AndroidHealthClinic

Trainen tot failure wat weet jij hierover?

Bezoekers in dit topic

tremendes

Monstrous Giant
10 jaar lid
Lid geworden
16 nov 2006
Berichten
11.662
Waardering
2.927
Lengte
1m86
Massa
102kg
Welkom in het Topic van de Maand -november!

Het topic deze maand:

Maak een artikel over trainen tot failure.

• Wat weet jij hierover?

• Beschrijf je ervaring met dit fenomeen.

• Wat vindt je van dit fenomeen.

• Trainen tot failure noodzakelijk voor spiergroei of niet?

• Etc. etc..Laat zoveel mogelijk aan bod komen!


Beperk jezelf niet door deze punten, jij maakt je artikel zo uitgebreid als je zelf wilt.

Laat weten wat trainen tot failure is en hoe je het best met dit fenomeen om kunt gaan.

Regels:

1. Geen kopieerwerk, alles moet met eigen woorden geschreven zijn, bronnen raadplegen mag, maar enkel met referentie, geen artikels "herschrijven"

2. Een artikel moet minstens een half a4 lang zijn incl. paragraaf-ruimte.

Te winnen prijzen deze maand:

1ste plaats

Gorilla Wear waardebon 50,-
Body en fit waardebon 29,95

2e plaats

Bodylab waardebon 29,95

Veel succes!

Groet, Tremendes
 
Laatst bewerkt:
Krijg er al spierpijn van,als ik er aan denk. is het niet November of geld het achteraf ?
 
denk dat ik maar eens een gokje ga wagen om mijn journalistieke verleden eens tot goede te brengen! :P
 
Netjes, ik ga weer deelnemen.

Ik ben benieuwd, succes alvast voor iedereen die mee doet :)
 
Aangezien ik bijna elke training wel een 5-tal keer tot faillure train en een 2-tal keer tot beyond is dit toch wel iets voor mij ;)

Werkt echt super voor mij.

Ik doe alvast mee.
 
Tot failure gaan, nooit anders gedaan.
Toen ik pas begonnen was is dit mij al aangeleerd en voor mij is er geen andere manier van trainen! :)
 
Tot failure gaan, nooit anders gedaan.
Toen ik pas begonnen was is dit mij al aangeleerd en voor mij is er geen andere manier van trainen! :)

hehe mooi stukje text broer.. hetzelfde hier, geen andere training voor mij zolang ik er op gain.
 
Sinds ik tot failure train maak ik ...
nvm.
 
Trainen tot fail

Zelf ben ik een enorme fan van tot failure trainen. Toch zijn er hiervoor voorwaarden en dingen waarmee je rekening moet houden, ook denk ik dat dit niet voor iedereen werkt. Ik vertel graag even mijn bevindingen.

Wat?

Trainen tot fail is dus training tot je niet meer kan, tot je het gewicht niet meer omhoog krijgt. Je kan trainen tot fail met een goede vorm en ook trainen tot fail zodat zelfs wanneer je extreem cheat je hem niet meer omhoog krijgt. Je kan ook beyond fail trainen, daar kom ik later op terug.

Wie?


Zelf zou ik het de meeste beginners afraden om tot fail te trainen, zeker in het eerste jaar. Tenzij je echt bepaalde problemen hebt (zoals ik, vandaar mijn ervaring met tot fail trainen) kan je dit eventueel proberen. Maar gezien de blessuregevoeligheid + het feit dat je in het begin op bijna alle manieren kan groeien blijf je zeker de eerste 1-2 jaar weg van tot fail trainen, en zelfs daarna is het niet bij iedereen aan te raden. Als je het toch wilt proberen moet je heel goed luisteren naar je lichaam.

Blessuregevoelig

Ik denk dat één van de belangrijkste dingen om rekening mee te houden wanneer je regelmatig tot failure traint dat het erg blessuregevoelig is, of toch tenminste blessuregevoelig dan niet tot fail trainen. Het belangrijkste lijkt me om dus te luisteren naar je lichaam. Heb je last van een bepaalde spier, ga hem dan minder trainen, verander sommige oefeningen of train deze spiergroep niet tot fail.

Opwarmen

Als je tot fail traint (of beyond fail) is het van enorm belang om goed op te warmen. Zeker dus niet van de eerste set tot fail gaan, maar een aantal setjes rustig je spiergroep opwarmen. Anders ga je bijna zeker een blessure oplopen.

Leren luisteren naar je lichaam

Als er in deze sport één ding belangrijk is, dan is het wel leren te luisteren naar wat je lichaam zegt. Zeker wanneer je tot fail traint is dit enorm belangrijk, anders ga je natuurlijk heel snel tegen een blessure aanlopen. Omdat ieder lichaam anders is, valt er ook niet echt op voorhand te zeggen hoe iemand gaat reageren op een bepaalde trainingsmethode. Ik raad dan ook aan om wanneer je nog nooit tot fail getraind hebt dit rustig aan te doen. Dus, een setje of twee per spiergroep om te beginnen, daarna kan je rustig opbouwen. Zelf experimenteren is heel erg belangrijk hiermee, je kan dus zelf beslissen wanneer je tot fail gaat en met welke oefeningen.

Alle oefeningen en alle sets tot fail?
Zelf denk ik dat sommige oefeningen niet zo geschikt zijn om tot fail te gaan. Vooral bij deadlift en bij squat doe ik dit liever niet, dit is omdat bij veel mensen de techniek minder goed wordt naarmate je dichter bij fail gaat. Dit is (waarschijnlijk) niet bij iedereen zo, zoals ik al zei is elk lichaam anders. Ik denk dat de vraag of je elke set tot fail gaat niet echt te beantwoorden valt. Ten eerste hangt het, weer, van persoon tot persoon af, maar ten tweede denk ik dat het volume van je workout een belangrijke rol speelt. Doe je voor rug 8 oefeningen en overal drie setjes, dat zouden 24 setjes zijn, dan ga je zeker niet elke keer tot fail gaan. Maar train je fullbody en doe je 3 setjes voor je borst, dan is het prima mogelijk.

Reprange

Over de reprange zijn eigenlijk heel veel verschillende meningen wat trainen tot fail betreft. Meestal gaat men ervan uit dat je best onder de 10 reps blijft wanneer je tot fail gaat, en veel mensen zeggen zelfs dat je best onder de 5-6 reps blijft. Hierover kon ik geen onderzoek vinden. Zelf denk ik dat het weinig uitmaakt!

Enkele voordelen

Een erg groot voordeel van tot fail trainen vind ik dat je de reps niet moet tellen. Je neemt gewoon een gewicht, je kan je volledig focussen op dat gewicht, je hoeft nergens anders aan te denken. Een ander voordeel is dat je je workouts vaak vrij kort kunt houden, omdat je intensiteit natuurlijk veel hoger ligt bij een schema waar je vaak tot fail gaat is het logisch dat je een pak minder setjes gaat doen, dus dit spaart ook tijd uit. Tot fail trainen is natuurlijk ook weer eens “wat anders” voor je lichaam, zeker als je tot beyond fail gaat. Als voordeel kan ik moeilijk zeggen dat het ‘beter’ is voor je spiergroei. Uit mijn persoonlijke ervaring is gebleken dat dat wel zo is, maar volgens mij is dat zeker niet voor iedereen zo.

Beyond fail

Bij beyond fail ga je eigenlijk tot je faalt, en dan ga je nog verder. Je kan dit doen op verschillende manieren, de beste manier lijkt mij om iemand je te laten helpen. Als je bij bench press bijvoorbeeld je 6de rep niet meer kunt, laat je toch iemand nog een klein beetje duwen zodat je nog 3 extra reps haalt. Zo heb je dus meer gedaan dan je faillure. Een andere manier van beyond fail trainen is de rest-pauze techniek. Een bekent schema dat hiervan gebruik maakt is Dogcrapp, hier kom ik later ook nog op terug.

