven ratten elke dag één keer 2.7 gram leucine per kilogram lichaamsgewicht via een slangetje. Een controlegroep kreeg geen leucine. Drie dagen nadat de suppletie was begonnen spalkten de onderzoekers een achterpoot van de ratten. Zeven dagen konden de dieren de spieren in die poot niet gebruiken. Daarna haalden de onderzoekers de spalk weg. Al die tijd kregen de ratten in de experimentele groep leucine.

De spiermassa van de soleus-spier nam door de suppletie minder snel af. Toen de dieren hun achterpoot weer konden gebruiken was de spiermassa ook weer sneller op peil.


leucineimmob.gif



Tijdens de periode van inactiviteit werden de katabole genen MAFbx en MuRF1 actiever. Als die genen actief zijn breekt de spiercel zichzelf af. Leucinesuppletie remde de genen echter.


leucineimmob2.gif



leucineimmob3.gif
Leucinesuppletie verminderde ook de werking van ubiquitine, zie je hiernaast. Ubiquitine is een soort vlaggetje. Als de spiercel aan een eiwit ubiquitine vastplakt, dan komt dat eiwit in aanmerking om verhakseld te worden door een moleculaire shredder. Die verhakselaar heet officieel 'proteasoom'.

Hieronder zie je dat leucinesuppletie geen effect had op de aanmaak van
spiereiwit.

In inactieve spieren is leucine dus uitsluitend antikatabool, en niet anabool.
leucineimmob4.gif

Als je de gebruikte dosis omrekent naar mensen kom je op 0.18 tot 0.27 gram per kilo per dag. Leucine lijkt in humane studies alleen te werken in doses van 5 gram of meer, en in combinatie met eiwitrijke voeding.

In een recente studie beschermde een dagelijkse dosis van 20 gram creatine inactieve spieren tegen afbraak. Wat zou er gebeuren als je creatine combineert met leucine?

Leucine geeft maaltijd na krachttraining 16 procent meer anabole werking (12-7-2010)
Opvolger van HMB heet HICA (11-1-2010)
Dagje ouder? Extra leucine versterkt anabole prikkel eiwitten (21-2-2009)
Een paar gram leucine verhoogt spierversterkend effect van maaltijd (12-7-2006)
[Archief Aminozuren & Eiwitten]

http://www.ergogenics.org/supplement234.html#1


Origineel artikel:
[Link niet meer beschikbaar] 2010 Jun;41(6):800-8.
Leucine attenuates skeletal muscle wasting via inhibition of ubiquitin ligases.

[Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar], [Link niet meer beschikbaar].
Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 1524, Butantã, CEP 05508-900, São Paulo, Brazil.
Abstract

The aim of this study was to assess the effect of leucine supplementation on elements of the ubiquitin-proteasome system (UPS) in rat skeletal muscle during immobilization. This effect was evaluated by submitting the animals to a leucine supplementation protocol during hindlimb immobilization, after which different parameters were determined, including: muscle mass; cross-sectional area (CSA); gene expression of E3 ligases/deubiquitinating enzymes; content of ubiquitinated proteins; and rate of protein synthesis. Our results show that leucine supplementation attenuates soleus muscle mass loss driven by immobilization. In addition, the marked decrease in the CSA in soleus muscle type I fibers, but not type II fibers, induced by immobilization was minimized by leucine feeding. Interestingly, leucine supplementation severely minimized the early transient increase in E3 ligase [muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1] gene expression observed during immobilization. The reduced peak of E3 ligase gene expression was paralleled by a decreased content of ubiquitinated proteins during leucine feeding. The protein synthesis rate decreased by immobilization and was not affected by leucine supplementation. Our results strongly suggest that leucine supplementation attenuates muscle wasting induced by immobilization via minimizing gene expression of E3 ligases, which consequently could downregulate UPS-driven protein degradation. It is notable that leucine supplementation does not restore decreased protein synthesis driven by immobilization.

