MuscleMeat

Quantum Physics en String Theory [alleen voor de echte nerds van DBB]

Ik doe niet alsof ik de meester van natuurkunde ben, zoals ik net zeg het is gewoon een hobby van me.

Ik denk dat ik weet wat je hebt gedaan, je dacht ik ga is een filmpje kijken. Toen heb je een filmpje over Chaos Theory gekeken van 10 minuten en nu denk je dat weet hoe de natuurkunde in elkaar zit :rolleyes:

Kunnen we weer back on topic of is zielig doen belangrijker voor je?
 
  • Topic Starter Topic Starter
  • #42
Zolang je stopt met onzin verkopen kunnen we zo back on topic :) Anders ben ik genoodzaakt in te grijpen.
 
de mogelijkheid om ST daadwerkelijk in de praktijk te testen is zowat 0
LQG daarintegen belooft meer

idd thejizz Dr. michio kaku is geniaal alleen is het string field theory en niet string theory
 
  • Topic Starter Topic Starter
  • #45
Ok ik wil wel even inhoudelijk gaan :)

Als ik zo de meeste filmpjes zie is het belangrijkste punt dat de theoriën nog niet uitgebreid genoeg zijn kwa variabelen waardoor we ons blind staren op situaties waar deze variabelen constant zijn en daardoor het zicht verliezen in situaties die choatisch lijken maar wel te voorspellen zijn. Mogelijk door toepassing van computers en uitbreiding van formules, het meest ideale zou zijn situaties te creëren waar slechts 1 onbekende variabele meespeelt, maar dit is misschien niet aanwezig of moeilijk te creëren.

Wat bedoel je hier precies mee? Alle variabelen zijn gewoon bekend. Ik denk dat je hier doelt op het feit dat Chaos Theory zo afhankelijk is van kleine fluctuaties dat we heel moeilijk kunnen zeggen welk pad gevolgd gaat worden.

We staren ons blind op variabelen die constant zijn? Daar raak je me even kwijt.

Uitbreiding van formules, welke formules bedoel je daarmee?
 
Ok ik wil wel even inhoudelijk gaan :)



Wat bedoel je hier precies mee? Alle variabelen zijn gewoon bekend. Ik denk dat je hier doelt op het feit dat Chaos Theory zo afhankelijk is van kleine fluctuaties dat we heel moeilijk kunnen zeggen welk pad gevolgd gaat worden.

We staren ons blind op variabelen die constant zijn? Daar raak je me even kwijt.

Uitbreiding van formules, welke formules bedoel je daarmee?

Nou bijvoorbeeld bepaalde systemen die als ze interacteren met elkaar heel complex worden (vaak worden systemen geisoleerd bekeken). Ik had het niet per se over de chaostheorie. Er worden nu veelal te simplistische formules gebruikt (in mijn ogen) waardoor een situatie voorspellen onmogelijk wordt. Er zijn variabelen waar we nog niet bekend mee zijn die als we dat wel waren ons een beter beeld van de uitkomst zouden schetsen, maar omdat onze theoriën met name gebaseerd zijn op situaties die vrij gemakkelijk observeerbaar zijn, zijn ze niet bruikbaar in complexere situaties. We moeten daarom naar mijn idee nog bepaalde variabelen ontdekken om een beter voorspelbaar beeld te krijgen. Alleen zijn die variabelen moeilijk observeerbaar als deze niet geïsoleerd waarneembaar gemaakt kunnen worden. In simplistische situaties zullen deze variabelen gewoon constantes zijn maar in complexere situaties zullen deze variabelen dus gaan spreken, het punt is dat ze daar voor wel meetbaar moeten zijn.
 
  • Topic Starter Topic Starter
  • #47
Nou bijvoorbeeld bepaalde systemen die als ze interacteren met elkaar heel complex worden (vaak worden systemen geisoleerd bekeken). Ik had het niet per se over de chaostheorie. Er worden nu veelal te simplistische formules gebruikt (in mijn ogen) waardoor een situatie voorspellen onmogelijk wordt. Er zijn variabelen waar we nog niet bekend mee zijn die als we dat wel waren ons een beter beeld van de uitkomst zouden schetsen, maar omdat onze theoriën met name gebaseerd zijn op situaties die vrij gemakkelijk observeerbaar zijn, zijn ze niet bruikbaar in complexere situaties. We moeten daarom naar mijn idee nog bepaalde variabelen ontdekken om een beter voorspelbaar beeld te krijgen. Alleen zijn die variabelen moeilijk observeerbaar als deze niet geïsoleerd waarneembaar gemaakt kunnen worden.