HIT

Een belangrijk schema dat gebruik maakt van tot fail trainen is HIT. Hoewel ik dit schema niet helemaal ge uitleggen, zal ik dit wel in het kort doen. Mike mentzer is één van de bekendste bodybuilders die gebruik maakt van het HIT principe (hoewel hij er zijn eigen draai aan heeft gegeven, Heavy Duty genaamd) dit is mike mentzer:
2s1t9xz.jpg

Het eerste wat we over deze trainingsmethode moeten zeggen (en dit telt volgens mij voor elke trainingsvorm die tot of beyond fail gaat) is dat het niet bedoelt is om dit jaren achter elkaar te doen, wel is het een prima methode om een aantal maanden ter afwisseling te doen.
Bij HIT train je je hele lichaam op één dag. Je begint bij de grootste spiergroep en eindigt met de kleinste. Heel erg opvallend is dat je amper 1-2x per week traint, héél uitzonderlijk eens 3x. Vaak is het zelfs zo dat je amper één setje doet per spiergroep, hoewel dit één van de dingen is die door vele mensen wordt aangepast, meestal worden er 2-3 oefeningen voor grote spiergroepen gedaan. Of dat goed is of niet kan ik zelf niet over oordelen.
Het valt dus te begrijpen dat het de bedoeling is dat je in die ene set echt ALLES eruithaalt. Iets anders wat opvallend is aan HIT is de extreem trage negatieve fase, vaak wordt aangeraden om deze tussen de 3 en de 4 seconden te doen, dus behoorlijk traag. Dit is zeker even wennen en heeft een effect op je positieve kracht, je wordt er een stuk zwakker van en je kan minder explosief uitstoten.
Wat vele mensen ook doen bij HIT is niet alleen tot positieve failure gaan, maar ook tot negatieve en zelfs statische failure. Je duwt dus, bijvoorbeeld bij bench press, de halters 6x omhoog, zonder hulp. Dan misluk je. Dan helpt een partner je nog eens omhoog, waarna je de halters zo lang mogelijk omhoog houdt, wanneer dit mislukt helpt je partner je opnieuw omhoog en blijft dit doen tot je het gewicht zelfs niet meer kunt tegenhouden in de negatieve fase. Voorstanders van HIT gaan ervan uit dat je alleen tot echte failure getraind hebt als je niet alleen op de positieve, maar ook op de negatieve en de statische fase faalt.

En nog een leuke quote uit het boek van Mike Mentze: “Extremely time-efficient, HIT sessions require roughly 40 minutes per week of training--as compared with the lengthy workout sessions many bodybuilders would expect to put in daily.”
Ik denk dat dit erg belangrijk is voor vele mensen. Tegenwoordig wordt er steeds vaker gedacht dat je héél veel oefeningen moet doen omdat de meeste pro’s dat ook doen. Zelf ga ik veel beter vooruit op een veel lager volume.

Dogcrapp

Het schema dat voor mij de meeste resultaten heeft gegeven (belachelijk veel meer dan alle andere schema’s) is zonder enige twijfel Dogcrapp. Hoewel ik het amper 2 maanden heb gedaan kan ik zeker zeggen dat ik een geweldige vooruitgang heb geboekt ermee, en dat terwijl ik op dat ogenblik heel diep aan het cutten was (rond de 1800 kcal). Ik kwam een beetje bij in massa en werd een pak sterker, ongeloofelijk was het. Graag leg ik het een beetje uit:
Dogcrapp is dus fullbody. Het is, raar genoeg, eigenlijk maar een setje per spiergroep dat je doet. Één Dogcrapp setje bestaat eigenlijk uit 3 delen. Laten we als voorbeeld even barbell rows nemen. De voorgeschreven reprange hiervoor is 11-20 reps. Je neemt dan een gewicht, bijvoorbeeld 70 kg, en daarmee doe je één repout tot failure, met een redelijk goede uitvoering, weinig cheating dus. Laten we zeggen dat je 6 reps haalt. Je legt de barbell neer, dan haal je een 10 tal keer diep adem (een twintigtal seconden dus) dan neem je de barbell terug op, doe je weer een set tot fail, je haalt bijvoorbeeld 4 reps. Je legt de barbell opnieuw neer, wacht weer 20 seconden en neemt de barbell een laatste keer op en doet nog eens een setje tot faillure, deze keer haal je nog 3 reps. Dan heb je dus op je barbell row 6+4+3 reps gehaald, dat is een totaal van 13 reps. Dat is dus prima, aangezien je tussen de 11 en de 20 moet zitten. Zo doe je dat op elke oefening, behalve voor quads en op deadlift. Voor quads doe je het volgende: 6-10 reps, daarna 3 minuten rust, dan 20 reps. Voor deadlift doe je 6-9 reps dan 9-12 reps. Behalve dus voor je quad oefeningen en voor je deadlift doe je 1 setje in 3 deeltjes. Altijd tot fail. Dat is waarom het nogal als blessuregevoelig gezien wordt, dus opwarmen is nodig.

Een ander belangrijk ding om te onthouden is de negatieve fase bij dogcrapp. De negatieve fase moet niet minder dan 3 seconden duren. Dus dat zal waarschijnlijk wel even duren voordat je daaraan gewend bent, 3 seconden is behoorlijk lang.

Dan het schema. Je hebt in principe 2x3 schema’s met dezelfde oefeningen. Je neemt voor elk van de volgende spiergroepen 3 oefeningen die je leuk vindt.

Workout 1: Borst – schouders – triceps – rug wijdte (pulldowns, chins) – rug dikte (rows, deadlift)
Workout2: Biceps – onderarmen – kuiten – hamstrings – quads

De repranges die je moet halen zijn de volgende (gespreid over 3 setjes dus)

Borst: 11 tot 15
Schouders: 11 tot 20
Triceps: 11 tot 20 BEHALVE skullcrushers, die zijn 15 tot 30
Beide rug oefeningen: 11 tot 20 (behalve deadlift zoals hiervoor gezegd)
Biceps: 11 tot 20
Onderarmen: 10 tot 20
Kuiten: 10 tot 12
Hamstrings: 11 tot 30
Quads: zie boven

Je neemt dus je 3 oefeningen en je zet ze in een workout. Voor elke spiergroep 3 oefeningen, dus je hebt 3x workout A en 3x workout B. Die doe je dan zo: A1, B1, A2, B2, B3, B3, A1, B2 etc… je traint 1 dag wel, 1 dag niet, 1 dag wel, 1 dag niet en zo verder.
Ziet er allemaal heel verwarrend uit, maar dat is het eigenlijk niet. Dogcrapp is een geweldig goed schema vind ik, hoewel ik erbij moet zeggen dat het niet voor iedereen geschikt is. Dante, de uitvinder van Dogcrapp, raadt het zelfs pas na een 4-tal jaar aan. Zelf ben ik er dus vroeger aan begonnen. Na 2 maanden voelde ik duidelijk aan mijn lichaam dat het voldoende was, dus ben ik ermee gestopt. Toch gaat Dogcrapp, zonder enige twijfel, door mij nog vaak gebruikt worden.
Dogcrapp heeft trouwens een forum: http://intensemuscle.com/

Onderzoek

Tot slot heb ik nog een aantal onderzoekjes. Zoals jullie al konden raden zijn – zoals gewoonlijk – ook de ‘wetenschappers’ verdeeld van mening over trainen tot fail. In de spoiler vind je een aantal artikeltjes over trainen tot fail.

The Journal of Strength and Conditioning Research: Vol. 19, No. 2, pp. 382–388.