PMID: 20082419 [PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Publication Types:

  • [Link niet meer beschikbaar]
MeSH Terms:

  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
Substances:

  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
  • [Link niet meer beschikbaar]
LinkOut - more resources

Full Text Sources:

Supplemental Content

[Afbeelding niet meer beschikbaar]
Related citations



  • [Link niet meer beschikbaar] [Am J Physiol Regul Integr Comp Physiol. 200...] Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I. Lang CH, Huber D, Frost RA. Am J Physiol Regul Integr Comp Physiol. 2007 Jan; 292(1):R328-36. Epub 2006 Aug 31.
  • [Link niet meer beschikbaar] [Am J Physiol Endocrinol Metab. 2005] Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH. Am J Physiol Endocrinol Metab. 2005 Dec; 289(6):E969-80. Epub 2005 Jul 26.
  • [Link niet meer beschikbaar] [Am J Physiol Endocrinol Metab. 2004] IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. Am J Physiol Endocrinol Metab. 2004 Oct; 287(4):E591-601. Epub 2004 Apr 20.
  • [Link niet meer beschikbaar] [Essays Biochem. 2005] Review The ubiquitin-proteasome system and skeletal muscle wasting. Attaix D, Ventadour S, Codran A, Béchet D, Taillandier D, Combaret L. Essays Biochem. 2005; 41:173-86.
  • [Link niet meer beschikbaar] [Sports Med. 1999] Review Leucine supplementation and intensive training. Mero A. Sports Med. 1999 Jun; 27(6):347-58.
[Link niet meer beschikbaar] [Link niet meer beschikbaar]


All links from this record



  • [Link niet meer beschikbaar] Calculated set of PubMed citations closely related to the selected article(s) retrieved using a word weight algorithm. Related articles are displayed in ranked order from most to least relevant, with the “linked from” citation displayed first.
 
Interessant artikel. Zou graag een test zien met bb'ers in plaats van ratten.
 
ben ook benieuwd naar de onderzoeken bij mensen
2.7gram per kg lichaamsgewicht per dag is wel heel erg veel
 
Volgens mij is het sowieso nuttiger dan Glutamine tijdens de cut of PCT.
 
Om even niet af te dwalen van het onderwerp ''leucine'' hier nog een interessant onderzoek.

The Role of Leucine in the Regulation of Protein Metabolism1,2

Peter J. Garlick3


Department of Animal Sciences, University of Illinois, Urbana, IL 61801


rarrow.gif
ABSTRACT

[Afbeelding niet meer beschikbaar]TOP
[Afbeelding niet meer beschikbaar]ABSTRACT
[Afbeelding niet meer beschikbaar]LITERATURE CITED

Studies both in vivo and in vitro have shown that leucine at a very high dose can stimulate muscle protein synthesis, an effect that is enhanced in vivo by insulin secreted in response to the leucine dose. High leucine can also inhibit protein degradation in skeletal muscle, as well as in liver. In contrast, at normal physiological levels, increasing leucine concentration by infusion stimulates muscle protein synthesis by enhancing its sensitivity to insulin. It is concluded that the role of leucine in vivo is to provide a signal that amino acids are available, which in combination with the signal of energy availability from insulin, stimulates muscle protein synthesis.