Alle variabelen zijn gewoon bekend, bewegingen kunnen perfect beschreven worden door differentiaalvergelijkingen. Waar ook in de begin- en randvoorwaarden in verwerkt worden.

Het is niet zo dat de bewegingsvergelijkingen veranderen naarmate de systemen complexer worden. Het wordt alleen lastiger dit te beschrijven omdat de systemen afhankelijk worden van elkaar.

Tegenwoordig is met genoeg rekenvermogen en met eindige elementen programma's prima te voorspellen hoe een systeem zich gedraagt. En daar wordt gebruik gemaakt van de fundamentele natuurkundige vergelijkingen die bewegingen of andere grootheden beschrijven.

Het probleem ontstaat dat we niet genoeg rekenvermogen hebben en daarom onze methoden aan moeten passen aan het rekenvermogen. Dit kan op heel veel manieren zoals incrementeel of linearisaties (en er dus fouten ontstaan).

De bewegingswetten gelden voor simpele en complexeren systemen. Het is niet zo dat de natuurwetten veranderen omdat een systeem complexer wordt. Het is alleen lastiger deze te beschrijven.
 
Dat is beter man. Waarom niet meteen zo? Dat draagt wat bij aan een discussie. :)

Btw: thanks voor de karma. Is oke man soms denk ik dat je een persoonlijke probleem met me hebt :p

Ik zeg niet dat natuurwetten veranderen je begrijpt me verkeerd. Wat ik bedoel te zeggen is dat de observatie van deze wetten nog te beperkt is, zo zie je vaak in de natuurkunde dat oude theoriën aangepast en uitgebreid moeten worden. met name in een totaalbeeld is de observatie nog te miniem. Ik denk dat als theoriën wat uitgebreid zullen worden dat complexere omstandigheden ook begrepen kunnen worden en niet alleen uitgerekend. Het punt is dat bij systemen maar tot een bepaald punt voorspeld waarna het chaotisch wordt, dit voor mij getuigd dat het begrip over de systemen nog niet toereikend genoeg is. Dat klopt toch ook immers komen er steeds meer theoriën bij en kun je de wereld zowel op atomair niveau als kwanta fysisch observeren dat twee totaal verschillende beelden schetst.
 
Laatst bewerkt:
Dat is al het geval. Als er meerdere theoriën zijn betekent dat slechts dat je de totaal theorie nog niet gevonden hebt. In btw.

Om welke theorieen zou het dan gaan? Ik neem aan dat je doelt op de relativiteitstheorie vs kwantumfysica, maar beiden pretenderen slechts een gedeelte van het universum in kaart te brengen.
Mijn hypothetisch voorbeeld verwijst slechts naar de mogelijkheid dat twee totaal-theorieen terwijl ze allebei ALLE ervaringsgegevens kunnen verklaren, maar vanuit een radicaal verchillend wereldbeeld.
 
Ik ook in de klassieke natuurkunde/mechanica hoor :D Vind dit gewoon ook wel interessant, net als de wiskunde die erachter schuilt. Alhoewel deze zo verschrikkelijk complex is dat je wiskunde echt op een extreem hoog niveau moet zijn, wat extra vakken volgen bij technische wiskunde dan maar haha.

---------- Post toegevoegd Sun 27 May 2012 om 23:44 ----------

In before Tjok btw, die studeert Technische Natuurkunde
Volgend jaar hoop ik er wat meer over te kunnen vertellen en over mee te kunnen praten. :-)
Iedereen kan natuurlijk wel op basis van wiki-achtige bronnen een beetje praten over wat zij nou vinden van de theorie (of was dat het plan niet?). Maar ik denk dat het zo ingewikkeld is dat je hier niet echt goed over mee kan praten. Tenzij je je er echt in verdiept in je vrije tijd.. De meeste meningen die 'normale' mensen hebben, hebben net zoveel waarde als de mening die je 8-jarige neefje (of in het geval van de meeste mensen; eigenlijk welke leeftijd dan ook) heeft over politieke zaken. Het is dan ook bijna pijnlijk om de paar posts van Maxiamento hierboven te lezen, buiten het feit dat ze ook vrijwel onleesbaar zijn. Als je er eigenlijk niets van af weet, praat er dan ook niet over. Heb je zoiets nooit geleerd vroeger? Iets van "niet praten maar luisteren" of zoiets?