Training Leading to Repetition Failure Enhances Bench Press Strength Gains in Elite Junior Athletes

Eric J. Drinkwater
Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia and Centre for Aging, Rehabilitation, Exercise and Sport, Victoria University of Technology, Melbourne, Victoria, Australia
Trent W. Lawton and Rod P. Lindsell
Strength and Conditioning, Australian Institute of Sport, Canberra, ACT, Australia
David B. Pyne
Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia and GADI Research Centre, University of Canberra, Canberra, ACT, Australia
Patrick H. Hunt
Basketball Australia, Sydney, Australia
Michael J. McKenna
Centre for Aging, Rehabilitation, Exercise and Sport, Victoria University of Technology, Melbourne, Victoria, Australia

ABSTRACT
Drinkwater, E.J., T.W. Lawton, R.P. Lindsell, D.B. Pyne, P.H. Hunt, and M.J. McKenna. Training leading to repetition failure contributes to bench press strength gains in elite junior athletes. J. Strength Cond. Res. 19(2):382–388. 2005.— The purpose of this study was to investigate the importance of training leading to repetition failure in the performance of 2 different tests: 6 repetition maximum (6RM) bench press strength and 40-kg bench throw power in elite junior athletes. Subjects were 26 elite junior male basketball players (n = 12; age = 18.6 * 0.3 years; height = 202.0 * 11.6 cm; mass = 97.0 * 12.9 kg; mean * SD) and soccer players (n = 14; age = 17.4 * 0.5 years; height = 179.0 * 7.0 cm; mass = 75.0 * 7.1 kg) with a history of greater than 6 months' strength training. Subjects were initially tested twice for 6RM bench press mass and 40-kg Smith machine bench throw power output (in watts) to establish retest reliability. Subjects then undertook bench press training with 3 sessions per week for 6 weeks, using equal volume programs (24 repetitions × 80–105% 6RM in 13 minutes 20 seconds). Subjects were assigned to one of two experimental groups designed either to elicit repetition failure with 4 sets of 6 repetitions every 260 seconds (RF4×6) or allow all repetitions to be completed with 8 sets of 3 repetitions every 113 seconds (NF8×3). The RF4×6 treatment elicited substantial increases in strength (7.3 * 2.4 kg, +9.5%, p < 0.001) and power (40.8 * 24.1 W, +10.6%, p < 0.001), while the NF8×3 group elicited 3.6 * 3.0 kg (+5.0%, p < 0.005) and 25 * 19.0 W increases (+6.8%, p < 0.001). The improvements in the RF4×6 group were greater than those in the repetition rest group for both strength (p < 0.005) and power (p < 0.05).

Bench press training that leads to repetition failure induces greater strength gains than nonfailure training in the bench press exercise for elite junior team sport athletes.

Key Words: Smith machine, repetition maximum, typical error of measurement, smallest worthwhile change, fatigue

Introduction
The development of strength and power is paramount to success in most sports, especially those involving short-term, high-intensity efforts. Traditional strength-training programs of 3–4 sets for 6 repetitions at an intensity of 80% of a subject's maximum lift (26) may compromise the development of speed in a given athlete (13), though it is important to recognize the role of strength in power (3, 23). Proposed stimuli for maximal strength adaptation include tension on the muscle (32), amount of time under tension (29), prolonged exposure to metabolites (11, 29), and fatigue (27). If high tension on the muscle is important for strength development, then fatigue should be avoided (11, 33), though such a theory would neglect the importance of training volume (26) and fatigue-induced metabolites (31) in the adaptation process.
As consecutive repetitions are performed, progressive fatigue elicits a gradual reduction in power output until no further repetitions can be performed (22). The term exercise to “repetition failure” or “task failure” (17) is preferred over exercise to “maximal fatigue,” since the muscle is not entirely fatigued at the point of failure but, rather, cannot continue to move the given load beyond a critical joint angle (9). This “sticking point” corresponds to maximal fatigue only at that joint angle and does not necessarily represent maximal fatigue of the entire muscle (9). Therefore, training leading to repetition failure represents maximal voluntary fatigue for the muscle groups involved at their given sticking point with the mass being lifted, since no more work at that intensity can be performed. While the entire muscle may be experiencing high levels of fatigue at the point of repetition failure, to describe it as maximally fatigued would be inaccurate.

Several studies have explored training to failure but have not directly equated several important training variables within the experimental design, such as volume (3 sets of 10 repetitions not to failure vs. 1 set of 8–12 repetitions to failure) (21), duration of the training period (about 4 vs. more than 20 minutes) (11), or training intensities (60 vs. 100% maximal voluntary contraction [MVC]) (20). Other studies used only untrained subjects (2, 26) or single-joint movements and isokinetic or isometric machines (11, 19, 20, 27), which may not be directly relevant for most sporting applications that involve coordinating several joints for movements (2, 26). Therefore, a protocol that equates volume, time, and intensity of training in noncontact team sport athletes undertaking multiple-joint, free-weight training could elucidate valuable information about including training that leads to repetition failure into larger periodized programs.

The need for training leading to repetition failure to enhance strength is not universally accepted (11, 27), though it does have support. Several studies have demonstrated strength gains by using light weights (about 15–60% MVC) with multiple repetitions to train to failure (7, 8, 20, 25). Although it seems intuitive that equating the work volume and intensity would elicit equal strength gains, Rooney et al. (27) showed that subjects who performed biceps curls until repetition failure attained significantly greater 1 repetition maximum (1RM) gains than subjects training without assistance but permitted short rest intervals between repetitions.

The purpose of this study was to investigate the importance of training leading to repetition failure in the development of upper-body strength in elite junior athletes. By comparing 2 equal volume and intensity training programs, one to elicit repetition failure (high fatigue) and the other to allow completion of all repetitions, we sought to investigate the importance of training leading to repetition failure in improving 2 different measures of strength: 6RM bench press and mean power output of a 40-kg bench throw. We hypothesized that the training leading to repetition failure group would experience greater improvements in both 6RM bench press and bench throw power. With the exception of Rooney et al. (27), no research, to our knowledge, has standardized the number of repetitions performed, the number of repetitions performed at each intensity, and the duration of the training time.

Methods

Experimental Approach to the Problem
Subjects were 26 highly trained junior basketball and soccer players. Each subject was assigned to one of two bench press–training programs consisting of 4 sets of 6 repetitions or 8 sets of 3 repetitions. Both groups trained an equal number of repetitions (24 total repetitions) at the same relative intensity of their 6RM (85–105%) in an equal amount of time (13 minutes 20 seconds), 3 times per week for 6 weeks. Pilot testing established that such training program designs elicited sufficient fatigue for the 4 sets of 6 groups to be unable to complete the final repetitions of the training program without the assistance of a spotter, while the 8 sets of 3 groups were able to complete all repetitions successfully. This allowed us to evaluate the importance of training that leads to repetition failure without adding the confounding variables of training volume, intensity, or time.

Subjects
The sample group consisted of 26 elite junior male team game players (basketball, n = 12; age = 18.6 * 0.3 years, height = 202.0 * 11.6 cm, mass = 97.0 * 12.9 kg; soccer, n = 14; age = 17.4 * 0.5 years, height = 179.0 * 7.0 cm, mass = 75.0 * 7.1 kg, mean * SD). While this study was conducted on athletes in sports that do not typically have a major emphasis on upper-body strength, all subjects had moderate-to-extensive weight-training experience ranging from 6 months to 3 years, including the bench press. Subjects provided written informed consent for testing, training, data collection, and publication of results as part of their Scholarship Agreement with the Australian Institute of Sport (AIS), in accordance with requirements of the AIS Ethics Committee. Testing and training procedures were explained prior to the start of the study, and subjects were informed that they could withdraw at any time without prejudice.