KEY WORDS: • leucine • isoleucine • valine • branched-chain amino acids • protein synthesis • insulin • muscle
In the 1970s, a number of laboratories were performing in vitro investigations of the factors that control protein turnover in tissues. Among these factors were hormones, e.g., insulin, and the substrates for protein synthesis themselves, amino acids. These studies showed that high concentrations of all the amino acids stimulated protein synthesis and inhibited protein degradation, most notably in skeletal muscle (13) but also in cardiac muscle (4). In particular, it was shown in heart that the stimulation by amino acids could be reproduced with only the 3 branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) (5), whereas in isolated diaphragm muscle, leucine alone, as well as the complete amino acid mixture, stimulated protein synthesis (2). This group of studies, from several laboratories, initiated a continuing series of investigations into the role of leucine in the control of tissue protein mass, its mechanism of action, and its possible value for enhancing muscle protein deposition in healthy subjects or moderating muscle protein loss in catabolic states.
Attempts to demonstrate the effects of leucine in vivo
On the basis that if leucine stimulates muscle protein synthesis and inhibits degradation, then leucine supplements might be effective in limiting protein loss in human patients with pathological conditions, the potential for supplementary leucine to improve protein balance during fasting was examined in several laboratories. Infusion of leucine or keto acid analogues of BCAA into fasting patients was shown by several groups to improve nitrogen balance (68), suggesting that leucine might indeed spare body protein. However, this effect did not appear to result from an improvement in protein balance in skeletal muscle of fasting subjects, because the leg outflows of the amino acids phenylalanine and tyrosine were not altered in subjects with femoral arterial and venous catheters (9). These amino acids are not metabolized in skeletal muscle, and so their outflow is a indicator of net negative protein balance in the tissue. Nonetheless, these early results in humans suggesting that BCAA supplementation could moderate the protein loss that occurs in many pathological states has led to a large number of studies of their effectiveness in patients suffering from conditions such as sepsis and trauma, as well as for improving muscle function in athletes.
Studies of the effects of leucine or BCAAs in intact rats were inconclusive. Buse et al. (10) injected leucine plus glucose plus insulin into starving rats and observed a stimulation of muscle polyribosome aggregation, which was indicative of an increase in muscle protein synthesis. However, in a series of studies on growing rats injected with leucine alone (1 mmol/kg), no changes in protein synthesis in gastrocnemius muscle, heart, jejunal serosa, jejunal mucosa, or liver were detected (11). In these studies, protein synthesis was measured by intravenous injection of a flooding dose of [3H]phenylalanine (12), followed by killing of the rats after 10 min; leucine (or saline) was injected together with the isotope. Separate groups of rats were either fed, food deprived for 2 d, or given a protein-free diet for 9 d, but in no group was a change in muscle protein synthesis detected. In an additional experiment designed to show whether a longer period than 10 min was required to demonstrate a change in protein synthesis, 2-d food-deprived rats were injected with leucine intraperitoneally, and protein synthesis was measured after 30 min. As before, no change was detected. Overall, these studies showed that administration of leucine at a dose of 1 mmol/kg (resulting in plasma concentrations of [Afbeelding niet meer beschikbaar]1 mmol/L; about 8-fold higher than that in fed rats) in growing rats had no detectable effect on muscle protein synthesis.
Leucine and the response to feeding in muscle of growing rats
In the natural state, leucine is not given alone but is provided as part of a meal and so is accompanied by a balanced mixture of other amino acids and increased glucose and insulin concentrations. Measurements in young rats ([Afbeelding niet meer beschikbaar]100–150 g body weight) have shown that muscle protein synthesis is stimulated by the intake of nutrients, either intragastrically or intravenously (13). Intravenous infusion of insulin, plus glucose to prevent hypoglycemia, also stimulated muscle protein synthesis in food-deprived rats, but only when the plasma insulin concentration was raised above that normally seen in fed rats (14). Moreover, feeding of rats given anti-insulin serum failed to elevate muscle protein synthesis (13), showing that insulin was essential for protein synthesis to respond. Similarly, infusion of a complete amino acid mixture did not enhance muscle protein synthesis unless, in addition, the insulin concentration was raised by infusion of glucose, leading to the hypothesis that the increase in protein synthesis after feeding resulted from an enhancement of the tissue sensitivity to insulin brought about by amino acids (13). This hypothesis was confirmed by measuring the dose-response of muscle protein synthesis to insulin infusion, in the presence and the absence of infusion of a complete mixture of amino acids [Fig. 1, ref. (15)]. It can be seen from the curves that without amino acids, protein synthesis increased curvilinearly but did not reach a maximum at the highest rate of insulin infusion, which yielded a plasma insulin concentration of [Afbeelding niet meer beschikbaar]160 µU/mL. This contrasted sharply with the curve in rats that were given infusions of a mixture of amino acids in addition to insulin. This curve was maximal at a much lower insulin concentration, which was similar to that in fed rats ([Afbeelding niet meer beschikbaar]15–25 µU/mL).