Dit jaar hebben we de vakken kwantummechanica 1 & 2 gehad, maar het is niet wat je denkt dat het zou zijn. Of i.i.g. niet wat ik dacht dat het zou zijn.
Het voorgeschreven boek is "Introduction to Quantum Mechanics by David Griffiths". Het is semi-populair geschreven en hier en daar vind ik de zinnen niet echt goed lopen. Paragrafen worden ook niet echt lekker afgerond.
Verder is het niet een boek voor de 'leek'. Veel lineaire algebra, schrodingervergelijkingen en weinig goede uitwerkingen in de voorbeelden. Je moet echt je kop er goed bij houden en een hoop onthouden maar als je dat lukt en je kunt hem de bovenstaande dingen vergeven, dan is het een goed boek.

Discussieren over string-theorie, over de validiteit of andere aspecten, is denk ik ook meer weggelegd voor de thesis van een masterstudent of wellicht pas tijdens een PhD- of Postdoc-positie.

Een veel leukere tak van de natuurkunde is dan toch wel transportverschijnselen of van wiskunde de differentiaalvergelijkingen. Kunnen we daar geen topic over openen? :p
 
  • Topic Starter Topic Starter
  • #52
Volgend jaar hoop ik er wat meer over te kunnen vertellen en over mee te kunnen praten. :-)
Iedereen kan natuurlijk wel op basis van wiki-achtige bronnen een beetje praten over wat zij nou vinden van de theorie (of was dat het plan niet?). Maar ik denk dat het zo ingewikkeld is dat je hier niet echt goed over mee kan praten. Tenzij je je er echt in verdiept in je vrije tijd.. De meeste meningen die 'normale' mensen hebben, hebben net zoveel waarde als de mening die je 8-jarige neefje (of in het geval van de meeste mensen; eigenlijk welke leeftijd dan ook) heeft over politieke zaken. Het is dan ook bijna pijnlijk om de paar posts van Maxiamento hierboven te lezen, buiten het feit dat ze ook vrijwel onleesbaar zijn. Als je er eigenlijk niets van af weet, praat er dan ook niet over. Heb je zoiets nooit geleerd vroeger? Iets van "niet praten maar luisteren" of zoiets?

Dit jaar hebben we de vakken kwantummechanica 1 & 2 gehad, maar het is niet wat je denkt dat het zou zijn. Of i.i.g. niet wat ik dacht dat het zou zijn.
Het voorgeschreven boek is "Introduction to Quantum Mechanics by David Griffiths". Het is semi-populair geschreven en hier en daar vind ik de zinnen niet echt goed lopen. Paragrafen worden ook niet echt lekker afgerond.
Verder is het niet een boek voor de 'leek'. Veel lineaire algebra, schrodingervergelijkingen en weinig goede uitwerkingen in de voorbeelden. Je moet echt je kop er goed bij houden en een hoop onthouden maar als je dat lukt en je kunt hem de bovenstaande dingen vergeven, dan is het een goed boek.

Discussieren over string-theorie, over de validiteit of andere aspecten, is denk ik ook meer weggelegd voor de thesis van een masterstudent of wellicht pas tijdens een PhD- of Postdoc-positie.

Een veel leukere tak van de natuurkunde is dan toch wel transportverschijnselen of van wiskunde de differentiaalvergelijkingen. Kunnen we daar geen topic over openen? :p

Haha ja differentiaalvergelijkingen heeft me ook positief verrast moet ik zeggen, mooi deel van de wiskunde.

Dit topic was gewoon een beetje bedoeld voor de "feitjes" op deze vlakken. Niet echt de inhoudelijke discussie aan te gaan, omdat de materie toch zo ingewikkeld is dat je er eigenlijk gestudeerd voor moet hebben om er zinnige dingen over te kunnen zeggen (wat ik zelf ook niet doe overigens).