Experimental Procedures
In the initial week of the study, subjects were tested on 2 separate days to determine the reliability of their 6RM bench press and maximal power generated during a Smith machine bench throw. Subjects were pair-matched for sport, 6RM, and number of years completed on an AIS scholarship and then randomly assigned to either the repetition failure or the nonrepetition failure groups. The matching process was intended to ensure groups were matched for training background and training potential. We can assert that subjects had not participated in extensive resistance-training programs prior to the commencement of their AIS scholarships. Thus, the number of years at the AIS was considered an accurate measure of resistance-training age. Furthermore, the training period for this research occurred during the in-season phase, so all players had been on a similar resistance and sport-specific training program for at least 4 months. The training groups consisted of either training 4 sets of 6 repetitions to repetition failure (RF4×6, n = 15) or training 8 sets of 3 repetitions not to failure (NF8×3, n = 11). Both groups undertook a 6-week training program of either training leading to repetition failure or nonrepetition failure training. Upon completion of the training intervention, subjects were retested on 6RM bench press and Smith machine bench throw power.

6RM Bench Press
Subjects were evaluated on 2 tests, a free-weight 6RM bench press for strength and a 40-kg Smith machine bench throw for maximal mean power. We defined strength as the capacity to displace a known mass (kilograms) for a designated number of repetitions that met our technical criteria for the selected lift irrespective of the time taken to move the mass. Prior to testing, subjects performed a thorough warm-up involving 10 minutes of stationary cycling and 3 sets of bench press comprising 12 repetitions at 50%, 6 repetitions at 75%, and 3 repetitions at 90% of their 6RM. Previously documented training records were used as a guide for selecting the first test mass for determination of 6RM. Mass was progressively increased with each successful set of 6 repetitions, allowing a minimum of 180 seconds of rest between attempts.

Our technical criteria for bench press specified a pronated grip with hands spaced so that the subject's forearms were perpendicular to the bar when the bar was resting on the chest. The subject was required to lower the bar without a pause until the chest was touched lightly approximately 3 cm superior to the xiphoid process. The bar was not permitted to stop at any point throughout the lift off the chest. The elbows were extended equally, with the head, hips, and feet remaining in contact with the bench throughout the lift. Failing to meet any of these technical criteria constituted an unsuccessful attempt.

Bench Throw Power
On a day separate from the 6RM bench press testing, subjects were evaluated for maximal power output during a Smith machine bench throw. The Smith machine (Life Fitness, Victoria, Australia) consisted of a horizontal barbell mounted on 2 vertical rails, thereby keeping the bar level and allowing it to move only in the vertical plane. We used the 40-kg bench throw power as an independent test for maximal strength because of its high correlation with maximal strength (4) and performance in other power events (23). Prior to testing, each subject completed a thorough warm-up involving 10 minutes of stationary cycling and 3 sets of bench press comprising 12 repetitions at 20 kg, 6 repetitions at 30 kg, and 3 repetitions at 40 kg with a 1-minute rest between sets. Subjects then performed 2 sets of two 40-kg bench throws every 35 seconds for a total of 4 throws.

Mean power was measured with a Micro Muscle Lab Power linear encoder (Ergotest Technology a.s., Langesund, Norway) attached to the bar. One end of the linear encoder cord was attached to the barbell, and the other end was coiled around a spool on the floor positioned perpendicular to the movement of the barbell. The linear encoder measures velocity and displacement of the barbell from the spinning movement of the spool, while mass is entered via a keypad into the device. The sensitivity of load displacement was approximately 0.075 mm, with data sampled and velocity calculated at a frequency of 100 Hz. Power was calculated as the product of force and velocity. The entire displacement and time for the concentric phase were used to calculate the mean values for velocity, force, and power. Subjects had 2 separate attempts performing 2 maximal throws. The mean power output was recorded for each throw, and the highest mean power was used for analysis.

Both the 6RM and bench throw tests were repeated at least 2 days apart to establish test-retest reliability for these measures through calculation of the typical error of measurement (TEM) (23) and intraclass correlation R scores (ICC). The TEM is calculated from the standard deviation of the change score (difference) from trial 1 to trial 2 divided by the square root of 2.

Determining the Extent of Fatigue
The Smith machine bench throw was also used to evaluate the extent of muscle fatigue induced by each training protocol, since training leading to repetition failure does not necessarily represent maximal fatigue (27). Each subject performed the bench throw for power and then either the RF4×6 or the NF8×3 protocol. Bench throw power was then repeated 3 minutes after completion of the final repetition of the training protocol. At least 3 days apart, subjects performed the other training protocol. The percent decrement in bench throw power between the pretraining and posttraining throws was used as an index of muscle fatigue from each protocol.

Training Program
Both groups completed a total 24 repetitions of the barbell bench press in a fixed time of 13 minutes 20 seconds per training session at a frequency of 3 times per week, on alternate days, during a 6-week training period. Prior to training, subjects performed 5–10 minutes of stationary cycling as warm-up. Training intensities were assigned on the basis of a percentage of the athlete's 6RM testing (5). The NF8×3 group performed 8 sets of 3 bench presses at intensities ranging from 80 to 105% of their 6RM (Table 1 ), with each set commencing every 113 seconds. The RF4×6 group performed 4 sets of 6 bench presses at the same intensity of their 6RM bench press (Table 1 ), with each set commencing every 260 seconds. The purpose of this design was for the failure group to work less frequently (i.e., 4 sets vs. 8) but for longer periods (i.e., 6 repetitions vs. 3) while resting less frequently but for longer periods (i.e., 100 vs. 230 seconds) than the nonfailure group. By each group starting on zero seconds and continuing each set on the assigned time and allowing 12 seconds to complete 3 repetitions or 20 seconds to complete 6 repetitions, each group completed the training program in 13 minutes 20 seconds. Subjects performed all bench press training in a free-weight setting on an official Paralympic power bench using a standard 20-kg barbell.

The assigned intensities by sets, sessions, and weeks of the program (Table 1 )
gradually increased the overall intensity during the course of the study while decreasing the intensity within each week. While the supramaximal loads used in the final weeks of the training program were used to ensure that failing intensities continued to be experienced as each subject's strength increased during the study period, the lower intensities later in the week were used to avoid potential injuries of sustained failure training. Each training week (i.e., weeks 1–6) (Table 1 ) involved 3 training sessions (i.e., sessions 1–3) (Table 1 ). Each set was undertaken at an assigned intensity of the subject's 6RM. During training weeks 1–3, subjects in the RF4×6 group trained at intensities increasing from 85, 90, 95, and 100% in session 1 for the week (e.g., Monday) (Table 1 ). Subjects in the NF8×3 group trained at each of these intensities twice (i.e., sets 1–8 were at intensities of 85, 85, 90, 90, 95, 95, 100, and 100%, respectively). The second training session of weeks 1–3 (e.g., Wednesday) (Table 1 ) involved training all sets at 90% of the subject's 6RM. In session 3 of the week (e.g., Friday) (Table 1 ) during weeks 1–3, all sets were trained at 80% of the subject's 6RM. In training week 4, the training intensity increased, with the first training session of the week (i.e., Monday) (Table 1 ) being trained entirely at 95% of the subject's 6RM, while session 2 was trained at 90%, and session 3 was trained at 80%.

Spotters were instructed that if assistance was required, they should provide only the minimum amount of assistance required to continue the set. If assistance from the spotter was necessary, the number of assisted repetitions was recorded in the athlete's training diary, but all repetitions were completed, even if assistance was required on several repetitions. Weights used in each session were rounded to the nearest 2.5 kg. Apart from the formal requirements of this study, both groups performed similar whole-body weight room–training programs involving all major muscle groups of the body in a single 1-hour training session.

Statistical Analyses
All raw data are expressed as mean * SD, while estimates of change and difference score are expressed as mean with 95% confidence limits (CLs). A 2-way analysis of variance with repeated measures was used to identify significant differences between groups in bench throw power for determining the extent of fatigue induced by each protocol. To establish the precision of the estimate of change, 95% confidence intervals were also calculated (18, 23). The correlation coefficient between the 6RM and 40-kg bench throw was calculated using Pearson product moment correlation. P-values were considered significant at p 0.05.