z4w1060542680001.gif

View larger version (13K):
[in this window]
[Link niet meer beschikbaar]
FIGURE 1 The dose-response of muscle protein synthesis in growing rats to infusion of insulin plus either saline or a complete amino acid mixture. Each point represents data from 5 or 6 rats. Data from (15).
In the study described above (15), additional experiments were performed to characterize the specificity of the enhancement of insulin sensitivity for individual amino acids or groups of amino acids. A concentration of insulin of about 20 µU/mL, which is insufficient to stimulate protein synthesis by itself, was achieved by infusion of glucose at a low rate in all groups. Figure 2 shows that compared with glucose infusion alone, protein synthesis was stimulated equally by the complete mixture, by only the essential amino acids, and by only the BCAAs (15). This demonstrates that it is the BCAAs that enhance the sensitivity of muscle protein synthesis to insulin. This conclusion was confirmed in the experiment shown in Figure 3, which shows that a mixture of amino acids lacking the BCAAs was not effective in stimulating protein synthesis. Moreover, as shown in Figure 4, the effect of the BCAAs can be attributed entirely to leucine, which had the same effect as the 3 BCAAs together, whereas isoleucine and valine had no effect.

z4w1060542680002.gif

View larger version (54K):
[in this window]
[Link niet meer beschikbaar]
FIGURE 2 Rates of protein synthesis in skeletal muscle of growing rats infused with glucose alone (to provide insulin at a level typical of fed rats) or with glucose plus a complete amino acid mixture, only the essential amino acids, only the nonessential amino acids, or only the 3 BCAAs. Incomplete mixtures contained individual amino acids at the same concentrations as in the complete mixture. Error bars represent the SEM of groups of 5 or 6 rats, and P-values are in comparison to the "glucose alone" group. Data from (15).

z4w1060542680003.gif

View larger version (47K):
[in this window]
[Link niet meer beschikbaar]
FIGURE 3 Rates of protein synthesis in skeletal muscle of growing rats infused with glucose as in Figure 2, plus a complete amino acid mixture, complete amino acids minus the BCAAs, or only the 3 BCAAs. Other details are as in Figure 2. Error bars represent the SEM of groups of 5 or 6 rats, and P-values are in comparison with the "glucose alone" group. The data (Garlick, P. J. & Grant, I., 1988, unpublished results) were obtained as an extension of the studies described in (15).