Ik volg volgend jaar trouwens ook wat vakjes op TN en TW, welke kan je me aanraden?

Zat te denken aan Kwantummechanica 1 (misschien 2) op TN en op TW Partial Differential Equations. Heb je nog wat suggesties?

---------- Post toegevoegd Thu 5 Jul 2012 om 21:51 ----------

Welke minor ga je trouwens doen volgend jaar?
 
In.. weinig kennis op dit gebied maar heb t altijd al interessant gevonden.. Ga dit dus volgen
 
Wat doe je nu Ruud?

Heb zelf ook (master) vakken bij TW gevolgd, maar dan mis je wel een basis hoor.
De stof op zich is best te begrijpen, maar ik had bijvoorbeeld moeite de vragen te interpreteren.


Wat vinden jullie zo leuk aan DV? Voor mn afstuderen veel gebruik gemaakt van dynamical systems theory, maar vond dat nu niet echt interessant.
 
  • Topic Starter Topic Starter
  • #55
Ik doe nu Werktuigbouwkunde.

Heb nu deze wiskunde gehad:
- Analyse 1,2,3
- Lineaire algebra 1,2
- Differentiaalvergelijkingen
- Probability & Statistics

Dus PDE leek me wel een goede toevoeging op DE

Als je suggesties hebt AbFab, graag :D
 
Ik heb kansberekening op middelbare gehad come at me
 
Haha ja differentiaalvergelijkingen heeft me ook positief verrast moet ik zeggen, mooi deel van de wiskunde.

Dit topic was gewoon een beetje bedoeld voor de "feitjes" op deze vlakken. Niet echt de inhoudelijke discussie aan te gaan, omdat de materie toch zo ingewikkeld is dat je er eigenlijk gestudeerd voor moet hebben om er zinnige dingen over te kunnen zeggen (wat ik zelf ook niet doe overigens).

Ik volg volgend jaar trouwens ook wat vakjes op TN en TW, welke kan je me aanraden?

Zat te denken aan Kwantummechanica 1 (misschien 2) op TN en op TW Partial Differential Equations. Heb je nog wat suggesties?

---------- Post toegevoegd Thu 5 Jul 2012 om 21:51 ----------

Welke minor ga je trouwens doen volgend jaar?
Ga je die vakken volgen als onderdeel van je minor? Ik weet niet precies wat ik je zou aanraden, het ligt er maar net aan wat je leuk vindt.
De grote vakken van het eerste en het tweede jaar zijn elektromagnetisme (EM), mechanica- en relativiteitstheorie, fysische transportverschijnselen (FT), statistische fysica en kwantummechanica.
Zelf vond ik EM, mecharela en FT de wat leukere vakken waarbij EM en FT echt leuk zijn. Kwantummechanica vind ik niet zo boeiend, teveel abstracte shit. En van statistische fysica zijn de tentamens gewoon veel te moeilijk. Echt absurd moeilijk, maar het vak zelf is wel okee. Vooral het boek is een fijn boek.

Ik ga als minor Geology & Geo-engineering for engineers (duh) doen. Het is dan ook meer bedoeld als een soort schakelminor om als master Petroleum Engineering of Mining & Resources te kunnen doen.

Ik vind DVs leuk omdat er veel zaken uit de dagelijkse wereld beschreven worden door (p)DVs. Het geeft me een hoop voldoening om iets te kunnen modelleren en dat dat model dan ook nog eens echt de realiteit benaderd.

---------- Post toegevoegd Thu 5 Jul 2012 om 23:49 ----------

@Abfab: Welke studie heb jou nou gedaan? Volgens mij heb je dat nog geen 1 keer gezegd op DBB, of is mijn zoekvermogen erg slecht?
 
Interessant onderwerp. Jammer genoeg weet ik er niet zoveel van af.

Ken wel een chick die nu aan het promoveren is bij CERN, kan daar echt jaloers op zijn. In een volgend leven gewoon natuur/techniek kiezen op de middelbare school ;)
 
LR.

Heb dat volgensmij nooit gezegd ;)
Maar nu ik er toch klaar ben, kan dat best.

En ook in dat vakgebied wordt inderdaad heel veel beschreven door pde's.
 
Terug
Naar boven