The repeat tests of bench throws and 6RM bench press collected in the first week of the study were analyzed for TEM and ICC to quantify the variation in testing a subject during multiple test sessions (23). TEM is an important measure to distinguish between a real result and the noise of a test; a change smaller than the TEM could simply be noise in the test. To determine the practical significance of observed changes, we estimated the smallest worthwhile change (SWC; equivalent to a small Cohen effect size) as 0.2 of the between-athlete standard deviation for each variable (SWC = 0.2× SD) (23). The SWC is a useful tool to establish the clinical (practical) significance and especially in distinguishing between trivially small changes and those changes large enough to have a meaningful or worthwhile effect on performance (23). Further analysis beyond statistical analysis was conducted to assess the likelihood of potential differences between programs on each test (23).

Results

Bench Press
The TEM, ICC, and SWC of the 6RM bench press were 1.1 kg (1.7%), 0.86, and 1.8 kg (2.6%). Prior to training, there were no significant differences between the RF4×6 and NF8×3 groups in 6RM bench press (69.3 kg * 10.3 vs. 67.5 kg * 8.2, respectively, p = 0.62).
The RF4×6 group experienced a substantial increase in strength in 6RM (7.3 kg, 95% CL, 6.0–8.7 kg, p < 0.001) (Figure 1 ) after training that was twofold greater (p = 0.001, 95% CL, 1.2–6.2 kg) than the increase in 6RM in the NF8×3 group (3.6 kg, 95% CL, 1.6–5.7 kg, p < 0.005) (Figure 1 ). Calculation of likelihoods shows that there is a 92% probability that the true difference between the 2 groups is worthwhile in practical terms.

Bench Throw
The TEM, ICC, and SWC of the bench throw power were 14 W (4.0%), 0.92, and 10 W (2.6%), respectively. We found no significant differences between the repetition failure and nonrepetition failure groups in the 40-kg bench throw (343 * 67 W vs. 342 * 62 W, respectively, p = 0.97).
The RF4×6 experienced a substantial increase in bench throw power (40.8 W, 27.5–54.1 W, p < 0.001) (Figure 2 ) that was, on average, 15.8 W more (p < 0.05, 3.1–34.7 W) than the increase experienced by the NF8×3 group (25 W, 12.2–37.8 W, p < 0.001) (Figure 2 ). Calculation of likelihoods showed that differences between the 2 training protocols are not only statistically significant but also 96% likely to be practically worthwhile. While a likelihood of more than 75% should be considered likely to be beneficial, a likelihood of more than 95% indicates that the difference between the 2 training protocols can be described as being “very likely” (23).
There was a strong correlation (r = 0.89, p < 0.01) between the 6RM bench press and 40-kg bench throw. With such a high dependence of bench throw power on strength, we decided that the Smith machine bench throw would be a more sensitive test of strength than 1RM testing.

Fatigue and Failure
The RF4×6 group failed on more repetitions per training session (1.0 * 1.3 repetitions) than the NF8×3 group (0.0 * 0.2 repetitions) (p < 0.01). This indicates that while the NF8×3 group rarely failed on any repetitions, the RF4×6 group usually failed on at least 1 repetition of the 24 attempted. This observation confirms the intent of the program design in equating the volume of work in an equal amount of time to induce repetition failure by the end of each training session in the RF4×6 group but not in the NF8×3 group.

The decrement of power in the 40-kg bench throws was 19.6% after the RF4×6 training protocol (62.9 W, 35.9– 89.9, p < 0.01) compared with 7.8% for the NF8×3 group (25.6 W, 7.7–43.6, p < 0.01). While there were no significant differences between pretrials (p = 0.47), the power in the RF4×6 group was 15.9% lower after training (48.4 W, 24.7–72.0, p = 0.001). There was no order effect in which the protocols were tested.

Discussion
The major findings of this study were that the RF4×6 group experienced substantially larger gains in 6RM bench press and bench throw power than the NF8×3 group. Our findings clarify the role of training leading to repetition failure in strength training. The first advantage of our protocol was that we equated training intensity (i.e., percentage of 6RM), training volume (i.e., total number of repetitions), and duration of training time (13 minutes 20 seconds). Second, we used multijoint dynamic contractions over multiple sets (11, 27), and third, we investigated training effects in elite team sport athletes with weight-training experience. By using 8 sets of 3 repetitions for the NF8×3 protocol, no external assistance by a spotter was required to complete the prescribed number of repetitions. In contrast, repetition failure occurred in at least one of the four sets of 6 repetitions performed by the RF4×6 group. This experimental design therefore allowed us to attribute the RF4×6 group's greater improvement in strength to incorporating greater fatigue to the point of failure.
While a determination of statistical significance is important for assessing probability, a calculation of likelihoods is useful in determining the degree of practical (clinical) benefit of each training program (23). The calculated likelihoods indicate that the practical difference between the 2 training programs can be described as “likely” for the 6RM test and as “very likely” for the bench press throw test (23). By calculating the TEM and SWC for both tests, we provided boundaries for the interpretation of our results. The improvements obtained from the RF4×6 training protocol (strength = 9.6%, and power = 10.6%) and the NF8×3 training protocol (5.1 and 6.8%) can be considered real, because their magnitude was greater than the magnitudes of both the TEM and SWC of the 6RM and (1.7 and 2.6%) and bench throw (4.0 and 2.6%).

To ensure that the training effect of improving 6RM was not simply a task-specific response to training sets of 6 repetitions, we measured bench throw power output as a novel test of strength. We found a high correlation between bench throw power and 6RM, supporting the notion that a task with a large resistance is dependent on strength to generate power (3, 23). The bench throw has several advantages over a traditional 1RM test of strength. Primarily, the bench throw is a dynamic movement that is largely independent of the strength of a single-joint angle, giving it context validity to the ballistic movements of team sports. The bench throw can also be measured with much greater precision (i.e., in watts) than a 1RM bench press, which is typically measured to the nearest 2.5 kg. The greater improvements of the RF4×6 group demonstrated that the strength improvements in bench press existed throughout the bench press range of motion.

Fatigue represents a decreased ability to produce power (10). We demonstrated that greater fatigue was induced by the RF4×6 protocol, since a greater decrement in bench throw power occurred after the RF4×6 protocol than after the NF8×3 protocol. Some authors conclude that fatigue should be avoided for strength development, since fatigue reduces the force a muscle can generate (11, 32). Previous data from our laboratory have demonstrated that decrements of power are greater in the 4 × 6 group than in the 8 × 3 group (22). While no measurements of force were taken during training or testing, we can infer that velocity is lower (i.e., there was negative acceleration), and thus force is lower, in the 4 × 6 group. We therefore conclude that declining force induced by fatigue does not inhibit strength development.
Other authors suggest that fatigue is a necessary component of resistance training (8, 27). Motor units are recruited in response to a submaximal contraction in an assigned order so that not all motor units are active at once (12). Repeated submaximal contractions elicit fatigue of the active motor units such that additional motor units must be progressively recruited in order to maintain force output (27, 28). Therefore, at the point of repetition failure, the maximal number of motor units was presumably activated, especially during assisted repetitions, a point that our repetition rest group did not reach. Since the activating and overloading of a high number of motor units are important in facilitating strength development (30, 32), the repetition failure group presumably experienced greater strength gains as a result of maximizing the recruitment of active motor units (24). Training to failure might enable an athlete to maximize the number of active motor units and therefore the magnitude of the adaptations made by the nervous system.