z4w1060542680004.gif

View larger version (54K):
[in this window]
[Link niet meer beschikbaar]
FIGURE 4 Rates of protein synthesis in skeletal muscle of growing rats infused with glucose as in Figure 2, either alone, with the 3 BCAA, or with leucine, valine, or isoleucine individually. Other details are as in Figure 2. Error bars represent the SEM of groups of 5 or 6 rats, and P-values are in comparison with the "glucose alone" group. The data (Garlick, P. J. and Grant, I., 1988, unpublished results) were obtained as an extension of the studies described in (15).
The conclusion of the above studies was that during feeding, leucine enhances the insulin sensitivity of protein synthesis, bringing about a stimulation of muscle protein synthesis. A subsequent study has tested the hypothesis that the blunted response of muscle protein synthesis to feeding in old rats can be restored by feeding a leucine-supplemented diet (16). Adult and old rats were deprived of food and then were again fed a normal diet for 1 h or a leucine-supplemented diet. With the normal diet, the adult rats responded to feeding with an increase in muscle protein synthesis, whereas the old rats did not. However, when the meal contained additional leucine, there was a similar increase in protein synthesis in both groups. In a follow-up study (17), it was shown that this benefit for the old rats persisted after 10 d of feeding a leucine-supplemented diet.
Recent studies of leucine as a regulator of muscle-protein synthesis
In recent years, the subject of leucine and its ability to modify protein synthesis has been reexamined and has led to advances in the understanding of the mechanisms of nutritional regulation of protein synthesis at the molecular level. In a study of the depression of muscle protein synthesis after exercise in rats, it was observed that leucine administration restored protein synthesis to the same value as that in unexercised rats (18). Moreover, this effect was the same when glucose was administered together with the leucine, suggesting that the effect was independent of insulin. The notable difference between this and previous studies was the leucine dose, which was given by intragastric gavage instead of intravenously, and at a 10-fold higher level (10 mmol/kg) than in earlier studies (11). Subsequent work revealed an interaction between leucine and insulin secretion at these higher doses. After oral gavage of leucine (10 mmol/kg) in food-deprived rats, the rate of protein synthesis was stimulated by >50%, not returning to basal levels until after 2 h (19). It was also noted that the insulin level rose transiently, peaking at about 3 times the basal level after 30 min (19). This led to an experiment in which insulin secretion was suppressed by somatostatin infusion, resulting in an abolition of the effect of leucine on protein synthesis (19). This implied that the response to leucine is insulin dependent. However, in a different study, leucine administration was shown to stimulate protein synthesis in diabetic rats, suggesting that leucine can have a direct effect on protein synthesis, in addition to the insulin dependent stimulation (20). The observation that leucine stimulates muscle protein synthesis in the perfused rat hind limb (21) is also evidence for the existence of a noninsulin dependent mechanism.
These studies also provide an explanation why some of the earlier investigations of the effects of leucine on muscle protein synthesis failed to detect a stimulation [e.g., ref. (11)]. The doses of leucine, although large enough to cause an increase in plasma leucine concentration similar to that of feeding, were both too small to enhance protein synthesis by themselves and also too small to induce insulin secretion. By contrast, in the study of Buse et al. (10), leucine was given, together with glucose and insulin, which, as described above, will enhance the effect of leucine.
The work described above has yielded substantial advances in the understanding of the signal transduction pathways involved in the control of muscle protein synthesis by amino acids and insulin. The details of these advances are outlined in a recent review (22) and will not be described here.
Other effects of leucine
The majority of the investigations of leucine’s effects on protein metabolism have concentrated on protein synthesis in skeletal muscle. However, there is also evidence that leucine inhibits protein degradation in muscle (2), which in this tissue occurs mainly via the ubiquitin–proteasome pathway (23). By contrast with muscle, in liver there is no effect of leucine on overall protein synthesis, although there is a stimulation of ribosomal protein synthesis (24). The main effect of leucine on liver seems to be on proteolysis, which in this tissue is predominantly lysosomal (23,25). However, unlike in muscle, leucine is not unique but is the most potent of a group of 8 amino acids that are termed "regulatory" (25). This group also includes tyrosine, phenylalanine, glutamine, proline, histidine, tryptophan, and methionine (25).
Conclusions: the role of leucine
Very high concentrations of leucine have the capacity to stimulate protein synthesis and inhibit protein degradation in skeletal muscle of intact rats. This effect on protein synthesis may be enhanced by the transient but small increase in serum insulin that is induced by the leucine dose. However, within the normal physiological concentration range of leucine and insulin in food-deprived and fed rats, the sensitivity of muscle protein synthesis to insulin is enhanced by infusion of leucine, so that protein synthesis is stimulated by the moderately elevated concentrations of insulin and leucine that are typical of the fed rat. The physiological role of leucine is therefore to work with insulin to activate the switch that stimulates muscle protein synthesis when amino acids and energy from food become available. The advantage of this mode of regulation is that the switch requires both amino acids (leucine) and energy (insulin) to be present simultaneously, so is only activated when conditions are ideal.
A role for leucine as an enhancer of insulin sensitivity also implies the possibility that prolonged very high intakes of leucine might lead to insulin resistance, in an analogous way to insulin resistance resulting from prolonged hyperglycemia. This might ultimately lead to a blunting of the stimulation of muscle protein synthesis by food intake. Moreover, because parts of the signaling pathways from insulin to protein synthesis are shared with those involved in the regulation of glucose metabolism, as discussed previously (26), there is the possibility that overstimulation by leucine could lead to abnormalities of glucose metabolism. The search for the "upper level" of dietary leucine might therefore include an investigation of the effects of prolonged high intake of leucine on glucose homeostasis and metabolism.



rarrow.gif
FOOTNOTES


1 Published in a supplement to The Journal of Nutrition. Presented at the conference "The Fourth Workshop on the Assessment of Adequate Intake of Dietary Amino Acids" held October 28–29, 2004, Kobe, Japan. The conference was sponsored by the International Council on Amino Acid Science. The Workshop Organizing Committee included Dennis M. Bier, Luc Cynober, David H. Baker, Yuzo Hayashi, Motoni Kadowaki, and Andrew G. Renwick. Guest editors for the supplement publication were David H. Baker, Dennis M. Bier, Luc Cynober, John D. Fernstrom, Yuzo Hayashi, Motoni Kadowaki, and Dwight E. Matthews.
back.gif


2 Funding for the studies illustrated in Figures 1234 was provided by the Medical Research Council (UK) and the Department of Agriculture and Fisheries for Scotland (UK).
back.gif


rarrow.gif
LITERATURE CITED

[Afbeelding niet meer beschikbaar]TOP
[Afbeelding niet meer beschikbaar]ABSTRACT
[Afbeelding niet meer beschikbaar]LITERATURE CITED


  1. 1.
  2. Fulks, R. H., Li, J. B. & Goldberg, A. L. (1975) Effects of insulin, glucose and amino acids on protein turnover in rat diaphragms. J. Biol. Chem. 250:290-298.[Abstract/Free Full Text] 2.
  3. Buse, M. G. & Reid, S. S. (1975) Leucine: a possible regulator of protein turnover in muscle. J. Clin. Invest. 56:1250-1261. 3.
  4. Li, J. B. & Jefferson, L. S. (1978) Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim. Biophys. Acta. 544:351-359.[Medline] 4.
  5. Morgan, H. E., Earl, D.C.N., Broadus, E. B., Giger, K. E. & Jefferson, L. S. (1971) Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J. Biol. Chem. 246:2152-2162.[Abstract/Free Full Text] 5.
  6. Rannels, D. E., Hjalmarson, A. C. & Morgan, H. E. (1974) Effects of noncarbohydrate substances on protein synthesis in muscle. Am J. Physiol. 226:528-539.[Free Full Text] 6.
  7. Sherwin, R. S. (1978) Effect of starvation on the turnover and metabolic response to leucine. J. Clin. Invest. 61:1471-1481. 7.
  8. Sapir, D. G. & Walser, M. (1977) Nitrogen sparing induced in starvation by infusion of branched chain ketoacids. Metab. Clin. Exp. 26:301-308. 8.
  9. Mitch, W. E., Walser, M. & Sapir, D. G. (1981) Nitrogen sparing induced by leucine compared with that induced by its keto analogue, [Afbeelding niet meer beschikbaar]-ketoisocaproate, in fasting obese man. J. Clin. Invest. 67:553-562. 9.
  10. Hagenfeldt, L., Eriksson, S. & Wahren, J. (1980) Influence of leucine on arterial concentrations and regional exchange of amino acids in healthy subjects. Clin. Sci. 59:173-181.[Medline] 10.
  11. Buse, M. G., Atwell, R. & Mancusi, V. (1979) In vitro effect of branched chain amino acids on the ribosomal cycle in muscles of fasted rats. Horm. Metab. Res. 11:289-292.[Medline] 11.
  12. McNurlan, M. A., Fern, E. B. & Garlick, P. J. (1982) Failure of leucine to stimulate protein synthesis in vivo. Biochem. J. 204:831-838.[Medline] 12.
  13. Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980) A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of (3H)phenylalanine. Biochem. J. 192:719-723.[Medline] 13.
  14. Preedy, V. R. & Garlick, P. J. (1986) The response of muscle protein synthesis to nutrient intake in postabsorptive rats: the role of insulin and amino acids. Biosci. Rep. 6:177-183.[Medline] 14.
  15. Garlick, P. J., Fern, M. & Preedy, V. R. (1983) The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats. Biochem. J. 210:669-676.[Medline] 15.
  16. Garlick, P. J. & Grant, I. (1988) Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Biochem J. 254:579-584.[Medline] 16.
  17. Dardevet, D., Sornet, C., Bayle, G., Prugnaud, J., Pouyet, C. & Grizard, J. (2002) Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J. Nutr. 132:95-100.[Abstract/Free Full Text] 17.
  18. Rieu, I., Sornet, C., Bayle, G., Prugnaud, J., Pouyet, C., Balage, M., Papet, I., Grizard, J. & Dardevet, D. (2003) Leucine-supplemented meal feeding for ten days beneficially affects postprandial muscle protein synthesis in old rats. J. Nutr. 133:1198-1205.[Abstract/Free Full Text] 18.
  19. Anthony, J. C., Anthony, T. G. & Layman, D. K. (1999) Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J. Nutr. 129:1102-1106.[Abstract/Free Full Text] 19.
  20. Anthony, J. C., Lang, C. H., Crozier, S. J., Anthony, T. G., MacLean, D. A., Kimball, S. R. & Jefferson, L. S. (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am. J. Physiol. Endocrinol. Metab. 282:E1092-E1101.[Abstract/Free Full Text] 20.
  21. Anthony, J. C., Reiter, A. K., Anthony, T. G., Crozier, S. J., Lang, C. H., MacLean, D. A., Kimball, S. R. & Jefferson, L. S. (2002) Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 51:928-936.[Abstract/Free Full Text] 21.
  22. Bolster, D. R., Vary, T. C., Kimball, S. R. & Jefferson, L. S. (2004) Leucine regulates translation initiation in rat skeletal muscle via enhanced elF4G phosphorylation. J. Nutr. 134:1704-1710.[Abstract/Free Full Text] 22.
  23. Kimball, S. R. & Jefferson, L. S. (2004) Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin. Curr. Opin. Clin. Nutr. Metab. Care 7:39-44.[Medline] 23.
  24. Kadowaki, M. & Kanazawa, T. (2003) Amino acids as regulators of proteolysis. J. Nutr. 133:2052S-2056S.[Abstract/Free Full Text] 24.
  25. Anthony, T. G., Antony, J. C., Yoshizawa, F., Kimball, S. R. & Jefferson, L. S. (2001) Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in liver of rats. J. Nutr. 131:1171-1176.[Abstract/Free Full Text] 25.
  26. Mortimore, G. E. & Pösö, A. R. (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann. Rev. Nutr. 7:539-564.[Medline] 26.
  27. Layman, D. K. & Baum, J. I. (2004) Dietary protein impact on glycemic control during weight loss. J Nutr. 134:968S-973S.[Abstract/Free Full Text]
 