While no measures of neuromuscular activity or hypertrophy were collected in this study, the large magnitude of changes in 6RM for the NF8×3 (5.1%) and RF4×6 (9.5%) groups and bench throw (mean = 6.8 and 10.6%, respectively) in a 6-week training period, coupled with the slow rate of hypertrophic (2) and architectural (1) improvements of muscle in trained individuals, leads us to speculate that most strength changes were related to neural adaptations. It is generally concluded that neural adaptations are predominant in strength-training studies, where strength and/or electromyogram (EMG) increase disproportionately more than changes in muscle hypertrophy (6, 15). Neural adaptations are most commonly presented in relation to the rapid strength development in novice weightlifters (6). However, Häkkinen et al. (14, 16) have demonstrated increases in EMG even in experienced lifters when increases in training intensity occur. Increasing the intensity elicits neural adaptations in a greater number of motor units by maximizing the number of active motor units active at one time.

One limitation of this design was that all subjects were involved in daily team practices and skill sessions in their respective sport appropriate to elite junior players. The researchers had no control over possible differences in training volume between subjects. Such a limitation is a necessary compromise to explore training interventions in elite athletes in a real weight room situation compared with a controlled laboratory investigation. To minimize any effect of training variations, subjects were matched between groups for sport, training experience, and 6RM bench press. Additionally, although the subjects of our study were highly trained athletes, they had only modest weight-training experience, particularly in upper-body training. Therefore the results still likely reflect reasonably early adaptations to strength training.

For many team sports, a combination of strength and speed are necessary physical attributes. However, with increasing physical demands on athletes and time demands on coaches, specific training methods that elicit concurrent improvements in both strength and power are clearly desirable. Our results suggest that coaches of junior team sport athletes are able to maximize strength gains in their athletes by using a conventional weight-training program (e.g., 4 sets of 6 repetitions on barbell bench press) where the intensity is high enough to lead to repetition failure. Athletes often periodize heavy and light weights because frequent training to failure for extended periods of time is both physically and mentally challenging. Since no subject exhibited a decrement in 6RM or power test performance after either training intervention, we also conclude that team sport athletes do not necessarily have to train to failure to maintain and improve existing levels of strength.

Practical Applications
By training barbell bench press using a more conventional weight-training program (4 × 6 repetitions) with assisted repetitions, coaches can maximize strength gains in their athletes. The current research highlights the potential benefits of training leading to repetition failure by demonstrating larger strength and mean power gains during a 6-week training period. Further research to clarify the mechanism by which training leading to repetition failure promotes maximal strength gains is warranted. Additionally, we found that during a 6-week training phase, athletes are able to maintain strength levels without training to failure. Such an outcome is important to allow athletes to periodize their strength-training program for training blocks of failure and nonfailure. Such an application would be appropriate in a setting involving young male team sport athletes with modest upper-body strength-training experience for a 6-week block of a larger periodized program of free-weight training.

References
1. Aagaard, P., J.L. Andersen, P. Dyhre-Poulsen, A.M. Leffers, A. Wagner, S.P. Magnusson, J. Halkjaer-Kristensen, and E.B. Simonsen. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 534:613–623. 2001.

2. Ahtiainen, J.P., A. Pakarinen, M. Alen, W.J. Kraemer, and K. Häkkinen. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur. J. Appl. Physiol. 89:555–563. 2003.

3. Baker, D. A series of studies on the training of high-intensity muscle power in rugby league football players. J. Strength Cond. Res. 15:198–209. 2001.

4. Baker, D., S. Nance, and M. Moore. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J. Strength Cond. Res. 15:20–24. 2001.

5. Barchle, R., R. Earle, and D. Wathen. Resistance training. In: Essentials of Strength Training and Conditioning. R. Barchle and R. Earle, eds. Champaign, IL: Human Kinetics, 2000.

6. Behm, D. Neuromuscular implications and applications of resistance training. J. Strength Cond. Res. 9:264 1995.

7. Behm, D.G. An analysis of intermediate speed resistance exercises for velocity-specific strength gains. J. Appl. Sport Sci. Res. 5:1–5. 1991.

8. Delecluse, C. Fatigue contributes to strength gain at low training loads. In: 5th IOC World Congress on Sport Sciences: Book of abstracts, Canberra, Sports Medicine Australia, 1999, p. 23.

9. Elliot, B., G. Wilson, and G. Kerr. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 21:450–462. 1989.

10. Fitts, R.H. Muscle fatigue: The cellular aspects. Am. J. Sports Med. 24:S9–13. 1996.

11. Folland, J.P., C.S. Irish, J.C. Roberts, J.E. Tarr, and D.A. Jones. Fatigue is not a necessary stimulus for strength gains during resistance training. Br. J. Sports Med. 36:370–373; [Discussion] 374. 2002.

12. Garland, S.J., L. Griffin, and T. Ivanova. Motor unit discharge rate is not associated with muscle relaxation time in sustained submaximal contractions in humans. Neurosci. Lett. 239:25–28. 1997.

13. Häkkinen, K. Neuromuscular and hormonal adaptations during strength and power training. A review. J. Sports Med. Phys. Fitness. 29:9–26. 1989.

14. Häkkinen, K., M. Alen, and P.V. Komi. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol. Scand. 125:573–585. 1985.

15. Häkkinen, K., and P.V. Komi. Electromyographic changes during strength training and detraining. Med. Sci. Sports Exerc. 15:455–460. 1983.

16. Häkkinen, K., P.V. Komi, M. Alen, and H. Kauhanen. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur. J. Appl. Physiol. Occup. Physiol. 56:419–427. 1987.

17. Hunter, S., J. Duchateau, and R. Enoka. Muscle fatigue and the mechanisms of task failure. Exerc. Sport Sci. Rev. 32:44–49. 2004.

18. Johnson, R. Elementary Statistics (3rd ed). Boston: Duxbury, 1980.

19. Kanehisa, H., and M. Miyashita. Specificity of velocity in strength training. Eur. J. Appl. Physiol. Occup. Physiol. 52:104–106. 1983.

20. Kanehisa, H., H. Nagareda, Y. Kawakami, H. Akima, K. Masani, M. Kouzaki, and T. Fukunaga. Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur. J. Appl. Physiol. 87:112–119. 2002.

21. Kramer, J.B., M.H. Stone, H.S. O'Bryant, M.S. Conley, R.L. Johnson, D.C. Nieman, and D.R. Honeycutt. Effects of single vs. multiple sets of weight training: Impact of volume, intensity, and variation. J. Strength Cond. Res. 11:143–147. 1997.

22. Lawton, T., J. Cronin, E. Drinkwater, R. Lindsell, and D. Pyne. The effect of continuous repetition training and intra-set rest training on bench press strength and power. J. Sports Med. Phys. Fitness. 44:361–367. 2004.

23. Liow, D., and W. Hopkins. Velocity specificity of weight training for kayak sprint performance. Med. Sci. Sports Exerc. 35:1232–1237. 2003.

24. Maffiuletti, N.A., and A. Martin. Progressive versus rapid rate of contraction during 7 wk of isometric resistance training. Med. Sci. Sports Exerc. 33:1220–1227. 2001.

25. Moss, B.M., P.E. Refsnes, A. Abildgaard, K. Nicolaysen, and J. Jensen. Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur. J. Appl. Physiol. Occup. Physiol. 75:193–199. 1997.

26. Rhea, M.R., B.A. Alvar, L.N. Burkett, and S.D. Ball. A meta-analysis to determine the dose response for strength development. Med. Sci. Sports Exerc. 35:456–464. 2003.

27. Rooney, K.J., R.D. Herbert, and R.J. Balnave. Fatigue contributes to the strength training stimulus. Med. Sci. Sports Exerc. 26:1160–1164. 1994.

28. Sale, D.G. Influence of exercise and training on motor unit activation. Exerc. Sport Sci. Rev. 15:95–151. 1987.

29. Schott, J., K. McCully, and O.M. Rutherford. The role of metabolites in strength training. II. Short versus long isometric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 71:337–341. 1995.

30. Smith, R.C., and O.M. Rutherford. The role of metabolites in strength training. I. A comparison of eccentric and concentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 71:332–336. 1995.

31. Takarada, Y., Y. Sato, and N. Ishii. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur. J. Appl. Physiol. 86:308–314. 2002.

32. Vandenburgh, H.H. Motion into mass: How does tension stimulate muscle growth?. Med. Sci. Sports Exerc. 19:S142–149. 1987.

33. Weiss, L.W. The obtuse nature of muscular strength: The contribution of rest to its development and expression. J. Appl. Sport Sci. Res. 5:219–227. 1991.

Acknowledgments
We acknowledge the cooperation of the coaches and athletes from the Australian Institute of Sports Men's Soccer and Men's Basketball Programs and the Strength and Conditioning staff of the Australian Institute of Sport. We also acknowledge the review of this manuscript by Angus Ross and Nicola Bullock of the Department of Physiology, Australian Institute of Sport.

Tables

TABLE 1. Number of sets trained in each session at each of the weekly training intensities expressed as a percentage of 6RM.*

[Link niet meer beschikbaar]

Figures

FIGURE 1.Comparison of 6 repetition maximum (6RM) strength (in kilograms) made by the repetition rest and repetition failure groups. Bars represent the load of 6RM * SD in each training group before and after the training program. *Indicates p < 0.05 greater than the pretest. + Indicates p < 0.05 difference between groups. Error bars represent the standard deviation of the group

[Link niet meer beschikbaar]


FIGURE 2.Comparison of Smith machine bench throw (W) made by the repetition rest and repetition failure groups. Bars represent the power of Smith machine bench throw * SD in each training group before and after the training program. * Indicates p < 0.05 greater than the pretest. +Indicates p < 0.05 difference between groups. Error bars represent the standard deviation of the group

[Link niet meer beschikbaar]

Elf weken trainen at-failure even effectief als elf weken non-at-failure (J Appl Physiol. 2006 May;100(5):1647-56.)

Sporters die twee maanden met gewichten trainen zonder dat ze in hun sets tot de laatste rep gaan maken net zoveel progressie als sporters die dat wel doen. Tenminste, dat geldt voor de spelers van het Spaanse nationale basque ball-team die meededen aan een experiment van bewegingswetenschappers van het Studies, Research and Sport Medicine Center in Navarre.


De onderzoekers lieten hun proefpersonen 11 weken 2 keer per week trainen in een gym. Elke training duurde zo'n 3 kwartier. De sporters namen met oefeningen als de bench-press, shoulder-press, lat-pulldown, squat, leg-extension, leg-curl en de crunch hun belangrijkste spiergroepen onder handen. Daarnaast liepen de sporters ook nog elke week een half uur hard, en deden ze hun reguliere trainingen.

Veertien basque ball-spelers trainden at failure [RF]. Ze persten alle reps uit hun sets die ze maar konden. Vijftien andere proefpersonen deden dat niet [NRF].

De proefpersonen trainden met gewichten waarmee ze nog net 8-10 reps konden maken. De RF-groep perste die er ook daadwerkelijk uit, de NRF-groep maakte met dezelfde gewichten slechts 5 reps.

Tussen week 11 en week 16 gingen beide groepen een identiek programma volgen. Ze trainden met 85-90 procent van het gewicht waarmee zo nog maar net 1 rep konden maken [hun 1RM], en maakten daarmee 2-4 reps.

Hieronder zie je met hoeveel kilo de proefpersonen nog net 1 rep konden maken als ze gingen bankdrukken. Daaronder zie je hoeveel reps de sporters konden halen in een set als ze gingen bankdrukken met 75 procent van hun 1RM.



De onderzoekers meetten ook hormoonspiegels in het bloed van de sporters. Ze vonden geen verschillen tussen de twee groepen. De spiegel van testosteron, cortisol en IGF-1 reageerde hetzelfde bij de RF- en de NRF-groep. Wel maakten de sporters in de RF-groep meer IGFBP-3 aan. IGFBP-3 is het "goede" bindingseiwit voor IGF-1. IGF-1 in het bloed is actiever naarmate er meer van vastzit aan IGFBP-3, en minder aan IGFBP-1.


Coaches en krachtsporters beschouwen at failure-krachttraining als een effectieve methode om vooruitgang af te dwingen, als je hem tenminste wijs inzet. Deze studie doet daar niets aan af, al laat hij wel zien dat je ook sterker kunt worden als je niet at failure traint.

Interessant detail: beide groepen maakten nauwelijks meer spiermassa aan. De RF-groep won nog geen vier ons vetvrije massa, de NRF-groep twee ons. Da's wel erg weinig voor een periode van 16 weken trainen. Je vraagt je af of de sporters in beide groepen, die ook nog dagelijks hun basque ball-trainingsroutines afwikkelden, niet overtraind waren. Of gewoon geen zin hadden in
krachttraining.

0 7 - 0 6 - 2 0 1 0
[Afbeelding niet meer beschikbaar] Sporters hebben meer aan krachttraining met halve sets (Med Sci Sports Exerc. 2010 Jun;42(6):1191-9.)

Roeiers die hun reguliere training aanvullen met krachttraining gaan meer vooruit als ze in hun sets niet tot het uiterste gaan. Dat schrijven Spaanse sportwetenschappers in Medicine & Science in Sports & Exercise. De roeiers hadden nog het meeste aan sets met de helft van het aantal reps dat ze zouden kunnen maken als ze tot het uiterste gingen.
[Afbeelding niet meer beschikbaar]
De onderzoekers deden een proef met 43 getrainde roeiers. Die verdeelden ze over vier groepen. Een controlegroep deed niet aan krachttraining, maar volgde wel het reguliere programma op het water en in het cardiohok. Wekelijks trainden de sporters 7-8 uur.

Een tweede groep roeiers trainde naast de reguliere training gedurende 8 weken 2 keer per week in een sportschool. De sporters deden elke sessie 4 oefeningen: bent-over-rows op een machine, de seated cable row, de lat-pulldown en voorslaan. Van elke oefening deden de roeiers drie sets met 70 procent van het gewicht waarmee ze nog net 1 rep konden maken. De roeiers trainden at failure. Ze haalden alle 10-12 reps uit hun sets die er in zaten. [4RF]

Een derde groep roeiers deed hetzelfde, maar ging niet verder dan 5-6 reps. [4NRF]

Een vierde groep roeiers trainde als 4NRF, maar deed alleen de bent-over-rows en de seated cable row. [2NRF]

De roeiers zaten waarschijnlijk dicht tegen de overtraining aan. De krachttrainingsgroepen verloren gedurende de 8 weken ongeveer anderhalf keer meer vetvrije massa dan de controlegroep.

[Afbeelding niet meer beschikbaar]

Toch werden de roeiers die aan krachttraining deden sterker, terwijl de controlegroep aan kracht inboette. Hieronder zie je het effect van programma op het gewicht waarmee de roeiers bij de bent-over-row nog net 1 rep konden maken. Alleen bij de 4NRF-groep was de toename van de maximaalkracht significant.

[Afbeelding niet meer beschikbaar]

Nou hebben roeiers op het water weinig aan maximaalkracht. Power - zeg maar: de snelheid waarmee je een gewicht omhoog kunt trekken - is belangrijker. Krachttraining verhoogde die power. Zolang de sporters tenminste geen sets at failure maakten. Weer presteerde de 4NRF-groep het beste.

[Afbeelding niet meer beschikbaar]

De onderzoekers concluderen dat sporters die veel van hun lichaam vragen baat hebben bij krachttraining, maar alleen als ze in hun sets niet tot het gaatje gaan. Het reduceren van het aantal sets is echter geen goede strategie om de negatieve impact van krachttraining te beperken. Een training met wat meer sets werkt beter dan een training met weinig sets.