""Zag er allemaal erg mooi uit totdat ik dit artikel las:

http://www.ergogenics.org/supplement170.html#1""

in dit artikel gaat het over spier-opbouwende eigenschappen van leucine, niet over de spier''vasthoudende'' (anti katabole) eigenschappen waar dit topic voor gestart is
niet te vergelijken dus

interessant artikel!
 
Leucine werkt alleen als je het gebruikt in combinatie met eiwitten of aminozuren. Neem je het alleen, of in combinatie met koolhydraten, dan doet het niks. Ook niet als je het geeft aan krachtsporters.

Interessant, gaan we zeker uitproberen de volgende vakantie.:D
 
Christian Thibeaudau, een bb'er, die lag in het ziekenhuis tegen een voedsel van in totaal 1800 kcal.. Gebruikte leucine als supplement en kwam zelfs in spiermassa bij. Een beetje daarvan is supercompensatie maar in de katabolische staat van ziek zijn en dan zo'n k*tvoedsel zou je toch verwachten dat hij afviel.
 
Christian Thibeaudau, een bb'er, die lag in het ziekenhuis tegen een voedsel van in totaal 1800 kcal.. Gebruikte leucine als supplement en kwam zelfs in spiermassa bij. Een beetje daarvan is supercompensatie maar in de katabolische staat van ziek zijn en dan zo'n k*tvoedsel zou je toch verwachten dat hij afviel.
En dit geloof jij allemaal?
 
Christian Thibeaudau, een bb'er, die lag in het ziekenhuis tegen een voedsel van in totaal 1800 kcal.. Gebruikte leucine als supplement en kwam zelfs in spiermassa bij. Een beetje daarvan is supercompensatie maar in de katabolische staat van ziek zijn en dan zo'n k*tvoedsel zou je toch verwachten dat hij afviel.


Anders zou toch iedereen stoppen met hard trainen, op eten letten. en gewoon leucine nemen. Dit zou de hele sport wereld veranderen, iedereen aan de leucine en verder geen moeite meer doen hehehehe
 
Het is vast nuttig, maar je moet het idd niet zien als een wondermiddel. Het kan spierverlies wel beperken in periodes waar het nodig is.;)
 
Back
Naar boven