Over de voeding van de sporters vertelt het artikel niets. Misschien had suppletie met een interessante hoeveelheid eiwitten, creatine en beta-alanine voor betere resultaten gezorgd.
Niet echt een onderzoek, wel een interessante kijk
Many people think you have to train a muscle to failure to make it grow. Why is that? When you lift a weight muscle fibers fire off to move the weight more are called into play each rep. From the first rep fibers have already hit failure that's why more we called into play for the 2nd rep. The body will try to conserve as much as possible say you fail on the 8th rep that just means there weren't enough fibers in reserve to call up for a 9th rep it doesn't mean you have fully worked the whole muscle to failure.

Just for the sake on making a point lets look at block layers. Ever see a block layer with small arms? Probably not I've never scene one. now do you think they lift blocks till they could not lift another? Of course not, yet they have well developed arms. The same is true with anyone who does any heavy labor. Some even compare to people who frequent gyms yet they have never stepped inside one. The human body was never meant to be worked till it couldn't possibly complete a task. Training to failure is not needed for maximum muscle hypertrophy or for an increase in strength.

Most elite-level bodybuilders volume train. I believe Arthur Jones the inventor of Nautilus equipment is the person who started this one set to failure programs. Jones argued that bodybuilders should work to the point of momentary failure. Using one set per exercise. Again in my opinion, there is no way in hell that you can fully work a muscle with one set. What really set Jones on the map was his work with Casy Viator and his amazing gain of 60 pounds in a short time using his training approach. he failed to say he was re-gaining muscle and was one of the first bodybuilders to cycle high amounts of test (so I have heard) .

Over time training to failure is a sure way to stop your progress. You tax the central nervous system hard when training to failure. If you encounter CNS burnout your progress will come to a halt. 99% of all top bodybuilders, volume train one of the most productive training programs ever for increasing muscle size is German volume training. With this training you pick an exercise and do 10 sets of 10 reps. You pick a weight you can do for say 20-25 reps with and just do 10 rest 1min then another set of 10 and so on till you have done 10 sets. This works a high amount of muscle fibers without taxing as much of the central nervous system.

For the sake of argument lets say the bicep has 100 fibers so you curl a dumbbell in order to move the weight for the first rep 25 fibers fire off on rep 2 the first 25 fibers fire again but are to fatigued to move the weight so another 20 fibers join in and so on. Now must you work a muscle till it fails 100% for it to be damaged enough to cause growth? The answer is no. You also have to look at why the muscle failed were the fibers worked fully? No again they just were not able to sustain another contraction at that given time. After a brief rest they can perform again this is where volume training comes into play.

So why is the one set to failure programs still going strong? I think it is because of new trainers. Any training method can be effective at least temporarily for the following reasons. Beginners will make short-term progress with any training system as long as they aren't injured in the process. Their body just can't recover from multiple sets so 1 set per exercise is enough for growth but after 3-6 months they need to move on. The idea that a well trained person will respond to this type of program is nuts.

It is agreed that one of the main factors for muscle hypertrophy is time under tension. With just using one set there is insufficient training volume for hypertrophy development. There have been many studies that have shown metabolic changes associated with muscular hypertrophy are best instigated through loading high volumes whereas neural adaptations are best brought about through high intensity loads.

(taken from Charles I. Stanley)
Noted exercise scientist Paul Ward warns that training to failure results in ischemic reperfusion, or oxygen deprivation, followed by oxygen perfusion. This results in massive free-radical damage to DNA and cell membranes.

International Sports Sciences Association co-founder Dr. Sal Arria cautions that many soft tissue injuries occur when failure terminates a repetition in mid-stroke. "When the weight on the bar exceeds the muscle's ability to lift it, something has to give and usually, it's the musculotendinous junction.

Louie Simmons, well known coach to many elite-level power lifters finds that taking sets to failure "has an ill-effect on the central nervous system," which delays recovery. Simmons is noted for producing scores of high-ranked lifters with relatively low-intensity training.

These statements give us food for thought when we think of training. Could it be that training to failure is slowing our progress in the gym? I have seen no studies that prove training to failure increase hypertrophy above any other style of training. I have scene plenty for volume training relating to size increases. Just look at all the top pro bodybuilders all are huge and they all volume train. You wont find one pro who will think his chest is fully trained by one set of dumbbell bench presses that's just plain silly.

I happen to love volume training and have made steady progress over the years is size. People at my gym have started asking me to create volume-training programs for them. Everyone is responding well and growing.


edit: ik merk net dat de fototjes het niet doen in het onderzoek. Nouja, de bedoeling lijkt mij wel duidelijk, maar moesten jullie interesse hebben, de link staat er altijd bij wanneer er foto's waren


Eindconclusie:
Al bij al kunnen we stellen dat tot failure trainen zeker en vast interessant is, vooral als het rond een bepaald schematje hangt. Ik zou dus zeggen: proberen maar!




Bronnen:
Forum.dutchbodybuilding.com
www.bodybuilding.com
www.t-nation.com
www.wikipedia.org
www.ergogenics.org/
[Link niet meer beschikbaar]
www.intensemuscle.com
www.gymnasticbodies.com
www.ironlife.com/
 
Nice one!:thumbs:

De toon is gezet! Bring it on!
 
Damn dat ziet er nice uit inderdaad...
Word toch nog even mijn post overlezen en verbeteren want anders ga ik zoiezo met lege handen naar huis :D
 
Damn dat ziet er nice uit inderdaad...
Word toch nog even mijn post overlezen en verbeteren want anders ga ik zoiezo met lege handen naar huis :D

Als je altijd voor de prijs moet meedoen is het nogal dom vind ik, dan wordt het eerder een verplichting dan andere helpen :) ik schrijf gewoon neer wat in me opkomt en dan post ik het, boeit me niet of ik win of niet, de bedoeling is dat andere mensen er wat aan hebben.

Ik vind ook dat een artikel schrijven om te winnen/om mee te doen nogal lastig is. Ik bedoel, als er bijvoorbeeld een onderwerp is zoals het deze, zal ik de eerste zijn om mee te doen, aangezien tot fail trainen één van de dingen is waar ik echt al enorm veel meningen, onderzoeken en zelfs boeken over heb gelezen. Maar als het een onderwerp is waar ik niet zo veel van ken, dan doe ik gewoon niet mee, om copy-paste werk te voorkomen. Ik ben zelf nog maar 19 jaar en heb amper 3 jaar ervaring, dus het is natuurlijk wel spijtig dat er zo weinig adults meedoen aan het TVDM.

Hoewel ik het natuurlijk altijd leuk vind om votes te krijgen, dat is natuurlijk een leuke vorm van waardering.
 
Laatst bewerkt:
helemaal mee eens, waar zijn de 40+ experts
 
helemaal mee eens, waar zijn de 40+ experts

komt eraan... ik moet ook nog werken hoor! ga jij maar eens met folders lopen met dit weer:mad:
 
komt eraan... ik moet ook nog werken hoor! ga jij maar eens met folders lopen met dit weer:mad:

TNT postbezorg in het weekend, na 4 maanden nog geen 1x regen gehad.
Denk dat iemand hierboven om mij geeft (A)
 
TNT postbezorg in het weekend, na 4 maanden nog geen 1x regen gehad.
Denk dat iemand hierboven om mij geeft (A)

geen regen, maar storm! liet ik weer een stapel vallen ben ik uren bezig om alles weer te pakken te krijgen, lijkt wel cardio:mad:
 
betaald cardio, niet zo zeuren :P.

En waarom breng je in godsnaam folders rond?
 
betaald cardio, niet zo zeuren :P.

En waarom breng je in godsnaam folders rond?

ben meervoudig verstandelijk gehandicapt.. iets anders kan ik niet..:(
 
Back
Naar boven